Tutorial: Market Simulator

Installation:

Step 1: Install your python platform
a): Install Anaconda
Step 2 (later) : Install Market Simulator Templates.

It needs SciPy — so:
Note: The Anaconda python distribution includes
* NumPy, Pandas, SciPy, Matplotlib, and Python,
and over 250 more packages available via a
simple “conda install <packagename>"
It also has an IDE.

Instructor got 2.7, and the anaconda distribution of
python

To get the appropriate software you'll need:
python (scripting ‘programming’ language)
sci.py (numerical routines),
num.py (matrices, linear algebra), and
matplotlib (enables generating plots of data)

Installing Python (2.7) via Anaconda:
Anaconda instruction site including lots of libraries with
python.
https://docs.continuum.io/anaconda/install

Mac Installation:
1) Instruction that the instructor used:
a) installed anaconda (got required packages)
https://www.continuum.io/downloads (2.7)

includes, sci.py, num.py, and matplotlib

Outline

1. (Review) Install Python and some libraries
2. Download Template File

3. Create a ‘market simulator’ that builds a
portfolio, analyze it, computes expected
return.

1. Create an analyzer:
* Edit the analysis.py file

2. Create a market simulator on your own

* Your Simulator will use functions from analysis.py
which is [Project 1] a warm-up project.

Fundamentals

* Read Data: Read Stock Data from a CSV File and input
it into a pandas DataFrame

— Pandas.DataFrame
— Pands.read csv
* Select Subsets of Data: Select desired rows and
columns
— Indexing and slicing data
— Gotchas: Label-based slicing convention
* Generate Useful Plots: Visual data by generating plots
— Plotting
— Pandas.DataFrame.Plot
— Matplot.pyplot.plot

Goal

* Scrape S&P 500 ticker list and industry sectors from list of N : : :
S&P 500 companies on Wikipedia (code provided). Go from RAW data (adjusted close prices in

— https://en.wikipedia.org/wiki/List_of_$%26P_500_companies a .csv file) all the way to visualization
* Download daily close data for each industry sector from

Yahoo finance

— using pandas DataReader.
* Build a sample Portfolio (in lecture by hand):
* Look at measures of the performance of a portfolio (project

1). We will use the first measure for project 1.

— Sharp ratio (in class)

— Treynor ratio

— Jensen’s alpha

First Something Familiar: Weather

Data Comma Separated Values (.CSV)

[] CSV Fi Ie ;‘%i - " . - i g sne\frfa\é snuw;ept}; avgwin?isp:j: lzstestzm’:nwmdd;ro fas
3 7/1/12 75 102.9 0 0 0 492 20
. i 7/6/12 711 100 0 0 0 38 20
* .csv Comma Separated Values of weather * Header Files =2 = =z 2 ¢ @ & %
o, . "8 | 72512 70 90 voz g z Z;g ;38
. 79 7/27/12 739 99 0.14 0 0 6.93 20
conditions from Oct 2009 to Aug 2017 * Lines/Rows of === Ss= 2
* Town of Cary, North Carolina Dates 1R R »
16 8/26/12 64.9 84 0 0 0 313 50
. M . =2 8/28/12 73 87.1 0 0 0 7.61 210
— Temperature, pressure, humidity, ... lets see * Each Elementis =9 = = o o o g
20 | 9/14/12 63 80.1 0 0 0 157 50
— Import as “text data” separated by =z E: < s e o m ko
34 10/14/12 441 78.1 [0 0 38 230
COI u m nS 25 110/16/12 44.1 70 0 0 0 201 280
* Next ... stock data. e Shift-ctrl-down

https://catalog.data.gov/dataset?res format=CSV&tags=weather

What is in a Historical Stock Data File?

a) # of employees

b) Date/Time

c¢) Company Name

d) Price of the Stock

e) Company’s Hometown

https://finance.yahoo.com/quote/GOOG/history?ltr=1

Comma Separated Values (.CSV)

[JON)
[Stock Data fr‘om 1 Pute,Open,High,Low,Close,Vo'lume,Adj Close

2012-09-12,57.01,57.54,56.68,56.91,2362700,56.91
Yahoo Finance

2012-09-11,56.15,56.73,56.14,56.68,2118300,56.68
2012-09-10,57.01,57.07,56.02,56.12,2772700,56. 12
. 2012-09-07,56.60,57.20,56.38,57.19,3011800,57.19
* CSV file pulled by
panda’s (later)
DataReader()

2012-09-06,55.08,56.32,54.69,56. 26, 3304200,56. 26
2012-09-05,54.55,54.82,54.34,54.67,2660700,54.67
2012-09-04,54.50,55.06,54.26,54.63,2299900,54 . 63
2012-08-31,54.41,54.90,54.15,54.51,2368400,54.51
2012-08-30,54.01,54.24,53.59,54.09, 2233600, 54 .09
2012-08-29,53.86,54.68,53.75,54.49,2772800,54.49
2012-08-28,54.00,54.29,53.79,53. 83, 2065600, 53. 83
2012-08-27,54.79,54.85,53.94,54.15,1736300, 54. 15

v v . = (v v
Paste B|1 |V A Align == 70| 2 lﬁg?rzla(:gﬂzl styl
Al = fx| Date
a4 A B C D E F G
Z Date !Open High Low Close Volume Adj Close
2 9/12/12 57.01 57.54 56.68 56.91 2362700 56.91
3 | 91y 56.15 56.73 56.14 56.68 2118300 56.68
‘4 9/10/12 57.01 57.07 56.02 56.12 2772700 56.12
5 9/7/12 56.6 57.2 56.38 57.19 3011800 57.19
6 | 9/6/12 55.08 56.32 54.69 56.26 3304200 56.26
l 9/5/12 54.55 54.82 54.34 54.67 2660700 54.67

What is in a Historical Stock Data File?

a) # of employees
b) Date/Time

c) Company Name
d) Price of the Stock
e) Company’s Hometown (does not change over time)

(does not change over time)

Stock Data Files

* Date

* Open — price stock opens at in the morning, it is
first price in the day.

* High — highest price in the day
* Low — lowest price in the day
* Close —closing price at 4 PM.

* Volume — how many shares traded all together
on that day.

 Adjusted Close — accounts for splits/and
dividends — encapsulates the increase in value if
you hold stock for a long time (later).

http://www.investopedia.com/terms/a/adjusted closing price.asp

https://finance.yahoo.com/quote/GOOG/history?ltr=1

GOOG.csv (from Yahoo).

https://finance.yahoo.com/quote/IBM/history

 Adjusted Close — adjusts / accounts for stocks
splits and dividend payments.

N NN el TS * On the Current Day — Adjusted Close and
Calibri (Bocy) _RL12 Close are always the same.

* Newer dates on top, older descending.

A Home } Layout | Tables | Charts | » v .
E23 & fx| 660.01 * Previous Days:

A e[c [T o T F [G] - .
1 |Date Open High Low Close Volume Adj Close — But as we g0 back in time start they to differ they
2 | 9/12/12 689.41 69491 680.88 690.88 2642300 690.88
'3 | 9/11/12 697.95 70065 691 69219 1873800 692.19 are not always the same.
4 | 9/10/12 70976 712.81 69839 700.77 2560000 700.77 . . .
5 | 9f7/12 700 71225 697.67 706.15 3233000 706.15 — Actual Return is not captured by the closing price,
6 | 9/6/12 68596 699.89 68473 699.4 3043500 699.4 ; i i
BBl ororis| ea0| " sas| oo 18| ansa| sroma0| E0a? need to use adjusted close on historical data.
(8 | o/4/12 68455 685 6735 68104 1889600 681.04
9 | 831/12 684 68858 680.04 685.09 2127100 685.09
10 | 8/30/12 68424 687.39 680.18 681.68 1626900 68168
11| 8/29/12 67737 68899 67615 688.01 2990300 688.01

Pandas: Included in Anaconda Store Portfolio in a Panda

. . .- . o * Want: <Symbols> vs Time
https://en.wikipedia.org/wiki/Pandas (software) + Includes a set of equities

« Developed by Wes McKinney while at AQR (ownership)

— Exchange Traded Fund (ETF)

. . . symbols
Capital Management to analyze financial data — SPY500 Y
* Tracks the index S&P 500 Index.

- Open Source. - Russe” 1000 1 SPY AAPL GOOG GLD
. . . — AAPL—apple | 2010.01-04
— Numerical Tables and Time Series — GOOG - Google faotuos
— A Key Element : Data Frames ———— — Other: securities (government) zg%g%%
. . * NaN | 2010-01-12
* Slicing Python for _— * https://en.wikipedia.org/wiki/ ggégﬁz
— Panel Data - ' Google oo
— Initial public offering (IPO) - g 20100121
August 19, 2004, £ | jmonn

https://finance.yahoo.com/quote/GOOG/history?ltr=1

Warm-up: Reading into a Data frame

{ingrid:632} python

| nte ra Cti Vely Anaconda is brought to you by Continuum Analytics.

>>> import pandas as pd

— Import pandas A
>>> print df.head()
. Date Open
— Rename it to pd 0 2012-09-12 666.85
1 2012-09-11 665.11
R d .. 2 2012-09-10 680.45
3 2012-09-07 678.05
€a lt In. 4 2012-09-06 673.17
>>> print df

First columnisindex |, e
. 1 2012-09-11 665.1:
helping you to access [z zuzwis e
4 2012-09-06 673.1

rOWS . 5 2012-09-05 675.5:
6 2012-09-04 665. 7

7 2012-08-31 667.2"

SPY, AAPL, GOOQG, S e e
GLD N e e

12 2012-08-24 659.5:
13 2012-08-23 666.1:
14 2012-08-22 654.4:
15 2012-08-21 670.8:
16 2012-08-20 650.0:

17 IMI_OR-17 GAD O

High
669.90
670.10
683.29
682.48
678.29

n
5

5
5
7
7
6
5
4
5
8
9

2
2

2

>>> df = pd.read_csv("data/AAPL.csv")

Low
656.00
656.50
662.10
675.77
670.80

High
669.90
1 670.10
683.29
682.48
678.29
676.35
675.14
668.60
671.55
677.67
676.10
680.87
1 669.48
1 669.90
669.00
674.88
1 665.15
aag 10

Low
656.00
656.50
662.10
675.77
670.80
669.60
664.50
657.25
662.85
672.60
670.67
673.54
655.55
661.15
648.11
650.33
649.90
&29 21

Close
669.79
660.59
662.74
680.44
676.27

Python 2.7.11 |Anaconda 4.1.0 (x86_64)| (default, Jun 15 2016, 16:09:16)
[GCC 4.2.1 (Based on Apple Inc. build 5658) (LLVM build 2336.11.00)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

Please check out: http://continuum.io/thanks and https://anaconda.org

Volume Adj Close

25410600
17987400
17428500
11773800
13971300

Close Volume
669.79 25410600
660.59 17987400
662.74 17428500
680.44 11773800
676.27 13971300
670.23 12013400
674.97 13139000
665.24 12082900
663.87 10810700
673.47 7243100
674.80 9550600
675.68 15250300
663.22 15619300
662.63 15004600
668.87 20190100
656.06 29025700
665.15 21906600
Ga% 11 15217000

def -- Make it a function

import pandas as pd

1
2
3
4 def test_run():

5 df = pd.read_csv("data/AAPL.csv")
6 print df #print entire dataframe
8

9

if __name__ == "__main__":
10 test_run()

* simple-frame.py

— Entire frame

— Try: printing - df.head(), df.tail()
* Question: Print last 5 lines?

669.79
660.59
662.74
680.44
676.27

Adj Close
669.79
660.59
662.74
680.44
676.27
670.23
674.97
665.24
663.87
673.47
674.80
675.68
663.22
662.63
668.87
656.06
665.15
aag 11

Exercises

Exercise 1.

* Read in the entire CSV file in a function
— Print it out.

Exercise 2.

* Read in the entire file in a function

— Print out a selection of file
* Top 5 lines : .head()
* Bottom 5 lines: .tail()

* Only print top 5 line of data frame
— print df.head()

* Only print bottom 5 lines of data frame
— print df.tail()

Print out a subset of columns, and/or rows:
* Slicing: Only print rows between index 10, 20 (not
inclusive)
— print df{10:21]
— print df[:21]
— print df[['Date’,'High']].values[5]

i : C te Max Closing Pri
Computation on CVS File ompute Max Closing Price
get_max_close(symbol)

import pandas as pd

* From the file, find out maximum closing price. def ge

1. Read the file into a data frame
* Now - SPY.csv

c_max_close(symbol):
"""Return the maximum closing value for stick indicated by symbol.

Note: Data for stock is stored in file: data/<symbol>.csv
df = pd.read_csv("data/{}.csv".format(symbol)) # read in data
return df['Close’'].max(Q) # compute & return max
* Later —any symbol
Ief test_runQ:
2. Process the Column ‘Close’ """Function called by Test Run."""
for symbol in ['AAPL', 'IBM']:
. orint "Max close"
3. Use pandas function .max() to return max.

print symbol, get_max_close(symbol)

if __name__ == "__main__": # if run standalone
test_runQ)

1a-maxclosingprice.py https://pyformat.info/

Exercises Plotting maplotlib

* Calculate the volume. trport pandes o5 pd
. import matplotlib.pyplot as plt
* Calculate the adjusted close. fef teet Oy
df = pd.r‘ead_(;sv("data/AAPL.csv") # read in data
* Challenge: Return date(s) when: e T Lady St
. 1t.show() # must be called to show plot
— closing price is different from the adjusted price? . P . " : l : :Sdol e
if __name__ == "__main__": if run standalone
— IBM test_runQ)

2a-1column-plots.py

1b-meanvolume-quiz.py http://matplotlib.org/users/pyplot_tutorial.html#working-with-text

Plot 2 Columns in a single Plot Coming UP.

* Restrict Data Ranges (e.g., specific date range)?

import pandas as pd (1)
import matplotlib.pyplot as plt JOIn
def O: ° 1egi
df = pd.read_csv("data/AAPL.csv") # read in data Drop MISSIng Data ROWS
#print df ['Adj Close'] .
df [['Close’,"Adj Close']].plot() # double square brackets. ¢ Join Data |ncrementa||y, column by column
plt.show() # must be called to show plots
if __name__ == "__main__": # if run standalone
test_runQ)

2b-2column-plots.py

Want to get a frame with Closing date How many days were US Stocks
of Different Stocks. Traded in 2014 (over an entire year)
o . a) 365
{ingrid:503} p){thon 3b-multiple.py
2010-01-22 Ad]lgl;(.)gi 558082 119?2;’.' 1@7(.3!]-.3 b) 260
2010-01-25 104.87 540.00 120.20 107.48
2010-01-26 104.43 542.42 119.85 107.56 C) 252

Only on trading days ...

How many days were US Stocks
Traded in 2014 (over an entire year)

a) 365
b) 260 (52x5) But there are also holidays ...
c) 252

Steps 0-2: Specifying the Data Range

* Step O:
* Step 1: Create a list of data time index objects

— dates = pd.date_range(start_date,
end_dateg

— Check it out (print).
* List of data time index objects
— Dates[0] (dates with time stamp)
— Dates[1]

* Step 2. Index it by dates instead of integer by
specifying index and setting it to ‘dates’
— index = dates.
— NOTE seen the default of integers already ...

3a-simple-join.py

Steps: Building a DataFrame

DF1 = First build a data frame by specifying the date range.

- Includes weekend dates (markets are not open).
DF2 = SPY = Load in SPY data (adjusted close) into a separate data frame
(all data and prices).

— Only trading days (market open) in DF2.

Join DF2 and DF 1 —join so that only dates that are present in ‘both’
frames (it eliminates the weekends in Data frame 1).
Additional Joins with other ‘symbol’ that we want to add, IBM, GOOG.

Step 3: Combine the data frames with Joining Frames

a) df2: Create SPY date frame w/ SPY data
b) Combine date frames via join.

— dfl: Empty date frame with a date range
— df2_SPY Populated date frame (only trading days)
— Join: left join
« dfl.join(df2_SPY)
* Only SPY row are retained.
— ? No values from SPY??

« dfSPY is indexed by integers by default,
change index to dates by index_col
— index_col="Date”

Exercise:

* Utility Functions to read in data no NaNs.

import os
import pandas as pd

def symbol_to_path(symbol, base_dir="data"):
"""Return CSV file path given ticker symbol."""
return os.path.join(base_dir, "{}.csv".format(str(symbol)))

def get_data(symbols, dates):
"""Read stock data (adjusted close) for given symbols from CSV files."""
df = pd.DataFrame(index=dates)
if 'SPY' not in symbols: # add SPY for reference, if absent
symbols.insert(®, 'SPY')

for symbol in symbols:
TODO: Read and join data for each symbol

return df

* Multiple Stocks from a list
— symbols = ['GOOG’, ‘IBM’, ‘GLD’]
— For loop iterating through symbols

pd_read_csv(“data/{}.csv”.format(symbol),
index_col=‘Date’,
parse_dates=True,
Usecols=[‘Date’ ,Adj Close’],
na_values=[‘nan’])

Re-Cap: Last Week

¢ Worked on board ... on code.

* Compute / Code financial statistics
in pandas and numPY:

— Global Statistics

* Mean

* Median

* Standard Deviations
— Rolling Statistics

* Rolling mean

— Representation of underlying value of a
stock

* Rolling standard deviation

— deviate from the mean (buy and sell
signal)

Bollinger Bands " s
— Upper band : |-
* rolling mean + 2 * rolling ™[
StdDev “r
— Lower band : "

* rolling mean—2 * rolling
StdDev

https://en.wikipedia.org/wiki/Bollinger Bands

Daily Return on the portfolio value

* Daily return[t] = (prices[t]/prices[t-1]) -1
— Now on port_val (instead of prices).

— Observation: 1%t value is always 0
* daily_rets = daily_rets[1:]

Get the Daily Total Value of the Portfolio

Given:

Step 1: Prices Data Frame index by dates start_val = $1,000,000
Step 2: Normalize by First Row start_date = 2011-01-01

— Normed = prices/priced[0] end_date = 2011-12-31
Step 3: Multiply by allocation (a vector) SYmPols =[:§3&’;3 ’X(‘”Gd;_[’),]

— Allocated = Normed * allocs allocs = [0.4,0.5,’@.1’&1]
Step 4: Position values = worth each day

— Pos_vals = Allocated * start_val
Step 5: Daily Total Value of Portfolio

— Port_val = Pos_vals.sum(axis = 1)

Prices Normalized Allocated Position values Portfolio Value

» » » wﬁ

Statistics on the Portfolio

Cumulative Returns

— Form beginning to end (last value/initialial val) -1
* cum_ret = (port_val[-1]/port_val[0]) - 1

Average Daily Returns
— daily_rets.mean()

Standard Deviation of Daily Return
— Daily_rets.std()

Sharpe Ratio

Sharpe Ratio

Considers our return in
the context of risk

Risk is volatile
(standard deviation)

Adjust our return in
return for the risk
Volatility

— Measured by standard
deviation

Sharpe Ratio

1. Higher Returns is Better

2. Less Volatility/Less Risk
is Better

3. Not Enough Information
— Returns: ABC > XYZ
— Volatility ABC > XYZ

— ABC s higher returns,
but more risk

ABC = + 10%

XYZ = + 5%

ABC = + 10%

XYZ = + 10%

Whih is betwer?

ABC = + 10%

XYZ = + 5%

ABC = + 10%

XYZ = + 10%

Whih is betwer?

Sharpe Ratio - o

Considers our return in

the context of risk
Risk is volatile

(standard deviation) W

ABC = +

Adjust our return in
return for the risk 3 -

Volatility
— Measured by standard

deviation
Which s beiger?

Sharpe Ratio

* Adjusts return for risk
* A quantitative way to assess a portfolio

— 1. ABC is better because it has the same volatility but
higher returns

— 2. same returns but XYZ has lower risk so XYZ is better
— 3. A quantity such as the Sharpe Ratio may give you a
number to determine which is better
* Sharpe ratio also considers (comparative)

— Risk free rate of returns
¢ Bank account or treasure note

— Lately risk free return is 0, bank interest rate is 0, or close
to0

Which Formula is Best?

. Rp : Portfolio Return
* R; : Risk Free Rate of Return
* O, Standard Deviation of Portfolio Return

a) R,—R¢+ 0,

General Form of the Sharpe Ratio

Outline: Computing Sharpe Ratio

* SR (expected value)

= E [Rp — Rf]/std[Rp-Rf]

Expected value = mean over time:

= mean(daily_rets — daily_rf)/std(daily_rets — daily_rf)
* Risk Free Rate not given on a daily bases

— LIBOR

— Annual/6 month bases

— Short Cut -

* Convert annual rate to a daily amount

* Example:
— Annual Rate: 0.1 per year Risk Free Rate
— Total Value at end of year: 1.0 * 0.1
— What is the Interest Rate per Day:
» Daily_RF =SQRT_252(1.0+0.1)—1 =» 0.0 (approximation)

— Constant Standard Deviation of a Constant

Computing Sharpe Ratio

* SR (expected value)
= E [Rp — Rf]/std[Rp-Rf]
» Expected value = mean over time:
= mean(daily_rets — daily_rf)/std(daily_rets — daily_rf)

* What is the risk free rate?
— LIBOR (London Inter Bank Offer Rate)
— Interest Rate: 3 months Treasury Bill
—0%! Short Cut.

Sample Frequency

* SR can vary depending on how frequently we
sample the data (need an adjustment factor to
convert between different sampling)

— Annual (initial vision of SR)
— Monthly
— Daily

SR =k * SR

k = sgrt (# samples per year)

annualized

Sample Frequency

* SR can vary depending on how frequently we
sample the data (need an adjustment factor to
convert between different sampling)

— Annual (initial vision of SR)
— Monthly
— Daily

SRannualized =k * SR

k = sgrt (# samples per year)

Daily k = sqrt (252)
Weekly k = sqrt (52)
Montly K =sqrt (12)

Quiz: What is the Sharpe Ratio

* Given:
— 60 days of data

— Average daily return = 0.001 (10 bases points)

— Daily risk free return =0.0002 (2 bases points)

— Std daily return= =0.001
* What is the Sharpe Ratio?

ReCap: Sharpe Ratio for Daily Returns

* SR
= sqrt(252)
* (mean(daily_rets — daily_rf)
/ std(daily_rets-daily_rf))

Quiz: What is the Sharpe Ratio

* Given:
— 60 days of data
— Average daily return = 0.001 (10 bases points)
— Daily risk free return =0.0002 (2 bases points)
— Std daily return= =0.001

* What is the Sharpe Ratio?

* =S5qrt(252) * mean(Rp-Rf)/Std(Rp)
— =Sqrt(252) * (10-2)/10 =12.7

Python Optimization

* std_daily_ret = daily_rets.std() * Board - notes
* sharpe_ratio =

sharpe_ratio = np.sgrt(samples_per_year) *
np.mean(daily_rets - daily_rf) / std_daily_ret

* What is an optimizer? * How to use an optimizer:
— Find minimum values of functions 1) Provide a function to minimize:
* Example: f(x) =x2+x3+..+1 * Example: f(x) =x% + 0.5
— Find parameters from data 2) Provide an initial guess:
* Enables: building parameterized models based on data * Example = 5 (generated by a randomizer)
* How: polynomial fit to data 3) Call the optimizer with the parameters above

— Find (refine) allocation of stocks in a portfolio

* What percentage should be allocated to each stock to
maximize the portfolio return (part of the project).

Example

* Minimization Example: ; Wi of an bjecive fniion

1) Function provided: \
— f(x)==(x—1.5)2 + 0.5 =\

2) Provide an initial guess: 3.0 \

3) Call Optimizer with parameters defined

o\
above.
— One method:

Gradient descend to narrow in on the solution.

Experiment with other methods.

* Next: Look at Code (provided):
— pdf-code-finance/001-minimizer.py

Which functions are challenging to

solve (for the minimizer)?

\ / gradient.

area).

 A—flat areas don’t have a

\/ * B - convex problems
W e C-—several global minima

L * D —discontinuity (and a flat

Which functions are challenging to
solve (for the minimizer)?

* A

*B

Which category of functions are easy

to solve?

e Guaranteed to find a minima
 Different algorithms for specific issues.

Convex Problems Extends to Multiple dimensions

ey R

* Convex function

* Wikipedia: "... a real-valued function f(x)
defined on an interval is called convex if the
line segment between any two points on the
graph of the function lies above the graph ...

Parameterized models from data Board.

* Example: f(x)=mx+b
— X+
— X3 + X2+ X+

* Qg: Find parameters of the line c,,
c,, Where c, is the y-intercept, and
¢, is slope that best fits the data

* Q,: How do we reframe the
problem so that it makes sense to
the minimizer?

rain

* What do we need to minimize?

humidity

Which Metrics are good for fitting Which Metrics are good for fitting

data? data?
e 2e e 2 e
* X abs(e)) V'3 abs(e)
« Xe? vie?
Minimizer finds coefficients Look at Code.

* Mechanics:
—Guess: C0=1, C1=1

003-parameters-data.py

Running the Code

- Original line
© Data points |
= Initial guess
- Fitted Line
7o

* Horizontal line is the ini

tial guess.

* Minimizes the error between the line and

data.

* Project: Maximize performance of a portfolio

* Criteria (maximization):
— Cumulative return
— Volatile Return

— Risk Adjusted Return (Sharpe Ratio)

* Works for polynomials too.

Example: Equal Allocation

1.25 -
Portfolio

« 25G00G | =
« 25AAPL s
« .25GLD
« 25XO0M

Price
=
=

§ Dai!y Portfolio Value and SPY

1.00 ‘""'il ,.‘} ///u 1 i‘
W\‘w A€ el i
0.95 ’v[/‘ / M

|
V

1
W

o O 0 o)
O A0 0% LoV
;2“1\:&‘1 P»"L"@*’L \0“1 N

0\0 Q\Q

‘)

oW

Date

) o
O 0¥
P‘qu' 5?.91 o‘-"’1 ‘\o"‘l

oN°

o’

N

Example:

* .00 GOOG
* .40 AAPL
* .60GLD

* .00 XOM

Sharpe Ratio Optimization

14 Dai_ly Portfolio Value and SPY

J/M \/
12} /’\
: B

n At
VARG,

/H"M - fy “'u‘h
f -

13

Price

&

L0 /*f C A A Na AN
. AN
Y N TANARN
v [-

O O O O 0
oQ’LQ:eQ’l“xoéﬁXo“ £ (_'10\
IS W oF

Date

0.9
o 0 o 0
V‘L“\‘ (’10\ ‘10\‘ 10\‘ N
<e° ' wed Ty

\0\ ®
I3

20% \1f
W

Which would be easiest to solve for?

e Cumulative Return

* Minimum Volatility

* Sharpe Ratio

* Looking back at time

* How can it help going forward
— Re-optimize continuously, monthly, monthly.
— Easy to figure out by looking back at time.

Which would be easiest to solve for?

e Cumulative Return

— Single stock (100% highest returning stock)
* Minimum Volatility

— Evaluate various combination of stocks

* Sharpe Ratio

¢ Evaluate various combination of stocks

Hints: Framing the problem as a

R Ranges and Constraints
minimization problem.

* Provide a function to minimize * Ranges: Limits on values for X.
— F(x) — 0% to 100% (or 0-1 in assets) allocations, can’t be
* X are the allocations. outside these bounds.
* F(x) Want Sharpe ratio. * Constraints: Properties of X that must be true.

* optimizer finds the smallest Sharpe ratio?
— We want large Sharpe Ration
- *(-1)

— Total allocations should add up to 100%

* Provide an initial guess for x.
* Call the optimizer

Part 1: Final Days of working on

financial modeling & simulation Market Mechanics.

* Final Touches of Project — Buy stocks by issuing orders
* Background — Sent to a stock broker

* Tomorrow: Demo Project
— Must do a in person demo in order to get a grade.

What is an order?

* Buy or Sell

Y BUY, IBM, 100, LIMIT, 99.95
* Symbol | SELL, GOOG, 150, MARKET
 #Share

Limit (price) or Market
* Price

Market Mechanics.

e Order Book:

— One order book for every stock sold or bought

ASK
— BUY, IBM, 100, LIMIT, 99.95 ASK

— SELL IBM, 1000, LIMIT, 100 s

- ... BID
— BUY, IBM, 100, MARKET o0

100.10
100.05
100.00
99.95
99.90
99.85

100
500
1000
100
50
50

* Exchange look at order book, have to give client the lowest
price — so deduct 100 stocks from the ‘ASK 100’ row.

Market Mechanics.

e Order Book:

— One order book for every stock sold or bought

ASK 100.10 100
ASK 100.05 500
— BUY, IBM, 100, LIMIT, 99.95 AeKasl00 00 000
BID 99.95 100
* (no seller yet) BID 99.90 50
. BID BID 99.85 50
— SELL IBM, 1000, LIMIT, 100
* ASK does not match any of the bids.
Market Mechanics.
* Price going up or down?
ASK 100.10 100
ASK 100.05 500
ASK 100.00 1000
BID 99.95 100
BID 99.90 50
BID 99.85 50

