
Maria Hybinette, UGA 1

Python

Some material from: Stephen Ferg Bureau of Labor Statistics
and Guido van Rossum Python Architect

Maria Hybinette, UGA 2

Evolution of Scripting Languages

●  UNIX shell scripting
»  awk, sed, ksh, csh

●  Tck/Tk
●  Perl
●  Python
●  PHP
●  Ruby

Scripting Language (an interpretive glue) vs. Programming
Language (compiled, glue). Being classified as a scripting
language today is less relevant.

Maria Hybinette, UGA 3 Image Credit: https://blog.malwarebytes.com/security-world/2012/09/so-you-want-to-be-a-malware-analyst/

Maria Hybinette, UGA 4

Python

Developed in 1991 by Guido van Rossum
 - PEP 3000 (December 2008)

 "There should be one— and preferably only one
—obvious way to do it.� (remove old ways of
doing stuff)

●  Mature
●  Powerful / flexible
●  Easy-to-learn / use
●  Easy to read and intuitive (Perl)

●  Open source, and free
●  Lots of documentation
●  Lots of tutorials
●  Lots of libraries

»  Ruby - nice, purely object oriented, but
harder to find libraries

Monty Python�s Flying Circus

https://www.youtube.com/watch?v=iV2ViNJFZC8

Maria Hybinette, UGA 5

Python

●  Portable
» Mac, Windows, Unix (and installed on nike.cs.uga.edu)

●  General purpose, high level, object oriented
●  Faster than C, C++, Java in productivity

» Compact language
» Batteries included (build in library)

●  Slower in execution
»  but you can integrate C/C++/Java with Python

●  Syntax: Python block indenting
»  looks cleaner => easier to read

Maria Hybinette, UGA 6

Python vs. Java

●  Python programs run slower than Java
●  Python programs take less time to develop

»  Typically a 5-10 times difference (origin, Ousterhout)
●  Python is dynamically typed

»  Programmer don’t have to deal with static typing
–  variable bound to type at compile time & optionally to an object

(value of same type)
»  Trend is now toward stronger static type checking, not less

–  However, this is a productivity win at the cost of some risk

●  Python is compact
●  Python is concise (not verbose, not superfluous)
●  Closures (lambda)

http://www.ferg.org/projects/python_java_side-by-side.html(February/2004)

Maria Hybinette, UGA 7

Simplifies Explicit Data Typing

●  Variable can be of non-specific data type.

●  Variables are typed (by inferences) when
used

●  But be careful: Ruby, Python are really
strongly typed (once a type is inferred you
can’t intermix types)

Maria Hybinette, UGA 8

Who is using Python?

●  Industrial Light & Magic, maker of the Star Wars films,
uses Python extensively in the computer graphics
production process.

●  Disney Feature Length Animation uses Python for its
animation production applications.

●  Google: youtube, Maps, Gmail
●  Yahoo uses Python for its groups site, and in its

Inktomi search engine.
●  Reddit, BitTorrent
●  New York Stock Exchange (NYSE) - uses it for

developing on-line systems for the floor of the
exchange and for the member firm's back offices

●  The National Weather Service uses Python to prepare
weather forecasts.

●  Financial analysis
Python spotting: http://www.pythonology.org/spotting
https://wiki.python.org/moin/OrganizationsUsingPython

Maria Hybinette, UGA 9

Learning Python

●  We will cover the highlights of python.
»  You will have to learn more on your own.
»  �Dive into Python�, Mark Pilgrim

–  download a local copy pdf and on-line read available
–  http://diveintopython.net

●  The Official Python Tutorial
https://docs.python.org/3/tutorial/

●  The Python Quick Reference
http://rgruet.free.fr/#QuickRef

Maria Hybinette, UGA 10

Resources:
A lot

Maria Hybinette, UGA 11

Python: Batteries inlcuded

●  Large Collection of proven modules included
in standard distribution

Maria Hybinette, UGA 12

numPy

●  Offers Matlab-ish capabilities within Python
●  Fast array operations
●  2D Arrays, multi-D arrays, linear algebra and

more.

●  Tutorial:
»  http://www.scipy.org/Tentative_NumPy_Tutorial

Maria Hybinette, UGA 13

pandas

●  Pandas uses a
» DataFrame object which can be thought of as a

table of data
» Handles Time Series

●  It was built by the finance sector to aid with
data manipulation and data analysis

●  It has loads of brilliant functions to dig into
your data

●  It has useful functions for reading and writing
to file types such as csv and Excel

Maria Hybinette, UGA 14

sciPY: Scientific Python

●  Gathers a variety of high level science and
engineering modules together:

●  stats: statistical functions
●  spatial: KD-trees, nearest neighbors, distance

functions
●  interpolate: interpolation tools e.g. IDW, RBF
●  optimize: optimization algorithms including

linear programming

Maria Hybinette, UGA 15

matplotlib

●  plotting library to
make graphs.

●  easily customized and
produce publication
quality plots

●  Using the Matplotlib,
NumPy and Pandas
libraries together
make data analysis
much easier and
reproducible than in
Excel

matplotlib
• High quality plotting library.

• Downloads: http://matplotlib.sourceforge.net/

#!/usr/bin/env python
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt

mu, sigma = 100, 15
x = mu + sigma*np.random.randn(10000)

the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='green',
alpha=0.75)

add a 'best fit' line
y = mlab.normpdf(bins, mu, sigma)
l = plt.plot(bins, y, 'r--', linewidth=1)

plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)

plt.show()

Monday, October 19, 2009

matplotlib
• High quality plotting library.

• Downloads: http://matplotlib.sourceforge.net/

#!/usr/bin/env python
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt

mu, sigma = 100, 15
x = mu + sigma*np.random.randn(10000)

the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='green',
alpha=0.75)

add a 'best fit' line
y = mlab.normpdf(bins, mu, sigma)
l = plt.plot(bins, y, 'r--', linewidth=1)

plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)

plt.show()

Monday, October 19, 2009

Maria Hybinette, UGA 16

Versions

●  Version History
»  Python 0.9.0 (1991 first published version of code)
»  Python 1.x (1994 legacy)
»  Python 2.7.x (2000, list comprehensions, Haskell)
»  Python 3.2.x (3 branch started in 2008, remove

redundancies in code, only one “obvious” way to do it)
●  Developing environments:

»  IDLE (basic)
–  coded in 100% pure Python, using the tkinter GUI toolkit
–  cross-platform: works on Windows and Unix
–  Python shell window (a.k.a. interactive interpreter)
–  debugger (not complete, but you can do the basics, set breakpoints,

view and step)
»  ipython, Spyder (Anaconda)
»  Eclipse module

Maria Hybinette, UGA 17

Installing Python

●  Already exists of nike.cs.uga.edu (version 2.6)
●  Easy to get and install for Win/Mac from (2.6)

http://www.python.org

●  Intro: Wikipedia's Python

●  We recommend Anaconda installation. See Class
schedule page.

» Demonstrate …

Maria Hybinette, UGA 18

IDLE Development Environment

●  Shell for interactive evaluation
●  Text editor with color-coding and smart

indenting for creating python files.
●  Menu commands for changing system

settings and running files.

http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html

Maria Hybinette, UGA 19

Interpreter: On my Mac

●  Type “python” to start interpreter
●  Type CTRL-D to exit the interpreter
●  Python evaluates all inputs dynamically

Maria Hybinette, UGA 20

IDLE: Working with a file.py

●  IDLE -
1.  File -> new window
2.  type commands in new window area
3.  save as �file name�.py (typical extension) – if you

don’t you don’t see ‘colors’ in IDLE – but
programs still run.

4.  Run module

Maria Hybinette, UGA 21

Anaconda’s Spyder Editor

●  Debugger
●  Help/Documentation easily accessible

Maria Hybinette, UGA 22

Running Programs on UNIX

●  #! /opt/sfw/bin/python (makes it
runnable as an executable)

{saffron:ingrid:1563} more
filename.py
#! /usr/local/bin/python
print "hello world"
print "here are the ten numbers
from 0 to 9"
for i in range(10):
 print i,
print "I'm done!" {saffron:ingrid:1562} python filename.py

hello world
here are the ten numbers from 0 to 9
0 1 2 3 4 5 6 7 8 9 I'm done!
{saffron:ingrid:1563} filename.py
// what will happen?

Maria Hybinette, UGA 23

Maria Hybinette, UGA 24

Other IDE(s): Anaconda’s Spyder

●  Why we recommend Anaconda Python?
» We could use Python IDLE … some code ahead is

depicted using this interface ... BUT! Then

●  Anaconda… arrived ….
» Already has many packages installed
» Has a Script Editor and Console Window
» Allows for efficient debugging
» Breakpoints, using Console

●  Also has a Notebook feature

●  Other IDEs – PyCharm, iPython Notebook.

Maria Hybinette, UGA 25

Anaconda Spyder

Script Editor

Sequential Code - Execution

Object Explorer

Console
Result of Running Code

Maria Hybinette, UGA 26

Look at a sample of code…
(use your favorite development environment)

 x = 34 - 23 # A comment.

 y = �Hello� # Another one.

 z = 3.45
 if z == 3.45 or y == �Hello�:
 x = x + 1

 y = y + �World� # String concat.

 print x

 print y

 Colors Please

script.txt

Maria Hybinette, UGA 27

Look at a sample of code…

>>>
12
HelloWorld

 x = 34 - 23 # A comment.

 y = �Hello� # Another one.

 z = 3.45
 if z == 3.45 or y == �Hello�:
 x = x + 1

 y = y + �World� # String concat.

 print x

 print y

script.py

Maria Hybinette, UGA 28

Enough to Understand the Code

●  Assignment uses = and
●  Comparison uses ==.
●  For numbers +-*/% are as expected.

»  Special use of + for string concatenation.
»  Special use of % for string formatting.

●  Logical operators are words (and, or, not)
not symbols (&&, ||, !).

●  The basic printing command is “ .”
●  First assignment to a variable will create it.

»  Variable types don’t need to be declared.
»  Python figures out the variable types on its own

(inference).

Maria Hybinette, UGA 29

Basic Datatypes

●  Integers (default for numbers)
z = 5 / 2 # Answer is 2, integer division.

●  Floats
x = 3.456

●  Strings
Can use �� or �� to specify. �abc����abc� (Same thing.)
Unmatched ones can occur within the string. �maria�s�
Use triple double-quotes for multi-line strings or strings

that contain both � and ��inside of them: ���a�b�c���

Maria Hybinette, UGA 30

Whitespace

●  Whitespace is meaningful in Python:
especially indentation and placement of
newlines.

» Use a newline to end a line of code.
(Not a semicolon ; like in C++ or Java.)
(Use \ when must go to next line prematurely.)

» No braces { } to mark blocks of code in Python…
Use consistent indentation instead. The first line
with a new indentation is considered outside of the
block.

» Often a colon appears at the start of a new block.
(We�ll see this later for function and class
definitions.)

Maria Hybinette, UGA 31

Comments

●  Start comments with # – the rest of line is ignored.
●  Can include a �documentation string� as the first line

of any new function or class that you define.
●  The development environment, debugger, and

other tools use it: it�s good style to include one.
def my_function(x, y):

 ���This is the docstring. This
function does blah blah blah.���
The code would go here...

 x = y + 1

 return x

Maria Hybinette, UGA 32

Look at more sample of code…

 x = 34 - 23 # A comment.

 y = �Hello�������������# Another one.

 z = 3.45

 if z == 3.45 or y == �Hello�:
 x = x + 1

 y = y + � World����# String concat.

 print x

 print y

Maria Hybinette, UGA 33

Python and Types

Python determines the data types
in a program automatically at runtime. �Dynamic Typing�

But Python is not casual about types, it

enforces them after it figures them out. �Strong Typing�

So, for example, you can’t just append an integer to a string. You

must first convert the integer to a string itself.

 x = �the answer is ���# Decides x is string.
 y = 23 # Decides y is integer.

 print x + y # Python will complain about this.

Maria Hybinette, UGA 34

Naming Rules

●  Names are case sensitive and cannot start with a
number. They can contain letters, numbers, and
underscores.
 bob Bob _bob _2_bob_ bob_2 BoB

●  There are some reserved words:
 and, assert, break, class, continue, def,
del, elif, else, except, exec, finally, for,
from, global, if, import, in, is, lambda,
not, or, pass, print, raise, return, try,
while

Maria Hybinette, UGA 35

Accessing Non-existent Name

●  If you try to access a name before it�s been properly
created (by placing it on the left side of an assignment),
you�ll get an error.

>>> y

Traceback (most recent call last):
 File "<pyshell#16>", line 1, in -toplevel-
 y
NameError: name �y' is not defined
>>> y = 3
>>> y
3

Maria Hybinette, UGA 36

Multiple Assignment

●  You can also assign to multiple names at the same
time.

>>> x, y = 2, 3
>>> x
2
>>> y
3

Maria Hybinette, UGA 37

String Operations

●  We can use some methods built-in to the string data
type to perform some formatting operations on
strings:

>>> �hello�.upper()
�HELLO�

●  There are many other handy string operations
available. Check the Python documentation for more.

Maria Hybinette, UGA 38

Printing with Python

●  You can print a string to the screen using �print.�
●  Using the % string operator in combination with the print

command, we can format our output text.
>>> print �%s xyz %d�� % (�abc�, 34)
abc xyz 34

 �Print� automatically adds a newline to the end of the string. If you
include a list of strings separated by a comma (,) , it will
concatenate them with a space between them.

>>> print �abc�� >>> print �abc�, �def�
abc abc def

Maria Hybinette, UGA 39

Strings

»  Concatenation
–  �Hello� + �World� -> �HelloWorld�

»  Repetition
–  �UGA� * 3 -> �UGAUGAUGA�

»  Indexing
–  �UGA�[0] -> �U�

»  Slicing
–  �UGA�[1:3] -> �GA�
–  �UGA�[1:1] -> ��

»  Size
–  len(�UGA�) -> 3

»  Comparison
–  �Maria� < �maria� -> True

»  Search
–  �i��in �maria� -> True

Maria Hybinette, UGA 40

Container Types

●  (100, 200, 300) # Tuple
●  [42, 3.14, �hello�] # List
●  { �x�:42, �y�:3.14 } # Dictionary

Tuple
»  a simple immutable ordered sequence of items

List
»  a mutable ordered sequence with more powerful

manipulations
Dictionary -

»  a lookup table of key-value pairs

Maria Hybinette, UGA 41

Lists

 >>> alist = [631, �maria� , [331, �maria�]]
>>> print alist
[123, �maria�, [331, �maria�]]

●  List items need not have the same type
●  Same operators as for strings
●  operations append(), insert(), pop(), reverse() and

sort()

Maria Hybinette, UGA 42

More List Operations

>>> a = range(5) # [0,1,2,3,4]

>>> a.append(5) # [0,1,2,3,4,5]

>>> a.pop() # [0,1,2,3,4]

5

>>> a.insert(0, 42) # [42,0,1,2,3,4]

>>> a.pop(0) # [0,1,2,3,4]

42

>>> a.reverse() # [4,3,2,1,0]

>>> a.sort() # [0,1,2,3,4]

>>> a.append([22,33]) # [0,1,2,3,4,[22,33]]

>>> a.extend([10,20]) # [0,1,2,3,4,[22,33],10,20]

Maria Hybinette, UGA 43

More Lists

●  List multiplication
»  list = ["aa�, "bb"] * 3

●  Printing out lists
»  print "\n".join(list) # better formatting

●  More operations
»  list.count("aa") # how many times

»  list.index("bb") # returns the first match location

●  More on slices
»  list[-1] # last element

»  list[0:3] # starting ele 0 and up to 2

»  list[3:] # starting ele 3 to end of list

»  list[:] # a complete copy of the list

Maria Hybinette, UGA 44

Dictionaries

●  Hash tables, "associative arrays� with key/value pairs
–  d = {"duck": "bird", "bee": "insect"}

●  Lookup:
–  d["duck"] # "bird�

–  d["lion"] # raises KeyError exception

–  d[�bird�] ?

●  Delete, insert, overwrite:
–  del d["bee"] # delete

–  d["lion"] = �cat" # insert

–  d["duck"] = �unknown" # overwrites

Maria Hybinette, UGA 45

More Dictionary Ops

●  Keys, values, items:
–  d.keys() # returns dictionary keys

–  d.values() # returns all values

–  d.items() # returns a list of
 key/value pairs

●  Presence check:
–  d.has_key("duck") # True
–  d.has_key("spam") # False

●  Values of any type
●  Keys almost any type (needs to be immutable – tuples

OK, but not lists).
{

"name":�Maria",

"age": 25,

42:"yes",

"flag": ["red","white","blue"]

}

Maria Hybinette, UGA 46

Dictionary Details

●  Keys must be immutable:
»  numbers, strings, tuples of immutables

–  these cannot be changed after creation
●  Keys are hashed (fast lookup technique)

»  not lists or other dictionaries
–  these types of objects can be changed "in place"

»  no restrictions on values

●  Keys will be listed in arbitrary order
»  again, because of hashing

Maria Hybinette, UGA 47

Tuples

●  Immutable lists
●  Faster than lists

●  key = (�lastname�, �firstname�)

●  lastname = key[0]

●  point = x, y, z # parentheses optional

●  singleton = (1,) # trailing comma!!!
 # (required otherwise

a value)

●  empty = () # parentheses!

Maria Hybinette, UGA 48

Variables

●  Need to assign (initialize)
–  use of uninitialized variable raises exception

●  No need to declare type (dynamically typed)
if friendly: greeting = "hello world"

else: greeting = 12**2

print greeting

» However once set the type matters
–  Can�t treat integer as a string

Maria Hybinette, UGA 49

Reference Semantics

●  Assignment manipulates references
–  x = y

●  does not make a copy of y
●  makes x reference the object y references

●  Very useful; but beware!
●  Example:

>>> a = [1, 2, 3]

>>> b = a

>>> a.append(4)

>>> print b

[1, 2, 3, 4]

Maria Hybinette, UGA 50

a
1 2 3

b

a
1 2 3

b
4

a = [1, 2, 3]

a.append(4)

b = a

a 1 2 3

Changing a Shared List

Maria Hybinette, UGA 51

a
1

b

a

1 b

a = 1

a = a+1

b = a

a 1

2

Changing an Integer

old reference deleted
by assignment (a=...)

new int object created
by add operator (1+1)

Maria Hybinette, UGA 52

Control Structures

if condition:

 statements

[elif condition:

 statements] ...

else:

 statements

while condition:

 statements

for var in sequence:

 statements

break

continue

Maria Hybinette, UGA 53

More For Loops

●  looping through list
»  for item in list:
»  print item

●  looping through counter
»  for i in range(5):

print i,

●  Iterating through a �built in� dictionary
»  import os
»  for k,v in os.environ.items():
»  print "%s=%s" % (k,v)

●  `os.environ` is a dictionary of environment variables

Maria Hybinette, UGA 54

Exercise I

Print (on separate lines)
1x1=1 1x2=2 1x3=3 8x9=72 9x9=81

but don�t repeat. For example

 print only 3x5=15
 but don�t print 5x3=15
 so print only if first_number <= second_num

Hint: use range

 for num in range(1,10):
…

Maria Hybinette, UGA 55

Output

●  1 x 1 = 1
●  1 x 2 = 2
●  1 x 3 = 3
●  1 x 4 = 4
●  1 x 5 = 5
●  1 x 6 = 6
● ….

Maria Hybinette, UGA 56

Exercise Answer

a = range(1,10)

b = range(1,10)

for anum in a:
 for bnum in b:

 if (anum <= bnum):

 print str(anum),"x",str(bnum),"=",str(anum*bnum)

Don’t really need
str here

Maria Hybinette, UGA 57

Grouping Indentation

In Python:

for i in range(20):
 if i%3 == 0:
 print i
 if i%5 == 0:
 print "Bingo!"
 print "---"

In C:

for (i = 0; i < 20; i++)
{
 if (i%3 == 0) {
 printf("%d\n", i);
 if (i%5 == 0) {
 printf("Bingo!\n");

 }
 }
 printf("---\n");
}

0
Bingo!

3

6

9

12

15
Bingo!

18

Maria Hybinette, UGA 58

Functions, Procedures

def name(arg1, arg2, ...):
 """documentation""" # optional doc string

 statements

return # from procedure

return expression # from function

Maria Hybinette, UGA 59

Example Function

def gcd(a, b):

 "greatest common divisor"

 while a != 0:

 a, b = b%a, a # parallel assignment

 return b

>>> gcd.__doc__ # 2 _ _ of these

'greatest common divisor'

>>> gcd(12, 20)

4

Maria Hybinette, UGA 60

Exercise II

●  Write script in the Editor window to convert a
Fahrenheit temperature to a Celsius
temperature and print out the result in the
Console window

Maria Hybinette, UGA 61

Exercise III

●  Phone book application
»  1) add

–  Ask for name and phone number
»  2) print phone book

●  To get input:
»  answer = raw_input("Enter your selection: ")

intro= """
Welcome to the phone book application
choices:
 1) add new entry
 2) print phone book
 3) exit
"""

print intro

ph_d = {} # phone book dictionary

def add_entry():
 """ add new entry into phone book"""
 name = raw_input("give me a name:")
 number = raw_input("give me a number:")
 ph_d[name] = number

def print_pb():
 print "name".rjust(30)+"number".rjust(30)
 for name,num in ph_d.items():
 print name.rjust(30),num.rjust(30)

while (True):
 response = raw_input("Enter your command: ")
 if (response == '1'):
 add_entry()
 elif (response == '2'):
 print_pb()
 elif (response == '3'):
 break
 else:
 print "invalid command"

>>>
Welcome to the phone book application
choices:
 1) add new entry
 2) print phone book
 3) exit

Enter your command: 1
give me a name:maria
give me a number:555-1212
Enter your command: 2
 name number
 maria 555-1212
Enter your command:

Maria Hybinette, UGA 63

On your own…

●  modules & packages
●  exceptions
●  files & standard library
●  classes & instances

Maria Hybinette, UGA 64

Hands On

●  www.python.org/doc/current/tut/tut.html

Maria Hybinette, UGA 65

Python Slogans

●  Python Fits Your Brain, Bruce Eckel
●  Life is Better Without Braces, Bruce Eckel
●  Import This
●  Batteries included (Tcl origin)
●  Powered by Python
●  Readability counts, Tim Peters

http://mindview.net/

Maria Hybinette, UGA 66

Bruce Eckel�s Top 10

10. Reduced clutter.
 Programs are read more than they are written
 Consistent formatting is important
 readability & compactness
 conversation of compactness
 Consistent use of programming idioms

09. It's not backward-compatible with other languages. (This came with
some hilarious one-liners:
 "C++'s backward compatibility with C is both its strength and
its bane"; "Java causes repetitive-strain syndrome";
 "Perl is compatible with every hacky syntax of every UNIX tool
 ever invented";
 "C# and Microsoft .NET are backward-compatible
 with Microsoft's previous marketing campaigns"; and
 "Javascript is not even compatible with itself".)

08. It doesn't value performance over my productivity.
 C++ memory leaks
 primitive types require awkward coding

Maria Hybinette, UGA 67

Bruce Eckel�s Top 10

07. It doesn't treat me like I'm stupid.
 Java insists operator overloading is bad because
 you can make ugly code with it.
 Bruce observes, "And we all know there's no ugly Java code out there."

06. I don't have to wait forever for a full implementation of the language.
 features invented in C+ takes a long time to appear in languages
 Unused features don�t get tested

05. It doesn't make assumptions about how we discover errors.
 Is strong static type checking rally the only way to be sure?
 Lack of good static typing in pre-ANSI C was troublesome
 Doesn�t mean it�s the best solution

Maria Hybinette, UGA 68

Bruce Eckel�s Top 10

04. Marketing people are not involved in it (yet).
 Java is flawless
 Microsoft happens �Visual� C++
 Of-course Python isn�t immune

03. I don't have to type so much.
 But what I do type is the right typing.

02. My guesses are usually right.
 I still have to look up how to open a file every time I do it in Java
 Most things I do in Java, I have to look up.
 Remember Python Idioms easier because they are simpler

Maria Hybinette, UGA 69

Bruce Eckel�s Top 10

01. Python helps me focus on my concepts rather than on fighting with the
language.

