
Maria Hybinette, UGA

CSCI 8220 Parallel & Distributed
Simulation

PDES: Distributed Virtual Environments
Introduction

High Level Architecture

Maria Hybinette, UGA 2

Outline

!  High Level Architecture (HLA): Background
!  Rules
!  Interface Specification

» Overview
» Class Based Subscription
» Attribute updates

Maria Hybinette, UGA 3

HLA: Motivation

Department of Defense plagued by “stovepipe simulations”:
individual simulations designed and tailored for a specific
application

!  Not easily adapted for other uses, resulting in limited

software reuse, much duplication of effort
!  Cannot easily exploit capabilities developed in other DoD

modeling and simulation programs

Goal of the High Level Architecture: define a common
simulation infrastructure to support interoperability
and reuse of defense simulations"

•  Analytic simulations (e.g., war games)"
•  Training (platform-level, command-level)"
•  Test and Evaluation"

Maria Hybinette, UGA 4

Distributed Simulation in the DoD

!  SIMNET (SIMulator NETworking) (1983-89)
» DARPA and U.S. Army project
»  networked interactive combat simulators
»  tens to a few hundreds of simulators

!  DIS (Distributed Interactive Simulation) (1990-96)
»  rapid expansion based on SIMNET success
»  tens of thousands of simulated entities
»  IEEE standard

!  Aggregate Level Simulation Protocol (ALSP) (late
1980’s and 1990’s)

»  application of the networked simulations concept to war
gaming models

Maria Hybinette, UGA 5

HLA Development Process

!  10/93-1/95:three architecture proposals developed in industry
!  3/95: DMSO forms the Architecture Management Group (AMG)
!  3/95-8/96: development of baseline architecture

»  AMG forms technical working groups (IFSpec, time management, data
distribution management)

»  Run-Time Infrastructure (RTI) prototypes
»  prototype federations: platform level training, command level training,

engineering test and evaluation, analytic analysis
!  8/96-9/96: adoption of the baseline architecture

»  approval by AMG, Executive Council for Modeling and Simulation (EXCIMS),
U.S. Under Secretary of Defense (Acquisition and Technology)

»  10 September, 1996: Baseline HLA approved as the standard technical
architecture for all U.S. DoD simulations

!  9/96-present: continued development and standardization
»  Varying levels of adoption
»  Commercialization of RTI software
»  Standardization (IEEE 1516)

Maria Hybinette, UGA 6

High Level Architecture (HLA)

Background:
!  Based on a composable “system of systems”

approach
»  no single simulation can satisfy all user needs
»  support interoperability and reuse among DoD

simulations
!  Federations of simulations (federates)

»  pure software simulations
»  human-in-the-loop simulations (virtual simulators)
»  live components (e.g., instrumented weapon systems)

Maria Hybinette, UGA 7

High Level Architecture (HLA)

The HLA consists of
!  Rules that simulations (federates) must follow

to achieve proper interaction during a
federation execution

!  Object Model Template (OMT) defines the
format for specifying the set of common
objects used by a federation (federation
object model), their attributes, and
relationships among them

!  Interface Specification (IFSpec) provides
interface to the Run-Time Infrastructure (RTI),
that ties together federates during model
execution

Maria Hybinette, UGA 8

An HLA Federation

Passive"
Data"

Viewers"
Simulations"

Interfaces"
to Live"

Components"

Interface Specification"

Run-Time Infrastructure (RTI)"

Federates"

Maria Hybinette, UGA 9

Federation Rules

1.  Federations shall have an HLA Federation Object Model
(FOM), documented in accordance with the HLA Object
Model Template (OMT).

2.  In a federation, all simulation-associated object instance
representation shall be in the federates, not in the runtime
infrastructure (RTI).

3.  During a federation execution, all exchange of FOM data
among joined federates shall occur via the RTI.

4.  During a federation execution, joined federates shall
interact with the RTI in accordance with the HLA interface
specification.

5.  During a federation execution, an instance attribute shall
be owned by at most one federate at any given time.

Maria Hybinette, UGA 10

Federate Rules (cont)

6.  Federates shall have an HLA Simulation Object Model (SOM),
documented in accordance with the HLA Object Model
Template (OMT).

7.  Federates shall be able to update and/or reflect any instance
attributes and send and/or receive interactions, as specified
in their SOM.

8.  Federates shall be able to transfer and/or accept ownership of
instance attributes dynamically during a federation execution,
as specified in their SOMs.

9.  Federates shall be able to vary the conditions (e.g.,
thresholds) under which they provide updates of instance
attributes, as specified in their SOM.

10. Federates shall be able to manage local time in a way that will
allow them to coordinate data exchange with other members
of a federation.

Maria Hybinette, UGA 11

Interface Specification

Federation Management"

Declaration Management"

Object Management"

Ownership Management"

Time Management"

Data Distribution Management"

Category" Functionality"
Create and delete federation executions"
join and resign federation executions"
control checkpoint, pause, resume, restart"
Establish intent to publish and subscribe to
object attributes and interactions"
Create and delete object instances"
Control attribute and interaction publication"
Create and delete object reflections"

Transfer ownership of object attributes"

Coordinate the advance of logical time and its
relationship to real time"

Supports efficient routing of data"

Maria Hybinette, UGA 12

Message Passing Alternatives

!  Traditional message passing mechanisms: Sender explicitly
identifies receivers

»  Destination process, port, etc.
»  Poorly suited for federated simulations

!  Broadcast
»  Receiver discards messages not relevant to it
»  Used in SIMNET, DIS (initially)
»  Doesn’t scale well to large federations

!  Publication / Subscription mechanisms
»  Analogous to newsgroups
»  Producer of information has a means of describing data it is

producing
»  Receiver has a means of describing the data it is interested in

receiving
»  Used in High Level Architecture (HLA)

Maria Hybinette, UGA 13

A Typical Federation Execution

1.  Initialize federation
»  Create Federation Execution (Federation Mgt)
»  Join Federation Execution (Federation Mgt)

2.  Declare objects of common interest among federates
»  Publish Object Class Attributes (Declaration Mgt)
»  Subscribe Object Class Attributes (Declaration Mgt)

3.  Exchange information
»  Update/Reflect Attribute Values (Object Mgt)
»  Send/Receive Interaction (Object Mgt)
»  Time Advance Request, Time Advance Grant (Time Mgt)
»  Request Attribute Ownership Assumption (Ownership

Mgt)
»  Send Interaction with Regions (Data Distribution Mgt)

4.  Terminate execution
»  Resign Federation Execution (Federation Mgt)
»  Destroy Federation Execution (Federation Mgt)

Maria Hybinette, UGA 14

Class-Based Data Distribution

!  Federation Object Model (FOM) defines type of information
transmitted among federates
»  Object classes (e.g., tank)
»  Attributes (e.g., position, orientation of turret)

!  A few key primitives (Federate/RTI interface)
»  Publish Object Class Attributes: Called by a federate to declare the

object classes and attributes it is able to update
»  Subscribe Object Class Attributes: Declare the object classes and

attributes that the federate is interested in receiving
»  Register Object Instance: Notify RTI an instance of an object has been

created within the federate
»  Discover Object Instance*: Notify federate an instance of an object of

a subscribed class has been registered
»  Update Attribute Values: notify RTI one or more attributes of an object

has been modified
»  Reflect Attribute Values*: notify federate attributes to which it has

subscribed have been modified
* Denotes callback from RTI to federate"

Maria Hybinette, UGA 15

Example

OCA = Object Class Attributes
OI = Object Instance
AV = Attribute Values

Federate
1

Federate
2

RTI

PublishOCA (Tank, position) SubscribeOCA (Tank, position)

handle := RegisterOI (Tank) DiscoverOI (Tank, instance)
UpdateAV (handle, position,
 <30,89>)

ReflectAV (instance, position,
 <30,89>)

Maria Hybinette, UGA 16

Summary

!  The High Level Architecture is an example of an
approach for realizing distributed simulations

!  HLA Rules define general principles that pervade the
entire architecture

!  HLA Interface Specification defines a set of run-time
services to support distributed simulations

!  Data distribution is based on a publication /
subscription mechanism

Maria Hybinette, UGA

PDES: Distributed Virtual Environments
Time Management in the High Level Architecture

Maria Hybinette, UGA 18

Outline

!  Overview of time management services
!  Time constrained and time regulating federates
!  Related object management services
!  Time Advance Request (TAR)
!  Next Event Request (NER)
!  Lookahead

Maria Hybinette, UGA 19

HLA Message Order Services

!  Receive order (RO): Messages passed to federate in an
arbitrary order (unordered)

!  Time stamp order (TSO): Sender assigns a time stamp to
message; successive messages passed to each federate have
non-decreasing time stamps

Property RO TSO
Latency low higher
reproduce before and after relationships? no yes

all federates see same ordering of events? no yes

execution repeatable? no yes
typical applications training, T&E analysis

!  receive order minimizes latency, does not prevent temporal anomalies
!  TSO prevent temporal anomalies, but has somewhat higher latency

Maria Hybinette, UGA 20

Time Synchronized Delivery

Consider interconnecting two sequential, discrete event simulators

Logical Time!

Simulator A!
(tank)!

Simulator B!
(target)!

“fire”!

“move”!

event!
message!

1. A sends TSO message to B w/ time stamp 10!
2. B advances to logical time 20!
3. Message arrives in B’s past!

10! 20!

In the HLA, logical time is synonymous with simulation time
Logical time advances by each simulator must be properly managed to ensure no

simulator receives a message in its past.
HLA Time Management (TM) services define a protocol for federates to advance their

logical time; RTI will ensure TSO messages are not delivered in a federate’s past

Maria Hybinette, UGA 21

HLA Time Management Services

federate"
•  local time and event management"
•  mechanism to pace execution with

wallclock time (if necessary)"
•  federate specific techniques (e.g.,

compensation for message latencies)"

wallclock time"
(synchronized with

other processors)"

logical time"

FIFO"
queue"

time"
stamp"

ordered"
queue"

Runtime Infrastructure (RTI)"

state updates!
and interactions! logical time advances!

receive"
order"

messages"

time stamp"
order"

messages"

event"
ordering"

time"
synchronized "

delivery"

Maria Hybinette, UGA 22

Time Regulating & Time Constrained Federates

Federates must declare their intent to utilize time management services by setting
their time regulating and/or time constrained flags

!  Time regulating federates: can send TSO messages
»  Can prevent other federates from advancing their logical time
»  Enable Time Regulation ! Time Regulation Enabled †
»  Disable Time Regulation

!  Time constrained federates: can receive TSO messages
»  Time advances are constrained by other federates
»  Enable Time Constrained ! Time Constrained Enabled †
»  Disable Time Constrained

!  Each federate in a federation execution can be
»  Time regulating only (e.g., message source)
»  Time constrained only (e.g., Stealth)
»  Both time constrained and regulating (common case for analytic simulations)
»  Neither time constrained nor regulating (e.g., DIS-style training simulations)

† indicates callback to federate"

Maria Hybinette, UGA 23

Related Object Management Services

Sending and Receiving Messages
!  Update Attribute Values ! Reflect Attribute Values †
!  Send Interaction ! Receive Interaction †

Message Order (Receive Order or Time Stamp Order)
!  Preferred Order Type: default order type specified in “fed file”

for each attribute and interaction
!  Sent Message Order Type:

»  TSO if preferred order type is TSO and the federate is time
regulating and a time stamp was used in the Update Attribute
Values or Send Interaction call

»  RO otherwise
!  Received Message Order Type

»  TSO if sent message order type is TSO and receiver is time
constrained

»  RO otherwise

† indicates callback to federate" Maria Hybinette, UGA 24

HLA Time Management (TM) Services

HLA TM services define a protocol for federates to advance logical time;
logical time only advances when that federate explicitly requests an
advance

!  Time Advance Request: time stepped federates
!  Next Event Request: event stepped federates
!  Time Advance Grant: RTI invokes to acknowledge logical time advances

If the logical time of a federate is T, the RTI guarantees no more TSO
messages will be passed to the federate with time stamp < T"

Federates responsible for pacing logical time advances with wallclock time in
real-time executions"

federate"

RTI"

Time Advance Request"
or"

Next Event Request"
Time Advance Grant"

Maria Hybinette, UGA 25

Time Advance Request (TAR)
!  Typically used by time stepped federates
!  Federate invokes Time Advance Request (T) to request its logical

time (LT) be advanced to T

Typical execution sequence!

Wall clock"
time"

Federate" RTI"
TAR(20)"

RAV (14)"
RAV (18)"

TAG(20)"

TAR: Time Advance Request"
RAV: Reflect Attribute Values "
TAG: Time Advance Grant"
"
"
Federate calls in black"
RTI callbacks in red"
T’ ≤ T’’ ≤ T"

LT=10"

LT=20"

!  RTI delivers all TSO messages with time stamp " T

!  RTI advances federate’s time to T, invokes Time Advance Grant (T) when it can
guarantee all TSO messages with time stamp " T have been delivered

!  Grant time always matches the requested time

Maria Hybinette, UGA 26

Code Example: Time Stepped Federate

sequential simulator
T = current simulation time
While (simulation not complete)

 update local simulation state
 T = T + #T;

End-While

federated simulator
While (simulation not complete)

 update local simulation state
 UpdateAttributeValues (!)
 PendingTAR = TRUE;
 TimeAdvanceRequest(T+ #T)
 while (PendingTAR) Tick*(!);
 T = T + #T;

End-While

/* the following federate-defined

procedures are called by the RTI */
Procedure ReflectAttributeValues (!)

 update local state

Procedure TimeAdvanceGrant (!)

 PendingTAR = False;

* Tick is only used in single threaded RTI implementations"

Maria Hybinette, UGA 27

Next Event Request (NER)

!  Typically used by event stepped federates
!  Goal: process all events (local and incoming TSO messages) in time

stamp order

RTI"

federate"

TSO"
messages"

local"
events"

logical"
time"current"

time"

next"
local"
event"

next"
TSO"

message"

T"

Federate: next local event has time stamp T
!  If no TSO messages w/ time stamp < T, advance to T, process local event
!  If there is a TSO message w/ time stamp T’ " T, advance to T’ and process

TSO message

T’"

Maria Hybinette, UGA 28

Next Event Request (NER)
Federate invokes Next Event Request (T) to request its logical time be

advanced to time stamp of next TSO message, or T, which ever is smaller
If next TSO message has time stamp T’ " T

RTI delivers next TSO message, and all others with time stamp T’
RTI issues Time Advance Grant (T’)

Else
RTI advances federate’s time to T, invokes Time Advance Grant (T)

Typical execution sequences!

Federate"
RTI"

NER(T)"

RAV (T’)"
RAV (T’)"

TAG(T’)"
Wall clock"

time"

NER(T)"

TAG(T)"

RTI delivers events"

NER: Next Event Request"
TAG: Time Advance Grant"
RAV: Reflect Attribute Values"
"
Federate calls in black"
RTI callbacks in red"

Federate" RTI"

no TSO events"

Maria Hybinette, UGA 29

sequential simulator
T = current simulation time
PES = pending event set

While (simulation not complete)

 T = time of next event in PES
 process next event in PES

End-While

federated simulator
While (simulation not complete)

 T = time of next event in PES
 PendingNER = TRUE;
 NextEventRequest(T)
 while (PendingNER) Tick(!);
 process next event in PES

End-While

/* the following federate-defined

procedures are called by the RTI */
Procedure ReflectAttributeValues (!)

 place event in PES

Procedure TimeAdvanceGrant (!)

 PendingNER = False;

Code Example: Event Stepped Federate

Maria Hybinette, UGA 30

Lookahead

Federate A!

Federate B!

Federate C!

Federate D!

Federation Time Axis!

each federate must process events in time stamp order !

T"

possible message"
OK to process"

event!

not OK to process yet"

without lookahead!

NER: concurrency limited to events containing exactly the same time stamp"

Maria Hybinette, UGA 31

Lookahead

Each federate using logical time declares a lookahead value L; any TSO message
sent by the federate must have a time stamp ≥ the federate’s current time + L"

Lookahead is necessary to allow concurrent processing of events with
different time stamps (unless optimistic event processing is used)"

Federate A!

Federate B!

Federate C!

Federate D!

Federation Time Axis!

each federate must process events in time stamp order !

T" T+L"

possible message"

possible message"

OK to process"

OK to process"

event!

not OK to process yet"

without lookahead!

with lookahead!

NER: concurrency limited to events containing exactly the same time stamp"

Maria Hybinette, UGA 32

Lookahead in the HLA
!  Each federate must declare a non-negative lookahead value
!  Any TSO sent by a federate must have time stamp at least the federate’s current

time plus its lookahead
!  Lookahead can change during the execution (Modify Lookahead)

»  increases take effect immediately
»  decreased do not take effect until the federate advances its logical time

Logical time"T+L"T"

1. Current time is T, lookahead L"
2. Request lookahead decrease by ∆L to
L’"

Logical time"T+L"T+ ∆T"

L- ∆T"∆T"
3. Advance ∆T, lookahead, decreases ∆T"

Logical time"T+L"

L’"∆L"

T+∆L"
4. After advancing ∆L, lookahead is L’"

Maria Hybinette, UGA 33

Federate/RTI Guarantees

Federate at logical time T (with lookahead L)
!  All outgoing TSO messages must have time stamp $ T+L (L>0)
Time Advance Request (T)
!  Once invoked, federate cannot send messages with time stamp less

than T plus lookahead
Next Event Request (T)
!  Once invoked, federate cannot send messages with time stamp less

than T plus the federate’s lookahead unless a grant is issued to a
time less than T

Time Advance Grant (T) (after TAR or NER service)
!  All TSO messages with time stamp less than or equal to T have been

delivered

Maria Hybinette, UGA 34

Summary

!  HLA time management designed to support
interoperability of simulations with different time
advance mechanisms

»  Time stepped federates
»  Event-driven federates

!  Time management services include services to order
messages (time stamp ordered delivery) and
mechanisms to advance simulation time

!  Time regulating/constrained used to “turn on” time
management

!  Per federate lookahead supported

