CSCI 8220 Parallel & Distributed Simulation

PDES: Distributed Virtual Environments Dynamic Data Distribution

Maria Hybinette, UGA

Outline

- Introductory Comments
- Dynamic (Value based) Data Distribution: HLA Data Distribution Management
 - » Routing space
 - » Publication Region
 - » Subscription Region
- DDM Implementation
 - » Cell-Based
 - » Region-Based
 - » Combining Cells and Regions

Review: Background

- Basic question: When a simulator generates information (e.g., state updates) that may be of interest to other simulators, who should receive the message?
- Example: Moving vehicles in a virtual environment
 - » Moving vehicle sends "update" messages indicating new position
 - » Each vehicle that can "see" the moving vehicle should receive a message
 - » How does the sender/RTI know which other federates should receive the message?
 - Data distribution is essentially a message routing problem

Review: Communication Primitives

Unicast

» One sender, message received by one destination

Broadcast

» One sender, message received by all destinations

Multicast

- » One sender, message received by multiple (but not necessarily all) destinations
- » Operations (analogous to newsgroups)
 - Join group
 - Leave group
 - Send message to group
- » Can be implemented by unicast, or network multicast
- » Best effort vs. reliable multicast

Using a Grid to Capture Locality

multicast group, id = 20

Sensor S joins groups 8 and 9 Vehicles V1 and V2 send to group 8 Vehicle V3 sends to group 5

- Divide play-box into non-overlapping (rectangular, hexagonal) grid cells
- Create one multicast group for each cell
- Subscribe to cell(s) you can "see"
- Send message to cell where the vehicle resides
- Requires additional filtering at the receiver

HLA Data Distribution Management (DDM)

- HLA DDM provides a general mechanism
- Name Space
 - » **Routing space**: N-dimensional coordinate system
 - » Separate from simulation state, used solely for routing
- Interest expressions
 - » Subscription region: N-dimension rectangular in routing space
 - » Associate region with subscription requests
- Description expressions
 - » Update region: N-dimensional rectangle in routing space
 - » associated with each object instance

HLA Data Distribution Management (DDM)

- A message updating an attribute of an object instance is routed to a federate if:
 - » The federate is subscribed to the object's class and attribute, and
 - » The update region associated with the updated attribute overlaps with the federate's subscription region for that class/attribute

HLA Data Distribution Management

Name Space

- N dimensional routing space
- Playbox in virtual environment
- Radio channels for wireless communication

HLA Data Distribution Management

Interest expressions

- Subscription region in routing space (S1=[0.1,0.5], [0.2,0.5])
- Specifies portion of routing space of interest to federate

HLA Data Distribution Management

Description expressions

- Update region in routing space (U)
- Associated an update region with each attribute update
- a federate receives a message if
 - » It has subscribed to the attribute(s) being updated, and
 - its subscription region overlaps with the update region

Update Regions vs Points

Update Regions vs Points

Update Regions vs Points

Filtering Precision

HLA DDM Services

Routing spaces (name space) and regions

- Define routing spaces in federation initialization file
- Create region, Modify Region, Delete Region
- Used for both subscription and update regions

Subscription regions (interest expressions)

- Subscribe/Unsubscribe Object Class Attributes with Region
- Used in addition to class-based filtering

Update regions (description expressions)

- Register Object Instance with Region or Associate Region with Updates
- Unassociate Regions for Updates
- Update Attribute Values

Outline

- Introductory Comments
- Dynamic (Value based) Data Distribution: HLA Data Distribution Management
 - » Routing space
 - » Publication Region
 - » Subscription Region
- DDM Implementation
 - » Cell-Based
 - » Region-Based
 - » Combining Cells and Regions

Communication Services

Recall:

- Unicast: point-to-point communication
- Broadcast: send to all
- Multicast: send to multiple destinations (not necessarily all)
 - » Multicast group
 - » Join group, Leave group
 - » Send: transport message to every member of group

Data distribution software must map name space, interest expressions, and description expressions to group communication services

Implementation Approach

Map name space to multicast groups

- » Not all points in name space need be mapped to groups
- » A point in name space could map to multiple groups

Interest expression

» Interest expression defined as points of name space

» Join groups that overlap with interest expression

- Description expression
 - » Description expression defined as points in name space
 - » Send messages to groups that overlap with description expression

Grid-Based Implementation

Grid-Based Implementation

- partition routing space into grid cells, map each cell to a multicast group
- subscription region: Join each group overlapping subscription region
- attribute update: send Update to each group overlapping update region
- need additional filtering to avoid unwanted messages, duplicates

Additional Messages

- □ S1: Subscription Region
- □ S2: Subscription Region
- U: Update Region

- F1 subscribes to 6, 7, 8, 11, 12, 13 (F1's interest expression S1)
- F2 subscribes to 11, 12, 16, 17 (S2)
- Updates associated with publication region (description expression U) ⇒ a message sent to 12 & 13.
- Irrelevant Messages: F2 receive message too because of group 12 (interest and description regions does not map perfectly to multicast groups).
- Duplicate Messages: F1 receives 2 copies because message is sent to both 12 and 13 (receiver filtering).

Changing a Subscription Region

new region	33	34	35	36	37	38	39	40
existing region	25	26	27	28	29	30	31	32
	17,	18	19	20	21	22	23	24
Join group	9	10	11	12	13	14	15	16
no operations issued	1	2	3	4	5	6	7	8

• issue Leave operations for (cells in old region - cells in new region)

issue Join operations for (cells in new region - cells in old region)

Approach 2: Region-Based Groups

- Define one multicast group per publication region (uses matching)
 - » Publishing federates that are in intersecting q subscription region are forced to join multicast groups and to send data to that group.
- Group membership: Any federate subscribed to a region that overlaps the publication region is a member of group
- Update: Send message to group associated with publication region

Approach 2: Region-Based Groups

- When a subscription region changes, it must be compared against all publication regions to determine if the federate should join/leave multicast groups
- When a publication region changes, it must be compared against all subscription regions to determine the new composition of its multicast group
- Not scalable to large numbers of regions

Approach 3: Regions with Grids

- A group is defined for each publication region (same as region-based approach)
- A grid is superimposed over routing space
- Matching: need only check publication/subscription regions in the grid cell(s) overlapping the original and new regions

Changing P1: must compare P1 against S1 and S2, but need not compare against S3

Practical Problems

Limited number of multicast groups

Fast movers: rapid joins and leaves

- » Join/leave times may be large
- » Predict and initiate group operations in advance

• Wide area viewers: too much traffic!

- » need less detailed information to reduce traffic
- » Multiple routing spaces with different grid sizes and detail of information covering playbox

Summary

- Data distribution management provides value-based filtering of data
 - » Dynamic interest, description expressions
 - » Design involves many tradeoffs
 - Filtering efficiency
 - Ease of use
 - Implementation complexity
- Implementation
 - » Map name space to multicast groups
 - » Map interest expressions to multicast group joins
 - » Map declaration expression to multicast group sends
 - » Interest expression changes map to group joins and leaves