
Maria Hybinette, UGA

CSCI 8220
 Parallel & Distributed Simulation

PDES: Time Warp Mechanism

Other Mechanisms

Maria Hybinette, UGA

2

Outline

! Rollbacks idiosyncrasies and remedies

» Error Handling

» Dynamic Memory Allocation

! Event Retraction

! Improving the cost of rollbacks

» Lazy Cancellation

» Lazy Re-Evaluation

! Memory Management

» Mechanisms

» Storage optimal protocols

» Artificial Rollback

! Other optimistic protocols

Maria Hybinette, UGA

3

Optimistic Execution Questions

! How to handle error handling in an optimistic

simulator?

» Why is this a problematic?

! How to manage dynamic memory

allocations?

» Why is this problematic? Remedies?

! How to make rollbacks more efficient?

Maria Hybinette, UGA

4

Error Handling

! Typically Errors such as divide by zero, are handled by

aborting program. Is this appropriate for TimeWarp

simulations? Why or Why not?

! Problem: What if an execution error is rolled back?

! Solution: Do not abort program until the error is

committed (GVT advances past the simulation time

when the error occurred).

» Requires Time Warp executive to “catch” (flag) errors

when they occur

» Countermeasures depend on error type

Maria Hybinette, UGA

5

Error Types

! Program detected

» Logic errors, e.g., some variables never negative

» Treat “abort” procedure like an I/O operation, prevent error from
propagating and flag error to see if it erased by rollback.

! Infinite loops

» Interrupt mechanism to receive incoming messages

» Poll for messages in loop

! Benign errors

» Errors that impact only checkpointed state (e.g., divide by zero)

» Trap mechanism to catch runtime execution errors

! Destructive errors

» Difficult to detect these…

» Example: overwrite state of Time Warp executive)

» Runtime checks (e.g., array bounds)

» Strong type checking, avoid pointer arithmetic, etc.

Maria Hybinette, UGA

6

Dynamic Memory Allocation

malloc() and free() How should they be handled?

Issues:

! Roll back of memory allocation (e.g., malloc())

» Problem: Memory leak (when check pointing a pointer to a
previously allocated memory location). Run out of memory…

» Solution: release memory if malloc rolled back

! Roll back of memory release (e.g., free())

» Problem: Reuse memory that has already been released. The
LP did not really mean to free the memory …

» Solution:

– Treat memory release like an I/O operation

– Only release memory when GVT has advanced past the
simulation time when the memory was released

Maria Hybinette, UGA

7

Event Retraction

! Goal:

» Need a primitive to un-schedule a previously scheduled
event (application level primitive)

! Example:

» ORD Schedules an arrival at JFK

» Need to re-route aircraft to Boston (due to congestion at
JFK)

! Observation:

» Cancellation retracts events at the ‘simulation kernel level’

! Problem:

» Need a mechanism to undo event retraction (cancellation)
if the event computation that invoked the retraction is
rolled back.

Maria Hybinette, UGA

8

Event Retraction Approaches

! Application Level

! Kernel Level

Maria Hybinette, UGA

9

Event Retraction: Approach 1

Application Level Approach

1. Schedule a retraction event with time stamp

earlier than (<) the event being retracted

2. Process retraction event: Set flag in LP state to

indicate the event has been retracted.

3. Process event: Check if it has been retracted

before processing any event

LP2

LP1

Retraction handled within the application

Example: Application Approach

E1

E

schedule

original

event E

invoke

retract

primitive

process R,

set flag

begin to

process E,

notice flag is set,

ignore event
R

schedule

retract event R

Maria Hybinette, UGA

11

Event Retraction: Approach 2

Time Warp Executive Level Approach

! Retraction: send anti-message to cancel the retracted event

» Retraction: invoked by application program

» Cancellation: invoked by Time Warp executive (transparent to

the application)

! Rollback retraction request

» Reschedule the original event

» Retraction: place positive copy of message being retracted in

output queue

» Rollback: Send messages in output queue (same as before)

E+

leave E+ in

output queue

E+

reschedule E

LP2

LP1

Retraction handled within Time Warp executive

Example: Kernel Approach

E1

E+

schedule

original

event E

invoke

retract

primitive

annihilate E

E-

send

anti-message

for E

roll back LP1

Maria Hybinette, UGA

13

Lazy Cancellation

! Motivation:

» re-execution after rollback may generate the same
messages as the original execution

» in this case, need not cancel original message that were
scheduled by rolled back event.

! Mechanism:

» rollback: do not immediately send anti-messages

» after rollback, recompute forward

» only send anti-message if recomputation does NOT
produce the same message again

LP2

LP1

Lazy cancellation avoids unnecessary rollback

Example: Lazy Cancellation

E1+

anti-message

in output queue

E1-

E2+

E2-

roll back

don!t send

anti-messages

E2-

send

anti-messageAnnihilate

E2+ and E2-

E1+

execute forward

E1 resent

don!t send

anti-message

execute forward

E2 not resent

Maria Hybinette, UGA

15

Lazy Cancellation: Evaluation

! Benefit:

» avoid unnecessary message cancellations which in turn
eliminate secondary rollbacks.

! Liabilities:

» extra overhead (message comparisons)

» delay in canceling wrong computations

– may allow erroneous computations to spread further. ->
more computations may need to rollback when anti-
message is finally sent

» more memory required (delayed memory reclamation)

! Conventional wisdom

» Lazy cancellation typically improves performance

» Empirical data indicate 10% improvement typical

Maria Hybinette, UGA

16

Lazy Re-evaluation

! Motivation:

» re-execution of event after rollback may be produce same
result (LP state) as the original execution

» in this case, original rollback was unnecessary

! Mechanism:

» rollback: do not discard state vectors of rolled back
computations

» process straggler event, recompute forward

» during recomputation, if the state vector and input queue
match that of the original execution, immediately “jump
forward” to state prior to rollback.

Maria Hybinette, UGA

17

Lazy Re-evaluation

! Benefit:

» avoid unnecessary recomputation on rollback

» works well if straggler does not affect LP state

(query events)

! Liabilities:

» extra overhead (state comparisons)

» more memory required

! Conventional wisdom

» Typically does not improve overall performance

» Useful in certain special cases (e.g., query events)

Maria Hybinette, UGA

18

Memory Management in Time Warp

! Parallel execution using Time Warp tends to

use much more memory than a sequential

execution (even with fossil collection)

» State vector and event history

» Memory consumption can be unbounded because

an LP can execute arbitrarily far ahead of other LPs

» “Overoptimism” lead to very long and frequent

rollbacks, may waste computation time.

Maria Hybinette, UGA

19

Memory Management in Time Warp

memory

buffer holding

event

Event at GVT

LPA

LPB

fossil

collected

LPA

LPB

Time

Time

“Overoptimism” lead to very long and frequent rollbacks, may waste

computation time.

Maria Hybinette, UGA

20

Memory Consumption

! Sequential Simulations:

» aborts

! Parallel Simulations:

» abort?

» more memory?

» blocking?

» Memory:

1) positive and

2) anti-messages and

3) state vectors

Maria Hybinette, UGA

21

Memory Consumption Remedies

! Infrequent / incremental: state saving

! Pruning: dynamically release copy state

saved memory

! Blocking: block certain LPs to prevent overly

optimistic execution

! Roll back to reclaim memory

! Message sendback

Message Sendback

Basic Idea:

! Send time stamp

! Reclaim memory used by a message by returning it to

the original sender

! Usually causes the sender to roll back

LP1

LP2

Simulation time

processed

unprocessed

Message sendback
Roll back events

Event Time Stamps

! Receive time stamp: time stamp indicating when the

event occurs (conventional definition of time stamp)

! Send time stamp of event E: time stamp of the LP

when it scheduled E (time stamp of event being

processed when it scheduled E)

LP1

LP2

Simulation time10 20

Send time stamp = 10

Receive time stamp = 20

Maria Hybinette, UGA

24

Message Sendback

! Causes sender to roll back to the send time of

event being sent back

! Can any message be sent back?

» No! Can only send back messages with send time

greater than GVT

! A new definition of GVT is needed

GVT(T) (GVT at wallclock time T) is the minimum among

» Receive time stamp of unprocessed and partially

processed events

» Send time stamp of backward transient messages at

wallclock time T

Maria Hybinette, UGA

25

Storage Optimal Protocols

Storage Optimality: A memory management protocol is

storage optimal iff it ensures that every parallel simulation

uses memory O(M), where M is the number of units of

memory utilized by the corresponding sequential simulation

! Basic idea: if the Time Warp program runs

out of memory

» identify the events (message buffers) that would

exist in a sequential execution at time T, where T is

the current value of GVT

» roll back LPs, possibly eliminating (via annihilation)

all events except those that exist in the

corresponding sequential execution.

snapshot of

Time Warp execution

GVT=T simulated time

Classifying Events

Time Warp:

can be fossil collected

Sequential execution: Which events occupy storage in a
sequential execution at simulation time T?

Time Warp: For which events can storage be reclaimed?

Sequential:

already processed
pending, in event list

not yet generated eligible for deletion (can be re-created)

ineligible for deletion

Maria Hybinette, UGA

27

Observations

! In a sequential execution at simulation time T, the
event list contains the events with

» Receive time stamp greater than T

» Send time stamp less than T.

! Time Warp can restore the execution to a valid state if
it retains events with

» Send time less than GVT and receive time stamp greater
than GVT.

» All other events can be deleted (as well as their
associated state vector, anti-messages, etc.)

! Storage optimal protocols: roll back LPs to reclaim all
memory not required in corresponding sequential
execution

Maria Hybinette, UGA

28

Cancelback

! Shared memory machine mechanism

! Storage optimal

! Global pool to hold free buffers

! Uses Message Sendback mechanism (message TS >

GVT)

! Requires:

» GVT Computation

» Fossil collection

» Find and eligible event

» Send back mechanism

! Batching – into a salvage parameter

Maria Hybinette, UGA

29

Other Memory Mechanisms

! Prune-back

! Adaptive mechanisms: predicts memory the

program needs on-line

! Trading performance and Memory

» Performance may DECREASE if memory is

increased further – poorly balanced workloads

– limiting memory may provide a flow control

mechanism that avoids overoptimistic execution.

Effect of Limited Memory on Speedup

! symmetric synthetic workload (PHold)

! one logical processor per processor

! fixed message population

! KSR-1 multiprocessor

! sequential execution requires 128 (4 LPs), 256 (8 LPs), 384 (12 LPs) buffers

! 25% to 75% extra buffer and beyond minimum did not improve performance

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300 350
Number of Message Buffers Beyond Minimum

S
p
e
e
d
u
p

e xperimen tal (1 2
p rocessors)

a naly tical (1 2
p rocessors)

e xperimen ta l (8
p rocessors)

a naly tical (8
p rocessors)

e xperimen ta l (4
p rocessors)

analytica l (4
pro cessors)

Maria Hybinette, UGA

31

Performance Hazards

! Chasing Down Incorrect Computations

» incorrect computation spreads while correcting/canceling
erroneous computations

» dog chasing its tail

! Rollback Echoes

» Expensive rollbacks may cause length of rollback to expand at
an exponential rate. Cost of rollback:

1. Antimessage to all cancelled events

2. Restore State

3. Pointer updates of input queue

» 1&2 suggest cost is proportional to #events being rolled back

» What if rolling back T units of simulated time takes twice as long
as going forward by the same amount?

– net rate of GVT progress decreases as the simulation proceeds!

Maria Hybinette, UGA

32

Other Optimistic Algorithms

A variety of protocols have been proposed:

! window-based approaches

» only execute events in a moving window (simulated

time, memory)

! risk-free execution

» only send messages when they are guaranteed to

be correct

! add optimism to conservative protocols

» specify “optimistic” values for lookahead

Principal goal: avoid excessive optimistic execution

Maria Hybinette, UGA

33

Other Optimistic Algorithms

A variety of protocols have been proposed:

! introduce additional rollbacks

» triggered stochastically or by running out of
memory

! hybrid approaches

» mix conservative and optimistic LPs

! scheduling-based

» discriminate against LPs rolling back too much

! adaptive protocols

» dynamically adjust protocol during execution as
workload changes

Principal goal: avoid excessive optimistic execution

Maria Hybinette, UGA

34

Conservative Algorithms

Advantages:

! Good performance reported for many applications containing
good lookahead (queuing networks, communication networks,
war gaming)

! Relatively easy to implement

! Well suited for “federating” autonomous simulations, provided
there is good lookahead

Disadvantages:

! Cannot fully exploit available parallelism in the simulation
because they must protect against a “worst case scenario”

! Lookahead is essential to achieve good performance

! Writing simulation programs to have good lookahead can be
very difficult or impossible, and can lead to code that is
difficult to maintain

Maria Hybinette, UGA

35

Optimistic Algorithms

Advantages:

! good performance reported for a variety of application

» queuing networks, communication networks, logic circuits, combat models

! offers the best hope for “general purpose” parallel simulation software

» not as dependent on lookahead as conservative methods

! “Federating” autonomous simulations

» avoids specification of lookahead

» caveat: requires providing rollback capability in the simulation

Disadvantages:

! state saving overhead may severely degrade performance

! rollback thrashing may occur (though a variety of solutions exist)

! Implementation:

» generally more complex and difficult to debug than conservative mechanisms;
careful implementation is required or poor performance may result

» must be able to recover from exceptions (may be subsequently rolled back)

Maria Hybinette, UGA

36

Summary

! Other Mechanisms

» Simple operations in conservative systems (dynamic
memory allocation, error handling) present non-trivial
issues in Time Warp systems

» Solutions exist for most, but at the cost of increased
complexity in the Time Warp executive

! Event retraction

» Not to be confused with cancellation

» Application & kernel level solutions exist

! Optimizations

» Lazy cancellation often provides some benefit

» Conventional wisdom is lazy re-evaluation costs
outweigh the benefits

