Last Time: Programming
Language History

e 50s, 60s: Exciting Time

» Invention of: assemblers, compilers, interpreters, first high-
level languages, structured programming, abstraction, formal

CSCI: 4500/6500 Programming syntax, object-oriented programming, LISP, program
verification
Languages @ 70s, 80s, 90s: Boring Time

» Refinement of earlier ideas, better implementations, making
Nat I dP . L theory more practical
atural an rogramming Languages » A few new/refined ideas: functional languages, data
Syntactic Structures abstraction, concurrent languages, data flow, type theory, etc.
® 00+s:
» : Internet, large scale distributed
computing, the grid, Java, C#, Maria at UGA

T, o Alan Kay: “The best way to predict the future is to invent it.”

Iarja Hybinette, UGA 1 Maria Hybinette, UGA
: Programming
Language Implementation Formal System & Language
L Source program
o This week and next we Scanner F |)
will talk about the first T ormal System:
two phases of [Loxial unit,token strcam @ Set of symbols:
compilation, namely: B » the primitives
» Scanning and Ay @ Set of rules for manipulating symbols
» Parsing. Immfc o » Rules of production
® Today the basic e e oo What is a Language (theoretically)?:

concepts next week - @ Formal System + (mapping of sequence of
we talk about parse [Abstract synta tree or symbols and their meaning)

trees & discuss other intermediate form

practicalities
Machine Language
3 Maria Hybinette, UGA

Maria Hybinette, UGA

Linguist’s Language What are languages made of?

o Description of pairs (S, M) o Primitives
» S is the “sound”, or any kind of surface forms, and » The smallest units of meaning, or the simplest
» M is the meaning. ‘surface forms’ (pronunciation).

e Language specifies properties of sound and ® Means of Combination (all languages have

meaning and how they relate (Aristotle these)
characterize language as a system than links » Like Rules of Production for Formal Systems
sound and meaning) » Creates ‘new’ surface forms from the ones you have

® Means of Abstraction (all powerful languages

® Aristotle: 384-322 B.C. Greek N"_
philosopher, father of deductive logic, @:“ { have these)
Meta physics, “Physics”, teacher of - A » Ways to use simple surface forms to represent more
Alexander the Great. @ complicated ones

Maria Hybinette, UGA 5 Maria Hybinette, UGA

What is longest word in the
English language?

Creating longer words

® Supercalifragilisticexpialidocious
» Popularized by Mary Poppins
» Oxford English Dictionary, 34 letters
» Nonsense word meaning fantastic
® Pneumonoultramicroscopicsilicovolcanoconiosis

» 'a lung disease caused by the inhalation of very fine silica
dust’, 45 letters (miner’s lungs).

» 207,000+ mitochondrial DNA

@ Floccinaucinihilipili

» The estimation of something as worthless (usage dated
since 1741) -- four ‘worthless’ words with a verb ending.

» 27 letters, longest non-technical word according first
edition of Oxford English Dictionary (floccus - | don’t care, |
don’t make wool, naucum - little value, nihilum - nothing,
pilus - a hair, a bit or whit, something small and
insignificant, , facere, feci, factus make or do

Maria Hybinette, UGA 7

Natural Languages

@ Floccinaucinihilipilification (previous slide)

» The estimation of something as worthless, the act of
estimating something as useless

e Anti-floccinaucinihilipilification
» The estimation of something as not worthless

» The one who does the act of not rendering useless
@ Anti- antifloccinaucinihilipilification

Maria Hybinette, UGA 8

What are languages made of?

o Are there any non recursive languages?
» No, we would run out of things to say
@ So, we only need to start with a few building

blocks and from there we can create infinite
things

Maria Hybinette, UGA 9

Primitives/Tokens

o Primitives

» The smallest units of meaning, the “simplest” surface
forms. Lexemes lowest level of meaning.

o Means of Combination (all languages have these)
» Creates new surface forms from the ones you have
» Sentences and works on word parts too!

® Means of Abstraction (all powerful languages have
these)

» Ways to use simple surface forms to represent more
complicated ones

» Example: pronouns: “l in English; or Phom, Dichan is the
polite way of saying | in Thai depending on gender (Dichan
for females).

Waria Hybinets, UGA 10

Means of Combination

o Tokens: Described by regular expressions

» First phase of compilation process converts strings/lexemes of the
programming language to tokens (a representation of the lexeme
in the computer)

— Example: letter (letter | digit)*

» Can be generated from just three rules/operations:
— Concatenation
— Repetition (arbitrary number of times - Kleene closure)
— Alternation (Choice from a finite set)

» Corresponds to type-3 grammars in Chomsky hierarchy and is the

most restrictive A -> a, A-> aB or A -> Ba
o Many utilities exist that use regular expressions

» grep (global regular expression print)

— grep “root /etc/passwd

» Lex/flex, turn a regular expression of tokens into a scanner, so
they are generators (next week)

Waria Hybinets, UGA 1"

o Allow us to say infinitelémany things with a
finite set of primitives
@ We can create sentences using primitives

» But really, in English “words” are really not the
‘primitives’ since we can create longer words

® How can we describe “means of
combinations” in the syntax of a language?

» Computer Scientists:
— Backus-Normal-Form -> Backus-Naur-Form (BNF)

Waria Hybinets, UGA 12

BNF Example

BNF Example
Sentence ::= Noun-Phrase Verb-Phrase
Noun-Phrase ::= Maria | Microsoft
Verb-Phrase := Rocks | Jumps

® What are the terminals?
» Maria, Microsoft, Rocks, Jumps
® How many different things can we
express with this language?
» 4
» ... but only 1 is true

Maria Hybinette, UGA

Definition of Languages

Sentence ::= Noun-Phrase Verb-Phrase Noun-Phrase
Noun-Phrase ::= Noun | Adjective Noun-Phrase
Noun := Maria | Microsoft | Home | Feet

Adjective := Yellow | Smelly

Verb-Phrase := Skips | Runs | Rocks

o Now we can express infinitely many things with this
little language...

Waria Hybinets, UGA 14

BNF and Context Free Grammars

® Recognizers

» Reads input string and accepts or rejects if the
string is in the language

» Example: Parsers -- the syntax analyzer of a
compiler (yacc- yet another compiler compiler)

e Generators
» Generate sentences of a language
» Example: Grammars are language generators

Maria Hybinette, UGA

BNF Basics

o Context Free Grammars
» Developed by Noam Chomsky in the 1950s
» Define a class of languages called context-free
languages (type 2)
e Backus Naur Form (BNF)

» A meta-language used to describe another
language
» Equivalent to context-free grammars

Waria Hybinets, UGA 16

BNF details

A BNF grammar consists of four parts:
o Tokens: tokens of the language, the terminals

® Non-terminal symbols: BNF abstractions in <>
brackets

® A start symbol
e Grammar: The set of productions or rules

Maria Hybinette, UGA

® The tokens are the smallest units of syntax
» Strings of one or more characters of program text
» They are atomic: not treated as being composed from
smaller parts
o The non-terminal symbols stand for larger pieces of
syntax
» They are strings enclosed in angle brackets, as in <NP>
» They are not strings that occur literally in program text
» The grammar says how they can be expanded into
strings of tokens

e The start symbol is the particular non-terminal that
forms the root of any parse tree for the grammar

Waria Hybinets, UGA 18

BNF Productions (Grammar)

Alternatives

@ The productions are the tree-building rules

o Each one has a left-hand side, the
separator ::=, and a right-hand side
» The left-hand side is a single non-terminal
» The right-hand side is a sequence of one or more
things, each of which can be either a token or a non-
terminal
@ A production gives one possible way of
building a parse tree: it permits the non-
terminal symbol on the left-hand side to have
the things on the right-hand side, in order, as
its children in a parse tree

Waria Hybinets, UGA 19

Example

o The BNF grammar can give the left-hand side,

the separator : : =, and then a list of possible
right-hand sides separated by the special
symbol |

20

Extensions to BNF - EBNF

<exp> = <exp> + <exp> | <exp> * <exp>| (<exp>)
lalb|ec

e Equivalent to six productions:
<exp> .= <exp> + <exp>

<exp> ::=<exp> * <exp>
<exp>:= (<exp>)

<exp>:= a
<exp>:= b
<exp>:= cC

Waria Hybinets, UGA 21

Example EBNF extensions

o BNF is sufficient to describe context free
languages
e Various extensions and modifications have been
made to ease the expression of programming
language grammars
» The extensions can be bee describe in the original BNF
» Collectively these are called EBNF extended BNF

Waria Hybinets, UGA 22

Parse Trees

® Remove brackets for non-terminal
o Replace ::= with —
o Replace vertical bars with spaces

e + for one or more occurrences
» EBNF: A — X (Y)*
» BNF: A := XB
- B:=Y|YB
e * for zero or more occurrences

Waria Hybinets, UGA 23

o Grammars describes ‘hierarchical syntactic structures’
so these can be represented by parse trees (e.g., a
parser generates parse trees).

o Idea:

» To build a parse tree, put the start symbol at the root

» Add children to every non-terminal, following any one of
the productions for that non-terminal in the grammar

» Done when all the leaves are tokens

» Read off leaves from left to right—that is the string
derived by the tree

Waria Hybinets, UGA 24

<expr> ::= <expr> + <term> | <term>

<term> ::= <term> * <factor> | <factor>
<factor> ::= '(' <expr ')' | <num>
<num> ::= 112]3] 4]

<term-list> :

1= <term> | <term> <comma-list>

<comma-list> :

:= <comma-term> | <comma-term> <comma-list>

0|
516171819

‘Input: 1 +2¢ 3‘

<expr>
<expr> + <term>
<term> <term> * <factor>
| | |
<factor> <factor> <num>
| |
<num> <num>

Output: |
1 + 2 * 3

Abstract Syntax Tree

<comma-term> ::= ,’ <term>
<term> ::=a | b | c | d|e| £

<term-list> }Inp“t: a, b '©

<term> <comma-list>
<comma-term> <comma-list>
<term> <comma-term>

— L
‘a - b - c ‘

Remove Commas

@ An abstract syntax tree (AST) describes the
elements of a program stripped down to the
essentials.

» Remove unnecessary components

» Some symbols are there not to be interpreted, e.g.
punctuations with really no meaning

— Example: “,” are there only to tell parser how to build
tree

» Convert tree from a narrow tree to flat tree
» Remove non-essential intermediate non-terminals

Maria Hybinette, UGA 27

Remove Commas

<term-list>

<term> <comma-list>

<comma-term>

<comma-list>

<term> <comma-term>
<term>
‘ a - b c

Maria Hybinette, UGA

28

Remove intermediate non-

terminals

<term-list>

<term> <comma-list>

<comma-term> <comma-list>

<term> <comma-term>
<term>
“ b c
Maria Hybinette, UGA 29

<term-list>

<term> <comma-list>

<comma-term>

<comma-list>

<term> <comma-term>
<term>
b c

Maria Hybinette, UGA

30

Remove intermediate non-
terminals

Remove intermediate non-
terminals

<term-list>

<term> <comma-list>
| <comma-list>
<term>
<term>
‘ a b c ‘

Maria Hybinette, UGA 31

Remove intermediate non-
terminals

<term-list>

<comma-list>

Maria Hybinette, UGA

‘ a b c

Ambiguity in Grammars

32

<term-list>

<comma-list>

Maria Hybinette, UGA 33

‘ a b c

Ambiguity

® Some grammars have more than 1 parse tree
for a given string

° Example. <expr> ::= <expr> <op> <expr> | const
<op> ::= [/ | -

/I@CK}K

;& <op> <expr> <expr> <op> ;R

<expr> <op> <expr> <expr> <op> <expr>
const - const / const const / const - const
Maria Hybinette, UGA 34

Unambiguous Expression
Grammar

@ Compiler often base the semantic on a
phrase’s parse tree
» More than one cannot determine the meaning
» Unless there are some additional non-grammatical
information
e Precedence and associatively can be defined
outside the grammar.
o Can include it in the grammar to facilitate the
compiler to evaluate from the parse tree

Maria Hybinette, UGA 35

e If we use the parse tree to indicate precedence
levels of operators we cannot have ambiguity

<expr> ::= <expr> <op> <expr> | const ‘
@ oee= () = <expr> ::= <expr> - <term> | <term>
<term> ::= <term> / const | const
<expr>
Hint: Higher
<expr> - <term> precedence
operators are
lower in tree,
<tel <term> / const here “/” has
higher precedence
than “-”
const const

Maria Hybinette, UGA

36

Associativity

e Operator associativity can also be indicated by a grammar

o Left Associative: 9+5+2 is equivalentto (9 +5) + 2 @ Project 1 will be posted later tonight - two
parts due 1 week and 2 weeks from today
<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous) @ No floccipoccinihilipilification please!

_,,———”EETEEi‘\\~
"lfjsﬁrfi\\\ + const

<expr> + const

Note first
addition is
lower

const

Maria Hybinette, UGA 37 Maria Hybinette, UGA 38

