CSCI 4210/6210 Parallel and
Distributed Simulation

PDES Introduction
The Time Warp Mechanism

1785

Maria Hybinette, UGA

The Synchronization Problem

: Events within each logical process must
be processed in time stamp order

: Adherence to the local causality constraint is sufficient
to ensure that the parallel simulation will produce exactly the same
results as the corresponding sequential simulation*

Synchronization Algorithms

o Conservative synchronization: avoid violating the local causality
constraint (wait until i’ s safe)

» 1st generation: null messages (Chandy/Misra/Bryant)
» 2nd generation (maybe in course): time stamp of next event

e Optimistic synchronization: allow violations of local causality to
occur, but detect them at runtime and recover using a rollback
mechanism

» Time Warp (Jefferson & Sowizral)

* provided events with the same time stamp are processed in the same order as in the sequential execution

Maria Hybinette, UGA

Time Warp Algorithms

@ Optimistic Synchronization
o Time Warp
» Local Control Mechanism
— Rollback
— Event cancellation
» Global Control Mechanism
— Global Virtual Time
— Fossil Collection

Maria Hybinette, UGA

Time Warp Algorithm

® Assumptions:

» logical processes (LPs) exchanging time stamped events (messages)

» dynamic network topology, dynamic creation of LPs

» messages sent on each link need not be sent in time stamp order

» network provides reliable delivery, but need not preserve order when received
o Basic idea:

» process events w/o worrying about messages that will arrive later

» detect out of order execution, recover using rollback

ool
~ i
SFO / En

process all available events (2, 4, 5, 8, 9) in time stamp order

Time Warp: Local Control Mechanism

@ Many have been proposed, will cover
fundamental concepts:
» rollback, anti-messages, Global Virtual Time (GVT).
» Initially assume ‘non-zero’ look-ahead
@ Time Warp Structure:
» local control mechanism: implemented within each
processor, mostly independent of other processors

» global control mechanism: used to reclaim memory
and used to commit operations such as I/O that
cannot be rolled back: requires a distributed
computation involving all processors in the system.

Maria Hybinette, UGA

Each LP: process events in time stamp order, like a sequential simulator, except:
(1) do NOT discard processed events (backs up a history) and
(2) add a rollback mechanism

Input Queue I:l processed events
(event IﬂI_F _r‘ _r‘ _n— - unprocessed events
\ \ [antemessages
|| 42
Output Queue 19 .
(anti-messages)

straggler message arrives in the past, causing rollback

Problem: Need to account for messages received in the LP’s past.
Approach: Rollback and then re-compute
Sub Problem : Rollback changes to state variables performed by events

Sub Problem: Rollback previously sent messages
Solution: Anti-messages and message annihilations (output queue)

Anti-Messages

Undo message sends by ‘unsending’ a previously sent message

T

e Each positive (regular) message sent by an LP has a corresponding anti-
message
» An anti-message is an identical (copy) to its positive message, except for a sign bit.
° : When an anti-message and its matching positive message
meet in the same queue, the two annihilate each other (analogous to matter and
anti-matter).

® Mechanism:
» To undo the effects of a previously sent (positive) message, the LP need only send the
corresponding anti-message
» Message send: in addition to sending the message, leave a copy of the corresponding
anti-message in a data structure in the sending LP called the output queue.

[anti-messages

Processing Incoming Anti-Messages

Case |: Corresponding message has not yet been processed
» annihilate message/anti-message pair

Case |I: Corresponding message has already been processed
» rollback to time prior to processing message (secondary rollback)
» annihilate message/anti-message pair

Case llI: Corresponding message has not yet been received
» queue anti-message
» annihilate message/anti-message pair when message is received

2. roll back events (4R and 45)
42 2(a) restore state”| 95
—H —

2(b) send anti-message

1. anti-message arrive

I:l processed events
Bl rorocessed events

] anti-messages

LP Simulation Example

Now: current simulation time

InTheAir: number of aircraft landing or waiting to land
OnTheGround: number of landed aircraft
RunwayFree: Boolean, true if runway available

Arrival Event:
InTheAir := InTheAir+l;
if(RunwayFree)
RunwayFree:=FALSE;
Schedule Landed event(local) @ Now + R;

Landed Event:
InTheAir := InTheAir-1;
o =0 +1;

Schedule Departure event(local) @ Now + G;
if(InTheAir > 0) Schedule Landed event(local) @ Now + R;

else RunwayFree := True;
Departure Event: (D = Delay to reach another airport)
OnTheGround := OnTheGround - 1;

Schedule Arrival Event (remote) @ (Now+D) @ another airport

o e
Rollback: Receiving a Straggler Message
2. roll back events at times 35 and 21
2(a) restore state of LP to that prior to processing time stamp 21 event

Input Queue
(event list’ 1 _n_.

\ \ [crtmessages
Output Queue 2(b) send anti-message
(anti-messages) .

BEFORE

T e
| e

1. straggler message arrives in the past, causing rollback

Input Queue
o —H—n

\ 5. resume execution by processing event at time 18

Output Queue
(anti-messages)

AFTER

Processing Incoming Anti-Messages

Case |: Corresponding message has not yet been processed
» annihilate message/anti-message pair

Case |I: Corresponding message has already been processed
» rollback to time prior to processing message (secondary rollback)
» annihilate message/anti-message pair

Case llI: Corresponding message has not yet been received
» queue anti-message
» annihilate message/anti-message pair when message is received

1. anti-message arrive

I:l processed events
Bl rorocessed events

] anti-messages

Global Virtual Time and Fossil Collection

® A mechanism is needed to:
» reclaim memory resources (e.g., old state and events)
» perform irrevocable operations (e.g., I/0)
o Observation: A lower bound on the time stamp of any rollback that
can occur in the future is needed.

@ Global Virtual Time (GVT) is defined as the minimum time stamp
of any unprocessed (or partially processed) message or anti-
message in the system. GVT provides a lower bound on the time
stamp of any future rollback.

» storage for events and state vectors older than GVT (except one
state vector) can be reclaimed
» |/O operations with time stamp at GVT can be performed.

® Observation: The computation corresponding to GVT will not be

rolled back, guaranteeing forward progress.

Maria Hybinette, UGA

Time Warp and Chandy/Misra Performance

——Deadlock Recovery (64 logical
processes)

8
7 —e—Time Warp (64 logical
//. processes)
6 —o—Time Warp (16 logical
/'/ processes)
25 7 —a—Deadlock Avoidance (64
8 4 . | logical processes)
8 / —«—Deadlock Avoidance (16
2 3 logical processes)
) r/ —xDeadlock Recovery (64 logical
1
0

l

o

16 32 48 64
Message Density
(messages per logical process)

® eight processors

e closed queuing network, hypercube topology

® high priority jobs preempt service from low priority jobs (1% high priority)
o exponential service time (poor lookahead)

Maria Hybinette, UGA

Summary

® Optimistic synchronization: detect and recover from
synchronization errors rather than prevent them

o Time Warp

» Local control mechanism

» Rollback

» State saving

» Anti-messages

» Cascaded rollbacks
o Global control mechanism

» Global Virtual Time (GVT)

» Fossil collection to reclaim memory

» Commit irrevocable operations (e.g., I/0)

Maria Hybinette, UGA

