
Maria Hybinette, UGA

CSCI 8220 Parallel & Distributed
Simulation

Distributed Virtual Environments
Introduction

Maria Hybinette, UGA

2

Outline

General Principles of Distributed Virtual
Environments:

!  What are they?
!  Distributed Virtual Environments (DVE) versus

Analytical Simulations
!  Distributed Interactive Simulation (DIS)
DVE Techniques:
!  Dead Reckoning

Maria Hybinette, UGA

3

Distributed Virtual
Environments (DVE)

!  A synthetic world into which humans and/or
physical devices are embedded

»  Interaction between embedded and simulated
elements

!  Geographically distributed: Involves humans,
devices and computations at different
locations

!  Examples
» Military training (SIMNET, Distributed Interactive

Simulation, HLA)
» Multiplayer video games

Maria Hybinette, UGA

4

DVE: Goals

!  Sufficiently Realistic Representation
»  ‘Realistic’ application dependent (e.g., training)

!  Consistent views
»  Each participant have consistent views of the DVE
» Consistent in time and space

!  Fair fight:
» Outcome depends on the skill of the player rather

than on artifacts in the environment

!  Latency & limited communication bandwidth

Maria Hybinette, UGA

5

DVE Architectures

WAN interconnect"

LAN interconnect"

Server Architecture! Distributed Architecture!

Maria Hybinette, UGA

6

Review: Analytic vs. DVE
(Training)

Analytical DVE

Simulation Model May be non-interactive Interactive

Performance As-fast-as-possible
Speedup

Real-time
Realism

Communication

Often point to point
Reliable

Multiprocessor/LAN
OK w/arbitrary latencies

Broad/Multicast
Best effort
LAN/WAN

Latency bounds,low jitter

Time Management Time stamp order
Synchronization Protocols

Receive Order
No Synchronization Protocols

Issues Efficient execution
Easy of use Training, Scalable execution

Typical Appications Design Analysis Training, entertainment

Distributed Interactive Simulation (DIS)
“The primary mission of DIS is to define an infrastructure for linking simulations of

various types at multiple locations to create realistic, complex, virtual ‘worlds’
for the simulation of highly interactive activities” [DIS Vision, 1994].

!  Developed in U.S. Department of Defense, initially for training
!  DVEs widely used in DoD; growing use in other areas

(entertainment, emergency planning, air traffic control)
Maria Hybinette, UGA

8

DIS Design Principles

!  Autonomy of simulation nodes
»  simulations broadcast events of interest to other

simulations; need not determine which others need
information

»  receivers determine if information is relevant to it, and
model local effects of new information

»  simulations may join or leave exercises in progress

!  Transmission of “ground truth” information
»  each simulation transmits absolute truth about state of

its objects
»  receiver is responsible for appropriately “degrading”

information (e.g., due to environment, sensor
characteristics)

Maria Hybinette, UGA

9

DIS Design Principles

!  Transmission of state change information only
»  if behavior “stays the same” (e.g., straight and level flight), state

updates drop to a predetermined rate (e.g., every five seconds)
!  “Dead Reckoning” algorithms

»  extrapolate current position of moving objects based on last
reported position

!  Simulation time constraints
»  many simulations are human-in-the-loop
»  humans cannot distinguish temporal difference < 100

milliseconds (denotation and explosion)
»  places constraints on communication latency of simulation

platform

A Typical DVE Node Simulator

!  receive incoming messages & user inputs update state of remote
vehicles

!  update local display
!  for each local vehicle

»  compute (integrate) new state over current time period
»  send messages (e.g., broadcast) indicating new state

Image
Generator Other Vehicle

State Table

network
interface

control/
display

interface

own vehicle
dynamics

sound
generator

visual display
system

terrain
database

network

controls
and panels

Execute every 1/30th of
a second:"

Image"
Generator"

Other Vehicle"
State Table"

network"
interface"

control/"
display"

interface"
own vehicle"
dynamics"

sound"
generator"

visual display"

terrain"
database"

Image"
Generator"

Other Vehicle"
State Table"

network"
interface"

control/"
display"

interface"
own vehicle"
dynamics"

sound"
generator"

visual display"

terrain"
database"

Controls/panels"

Controls/panels"

Typical Sequence

1"

1. Detect trigger press"

2"

2. Audio “fire” sound"

3"

3. Display muzzle flash"

4"

4"

4. Send fire PDU"

5"

5. Display muzzle flash"

6"

6. Compute trajectory,"
 display tracer"

7"

7. Display shell impact"

8"

8" 8. Send detonation PDU"9"

9. Display shell impact"

10"

10. Compute damage"

11"

11. Send Entity state PDU"
 indicating damage"

Maria Hybinette, UGA

12

Summary

!  Distributed Virtual Environments have
different requirements compared to analytic
simulations, leading to different solution
approaches

» May be acceptable to sacrifice accuracy to achieve
better visual realism

»  Limits of human perception can often be exploited
!  Distributed Interactive Simulation (DIS)

representative of approach used in building
DVEs

Maria Hybinette, UGA

PDES: Distributed Virtual Environments
Dead Reckoning

Maria Hybinette, UGA

14

Outline

!  Basic Dead Reckoning Model (DRM)
» Generating state updates
»  Position extrapolation

!  Refinements
»  Time compensation
»  Smoothing

Maria Hybinette, UGA

15

Distributed Simulation Example

!  Virtual environment simulation containing
two moving vehicles

!  One vehicle per federate (simulator)
!  Each vehicle simulator must track location of

other vehicle and produce local display (as
seen from the local vehicle)

!  Approach 1: Every 1/30th of a second:
»  Each vehicle sends a message to other vehicle

indicating its current position
»  Each vehicle receives message from other vehicle,

updates its local display

Maria Hybinette, UGA

16

Communication Requirements

!  Multiple players on 10 Mbits/sec Ethernet LAN
!  DIS: PDU contains 144 bytes (1152 bits)
!  Each vehicle generates position update every 1/30th second (33msec)

»  34,560 bits per second

!  Upper bound: support 289 entities (10x106/34,560)
!  Above is very optimistic

»  Cannot utilize all of the Ethernet’s bandwidth
»  Entities generate other PDUs (e.g., weapon fires)
»  Multiple entities per human player (synthetic forces)

!  56 Kbits/sec modem: at best, only one vehicle!

…!
Player

N
Player

3
Player

2
Player

1

Maria Hybinette, UGA

17

!  http://www.worldwidewords.org/qa/qa-
dea7.htm

Maria Hybinette, UGA

18

Issues

!  Requires generating many messages if there
are many vehicles; we need ways to
economize on communication bandwidth

!  Position information corresponds to location
when the message was sent; doesn’t take into
account delays in sending message over the
network

Dead reckoning is one technique that attempts to
address each of these issues

Maria Hybinette, UGA

19

Dead Reckoning

!  Send position update messages less frequently
!  Local dead reckoning model predicts the position of remote

entities between updates

1000" 1050"

1000"
(1050,1000)"

last reported state:"
position = (1000,1000)"
traveling east @ 50 feet/sec"

predicted"
position"

one second later"

!  When are updates sent?
!  How does the DRM predict vehicle position?

Image"
Generator"

Dead reckoning"
model"

visual display"
system"

terrain"
database"

“infrequent” position"
update messages"

get position"
at frame rate"

Maria Hybinette, UGA

20

Re-synchronizing the DRM

When are position update messages generated?
!  Compare DRM position with exact position, and generate an update

message if error is too large
!  Generate updates at some minimum rate, e.g., 5 seconds (heart beats)

High
Fidelity
Model

aircraft 1

DRM
aircraft 1

over threshold
or timeout

close
enough?
timeout?

entity state
update PDU

simulator for
aircraft 1

DRM
aircraft 2

simulator for
aircraft 2

DRM
aircraft 1

Sample DRM at
frame rate display

Maria Hybinette, UGA

21

Dead Reckoning Models

!  P(t) = precise position of entity at time t
!  Position update messages: P(t1), P(t2), P(t3) !
!  v(ti), a(ti) = ith velocity, acceleration update
!  DRM: estimate D(t) , position at time t

»  ti = time of last update preceding t
»  !t = ti - t

!  Zeroth order DRM:
»  D(t) = P(ti)

!  First order DRM:
»  D(t) = P(ti) + v(ti)*!t

!  Second order DRM:
»  D(t) = P(ti) + v(ti)*!t + 0.5*a(ti)*(!t)2

Maria Hybinette, UGA

22

t2"

generate state"
update message"

true position"

DRM estimate of"
true position"

state update"

display update"

message" E"

t1"

DRM Example

Potential problems:
!  Discontinuity may occur when position update arrives; may produce
“jumps” in display

!  Does not take into account message latency
»  Update position is already ‘out of date’

B" C"A"
DRM estimates position"

D"

receive"
message"
just before"

screen update"

Maria Hybinette, UGA

23

Time Compensation

Taking into account message latency
!  Add time stamp to message when update is generated

(sender time stamp)
!  Dead reckon based on message time stamp

update with time"
compensation"

D" E"

t2"
t1"

true position"

DRM estimate of"
true position"

state update"

display update"

message"

A" B" C"

Maria Hybinette, UGA

24

Smoothing

Reduce discontinuities after updates occur
!  “phase in” position updates
!  After update arrives

»  Use DRM to project next k positions
»  Interpolate position of next update

interpolated"
position"

D"

extrapolated position"
used for smoothing"

E"

t2"
t1"

true position"

DRM estimate of"
true position"

state update"

display update"

message"

Accuracy is reduced to create a more natural display

A" B" C"

Maria Hybinette, UGA

25

Summary

!  Managing communications is a major issue in
implementing distributed simulations

!  Dead reckoning model (DRM)
»  Extrapolate current position based on past updates
»  Send update messages when DRM error becoming too large
» Reduces interprocessor communication

!  DRM based on equations of motion
!  Time compensation to account for message latency
!  Smoothing to avoid “jumps” in display

