
Maria Hybinette, UGA

CSCI 4210/6210
 Parallel & Distributed Simulation

PDES: Time Warp Mechanism
Distributed Snapshots and Fossil Collection

Maria Hybinette, UGA 2

Global Virtual Time

 Wallclock time T (GVTt) during the execution of a
Time Warp simulation is defined as the minimum
time stamp among all unprocessed and partially
processed messages and anti-messages in the
system at wall-clock T.

Maria Hybinette, UGA 3

Outline

  Consistent Cuts
» Cut points
» Cut messages
» Cut values

  Mattern�s GVT Algorithm
» Colors
»  Vector counters
»  Pipelined algorithm

  Fossil Collection
  Thursday: We will do an additional example

using Mattern’s Algorithms to determine GVT.
Maria Hybinette, UGA 4

Review: Samadi�s Algorithm

  Transient message problem:
»  Solution: Message acknowledgements

  Simultaneous message problem:
»  Solution: Mark acknowledgements sent after

reporting local minimum
» Caveat: Just message acks are not enough (marked

message acks are needed).

  Overhead:
» Message acknowledgments:

–  Message acknowledgment for
  each message and
  anti-message.

Maria Hybinette, UGA 5

Mattern’s Algorithm

  Asynchronous
»  Executes in background concurrent with time warp

execution (does not require the simulation to
�freeze� (i.e., block the LPs).

  Avoids message acknowledgements
  Approach: Based on techniques for creating

distributed snapshots (consistent cut)
» We will see what it means to be a consistent cut

»  Can some asynchronous algorithms compute exact GVT(t)?
»  What about synchronous algorithms?"

Consistent Cuts

Cut point:

Cut:

Cut message:

Consistent cut:

wallclock time

Past

Future

cut
message

Cut value:"

LP4

LP3

LP2

LP1

Consistent Cuts

Cut point: an instant dividing computation into past and future

Cut:

Cut message:

Consistent cut:

wallclock time

Past

Future

cut
message

Cut value:"

LP4

LP3

LP2

LP1

Consistent Cuts

Cut point: an instant dividing computation into past and future

Cut: set of cut points, one per processor

Cut message:

Consistent cut:

wallclock time

Past

Future

cut
message

Cut value:"

LP4

LP3

LP2

LP1

Consistent Cuts

Cut point: an instant dividing computation into past and future

Cut: set of cut points, one per processor

Cut message: a message that was sent in the past, and received in the future

Consistent cut:

wallclock time

Past

Future

cut
message

Cut value:"

LP4

LP3

LP2

LP1

Consistent Cuts

Cut point: an instant dividing computation into past and future

Cut: set of cut points, one per processor

Cut message: a message that was sent in the past, and received in the future

Consistent cut: a cut where all messages crossing the cut are cut messages

wallclock time

Past

Future

cut
message

Cut value:"

LP4

LP3

LP2

LP1

Consistent Cuts

Cut point: an instant dividing computation into past and future

Cut: set of cut points, one per processor

Cut message: a message that was sent in the past, and received in the future

Consistent cut: a cut where all messages crossing the cut are cut messages

wallclock time

Past

Future

cut
message

Cut value: minimum among (1) local minimum of each LP at its cut point and
(2) time stamp of cut messages"

LP4

LP3

LP2

LP1

  Consistent Cuts: Includes local state at its cut-point & all its
transient messages.

  Observation: Time stamp of a message sent after a cut point at
wallclock time T must be at least as large as the minimum of:

»  the smallest time stamp of any unprocessed event in the processor at
time T

»  the smallest time stamp of any message received by the processor
after time T.

  GVT must be smaller than or equal to both of these quantities

Cuts: Divides Past and Future

wallclock time

LP4

LP3

LP2

LP1

Past

Future

cut
message

Any message crossing cut from future to past must have a
time stamp > the cut value, so they can be ignored when
computing the cut value

Message generated by an LP after its cut point must have time
stamp greater than the minimum of
»  The LP�s local minimum at its cut point
»  The time stamp of messages received after the cut point

Observation 1

wallclock time

Past

Future

cut
message

LP4

LP3

LP2

LP1

U!

T1 T2
T3!

S

T1 > Y
T2 > min(Y, U)
T3 > min(Y, U, S)
S > X, so
T3 > min(Y, U, X)
(Cut value ≤ X, Y, U)

Y

X

  Cut value equal to GVT(T) using synchronous GVT algorithm
(freeze LPs: no new computations nor message sends/receives).

»  Events generated after cut have time stamp > cut value

  Cut value can be used as a GVT value

Observation 2

LP4

LP3

LP2

LP1

X

Asynchronous execution

Wallclock time

U V

Cut value
= min(W, X, Y, Z ,U ,V)

GVT(T)
= min ts ∀unprocessed message @ T
= min(W, X, Y, Z, U, V)

LP4

LP3

LP2

LP1

T

Execution, each LP blocks at cut point"

U V
W

Y

X

idle

idle W

Z

Y Y

Z

Approach:
  Construct two cuts C1, C2, approximate cut value along C2

»  Organize processes in ring, pass token around ring
  Ensure no message that crosses C1 also cross C2

»  Color LPs, change LP color at each cut point
»  Color (green/red) each message to that of LP sending message

(message tag)
»  Maintain send/receive message counters

  GVT = min(local min along C2, time stamp of red messages)

Mattern�s GVT Algorithm

cut point

LP1

LP2

LP3

LP4

C1 C2 Wallclock time

Challenge: accounting for cut messages

  The first cut:
» Changes color of each process (green to red)
» Determine number of green messages sent to each process

  The second cut:
»  Each process makes sure all green messages sent to it

have been received before laying down a cut point
» Compute global minimum (GVT value)

Algorithm Overview

cut point

LP1

LP2

LP3

LP4

C1 C2 Wallclock time

  LPi maintains vector Vi[1:N] , where N = #LPs
» Vi[i] = number of green messages received by LPi
» Vi[r] = number of green messages sent by LPi to LPr

  C2: LPi cannot pass token until
» Vi[i] = ∑ Vs [i] (summed over all s ≠ i)

  C1: Token includes vector to accumulate send
counters

How does an LP know it has received all its green messages?

cut point

LP1

LP2

LP3

LP4

C1 C2 Wallclock time

Vector counters for green messages (at C2) i = j received:

Example: Vector Counters

cut point

LP1

LP2

LP3

LP4

C1 C2 Wallclock time

V1 V2 V3 V4

V1[4] = 0

Vector counters for green messages (at C2) i = j received:

Example: Vector Counters

cut point

LP1

LP2

LP3

LP4

C1 C2 Wallclock time

V1 V2 V3 V4

V1[4] = 0

V1[3] = 0

Vector counters for green messages (at C2) i = j received:

Example: Vector Counters

cut point

LP1

LP2

LP3

LP4

C1 C2 Wallclock time

V1 V2 V3 V4

V1[4] = 0

V1[3] = 0

V1[2] = 1

.

Vector counters for green messages (at C2) i = j received:

Example: Vector Counters

cut point

LP1

LP2

LP3

LP4

C1 C2 Wallclock time

V1 V2 V3 V4

V1[4] = 0

V1[3] = 0

V1[2] = 1

V1[1] = -2

Vector counters for green messages (at C2) i = j received:

Example: Vector Counters

cut point

LP1

LP2

LP3

LP4

C1 C2 Wallclock time

V1 V2 V3 V4

V1[4] = 0 V2[4] = 0

V1[3] = 0 V2[3] = 0

V1[2] = 1 V2[2] = -3

V1[1] = -2 V2[1] = 1

Vector counters for green messages (at C2) i = j received:

Example: Vector Counters

cut point

LP1

LP2

LP3

LP4

C1 C2 Wallclock time

V1 V2 V3 V4

V1[4] = 0 V2[4] = 0 V3[4] = 1

V1[3] = 0 V2[3] = 0 V3[3] = 0

V1[2] = 1 V2[2] = 3 V3[2] = 0

V1[1] = -2 V2[1] = 1 V3[1] = 0

Vector counters for green messages (at C2) i = j received:

Example: Vector Counters

cut point

LP1

LP2

LP3

LP4

C1 C2 Wallclock time

V1 V2 V3 V4

V1[4] = 0 V2[4] = 0 V3[4] = 1 V4[4] = -1

V1[3] = 0 V2[3] = 0 V3[3] = 0 V4[3] = 0

V1[2] = 1 V2[2] = -3 V3[2] = 0 V4[2] = 2

V1[1] = -2 V2[1] = 1 V3[1] = 0 V4[1] = 1

  Local Variables (in each logical process LPi):
»  Tred = min time stamp among red messages sent by LP (even

non-cut red messages!)
»  Vi[1:N] = message send / receive counters

  Token: CMsg
»  CMsg_Tmin = accumulator, smallest local minimum so far
»  CMsg_Tred = accumulator, smallest red message time stamp

so far
»  CMsg_Count[1:N] = # messages sent to each LP

Mattern�s GVT Algorithm

cut point

LP1

LP2

LP3

LP4

C1 C2
Wallclock time

  Message send by green logical process from LPi to LPj
Vi[j] = Vi[j] + 1

  LPi receives a green message
Vi[i] = Vi[i] - 1

  Control message, first cut:
Change color of process to red
CMsg_Count = CMsg_Count + Vi
Forward control message to next process in ring

  Message send with time stamp ts by a red LP
Tred = min(Tred, ts)

  Control message, second cut:
wait until Vi[i] = CMsg_Count[i] i.e., #received = #sent
CMsg_Tmin = min(CMsg_Tmin, Tmin)
CMsg_Tred = min(CMsg_Tred, Tred)
forward token to next process in ring

Mattern�s GVT Algorithm

Maria Hybinette, UGA 27

Fossil Collection

  Batch fossil collection
» After GVT computation, scan through list of LPs

mapped to processor to reclaim memory and
commit I/O operations

» May be time consuming if many LPs

  On-the-fly Fossil Collection
» After processing event, place memory into �free

memory� list
» Before allocating memory, check that time stamp is

less than GVT before reusing memory

Maria Hybinette, UGA 28

Summary

  Consistent cuts
  Cut value can be used as an estimate of GVT

»  Local minimum at each LP
»  Cut messages

  Construct second consistent cut
»  Coloring LPs, messages
»  Vector counter to determine when an LP has received all

relevant cut messages
  Pipeline GVT computation, continuously circulating token
  Numerous variations

»  Could implement cuts with other communication topologies,
e.g., butterfly

»  Other ways to deal with transient messages, e.g., global count
and abort/retry mechanism for second cut, etc.

Distributing GVT Values & Pipelining

Pipelined execution
  Overlap successive GVT computations: first GVT uses

C1, C2, C3, second uses C2, C3, C4, etc.
  Each cut computes a new GVT value
  Continuously circulate GVT token

GVT #2 GVT #3

LP1

LP2

LP3

LP4

C1 C2 C3 C4 C5

GVT #1

