
Maria Hybinette, UGA 1

CSCI: 4500/6500 Programming
Languages

Conclusion of Lex and YACC and the

Theory behind them (today– focus on
YACC)

Maria Hybinette, UGA 2

YACC Background

!! Review: Recall grammars for YACC are a

variant of BNF

»!Can be used to express context free languages

X -> p

»! X is non terminal, p is a string of non-terminals and/

or terminals)

»!Context free because X can be replaced by p

regardless of the context that X is in.

Maria Hybinette, UGA 3

Some YACC Theory in this
Context

!! YACC - reduces an ‘expression’ to a single

non-terminal (the start symbol)

!! Is a bottom up or ‘shift-reduce’ parser (LR –

Parses Left to right, right-most).

»! (L) Reads the string from left to right (like

westerners) and (R) produces the right-most

derivations.

Maria Hybinette, UGA 4

Example: ‘Generating’ a String
(not parsing a string – yet)

!! Example: Grammar that multiply and adds

numbers:

»! E ! E + E (rule 1)

»! E ! E * E (rule 2)

»! E ! id (rule 3)

!! id is returned by lex (returns terminals) and

only appears on right hand side.

»! x + y * z is generated by:

E ! E * E (rule 2)

"! E * z (rule 3)

"! E + E * z (rule 1)

"! E + y * z (rule 3)

"! x + y * z (rule 3)

To Parse the Language we need to go in

reverse of generating the grammar

Maria Hybinette, UGA 5

Now – How YACC Parses.

E ! E + E (rule 1)

E ! E * E (rule 2)

E !id (rule 3)

!! To parse the expression we go in reverse, reduce an expression to a single non

terminal, We do this by shift-reduce parsing and use a stack for storing the terms

 1) . x + y * z !shift (terms on stack are on the left of dot)!

 2) x . + y * z !reduce (rule 3)!

 3) E . + y * z !shift!

 4) E + . y * z !shift!

 5) E + y. * z ! !reduce (rule 3)!

 6) E + E. * z ! !shift!

 7) E + E * . z !shift!

 8) E + E * z . !reduce (rule 3) emit multiply!

 9) E + E * E . !reduce (rule 2) emit add!

 10) E + E . ! !reduce (rule 1)!

 11) E . ! !Accept!

!! When we have a match on the stack to one of right hand side of

productions replace the match with the left hand side of token
Maria Hybinette, UGA 6

A Conflict at Step 6 (Ambiguity)

E ! E + E (rule 1)

E ! E * E (rule 2)

E !id

 (rule 3)

!! To parse the expression we go in reverse, reduce an expression to a single non
terminal, We do this by shift-reduce parsing and use a stack for storing terms

 1) . x + y * z !shift (stack on left of dot)!

 2) x . + y * z !reduce (rule 3)!

 3) E . + y * z !shift!

 4) E + . y * z !shift!

 5) E + y. * z ! !reduce (rule 3)!

 6) E + E. * z ! !shift (here it is choice – reduce ‘E+E’ or shift)!

 7) E + E * . z !shift!

 8) E + E * z . !reduce (rule 3) emit multiply!

 9) E + E * E . !reduce (rule 2) emit add!

 10) E + E . ! !reduce (rule 1)!

 11) E . ! !Accept!

!! “shift reduce” conflict at step 6 ambiguous grammar

Maria Hybinette, UGA 7

Ambiguity means the parser can’t decide what to

do:

!! Shift-Reduce Conflict:

»!Can’t decide whether to shift or reduce a handle to a

non-terminal

!! Reduce-Reduce Conflict:

»!Can’t decide whether to reduce to on or more non-

terminal.

E ! T

E ! id

T ! id

»! Either reduces to E or to T

Ambiguity

Maria Hybinette, UGA 8

Ambiguity

!! This choice means we can’t construct a

unique parse tree for any string.

!! But what if we could direct the parser to

always prefer one choice over the other.

»! Then

–! The parse tree would always be unique

–! The grammar might even be smaller

»!How to resolve?

–! Rewriting the grammar OR

–! Indicate which operator has precedence (YACC

enables this with the precedence definition)

Maria Hybinette, UGA 9

Ambiguity: What Does YACC Do?

!! Conflict Resolution Defaults:

»! For shift-reduce conflicts YACC will always shift.

»! For reduce-reduce conflict YACC selects the first

rule.

Maria Hybinette, UGA 10

!! Reflecting where we are… and what we have

done so far…

!! Jflap

Maria Hybinette, UGA 11

Big Picture: Compilation Process

Code Generator

Intermediate

Code Generator

Semantic

Analyzer

Scanner

Lexical

Analyzer

Parser

Syntax

Analyzer

Computer

Symbol

Table

Lexical units, token stream

Parse trees

Abstract syntax tree or

 other intermediate form

Machine Language

Optimizer

(optional)

Source program

Maria Hybinette, UGA 12

Big Picture: Compilation Process

Code Generator

Scanner

Lexical

Analyzer

Parser

Syntax

Analyzer

Computer

Lexical units, token stream

Parse tree

Machine Language

Source program

Maria Hybinette, UGA 13

Big Picture: Compilation Process

Code Generator

Scanner

Lexical

Analyzer

Parser

Syntax

Analyzer

Computer

Lexical units, token stream

Parse tree

Machine/Assembly Language

Source program a = b + c * d

id1 = id2 + id3 * id4

=

*

+
id1

id4

id2

id3

load id3

mul id4

add id2
store id1

Maria Hybinette, UGA 14

Syntax: Regular Expressions
(Tokens) & Context Free Grammars

!! Tokens: Described by regular expressions

»! First phase of compilation process converts strings/lexemes of
the programming language to tokens (a representation of the
lexeme in the computer)

–! Example: letter (letter | digit) *

»! Can be generated from just three rules/operations:

–! Concatenation

–! Repetition (arbitrary number of times - Kleene closure)

–! Alternation (Choice from a finite set)

!! Context Free Language

»!Generated from 4 operations:

–! Concatenation

–! Repetition (arbitrary number of times - Kleene closure)

–! Alternation (Choice from a finite set)

–! Recursion

Maria Hybinette, UGA 15

Definition of Languages

!! Recognizers

»!Reads input string and accepts or rejects if the
string is in the language

»! Example: Parsers -- the syntax analyzer of a

compiler (yacc- yet another compiler compiler)

!! Generators

»!Generate sentences of a language

»! Example: Grammars are language generators

Maria Hybinette, UGA 16

Parse Trees

!! Grammars describes ‘hierarchical syntactic structures’

so these can be “represented” by parse trees (e.g., a

parser generates parse trees).

!! Idea:

»! To build a parse tree, put the start symbol at the root

»! Add children to every non-terminal, following any one of

the productions for that non-terminal in the grammar

»! Done when all the leaves are tokens

»! Read off leaves from left to right—that is the string

derived by the tree

Maria Hybinette, UGA 17

Example

!! Generated String: slope * x + intercept

 <expr> ==> <expr> <op> <expr>!

! !==> <expr> <op> id!

! !==> <expr> + id!

! !==> <expr> <op> <expr> + id!

! !==> <expr> <op> id + id!

! !==> <expr> * id + id!

! !==> id * id + id!

 (slope) (x) (intercept)!

Grammar:

<expr> ::= id | <number> | <expr> <op> <expr> | (<expr>)

<op> ::= + | - | * | /

Derivation and Sentenial form

Maria Hybinette, UGA 18

Example

<expr> ==> <expr> <op> <expr>!

! !==> <expr> <op> id!

! !==> <expr> + id!

! !==> <expr> <op> <expr> + id!

! !==> <expr> <op> id + id!

! !==> <expr> * id + id!

! !==> id * id + id!

<expr> ==> <expr> <op> <expr>!

! !==> <expr> * <expr>!

! !==> id * <expr>!

! !==> id * <expr> <op> <expr>!

! !==> id * <expr> + <expr>!

! !==> id * id + id!

! !!

Grammar:

<expr> ::= id | <number> | <expr> <op> <expr> | (<expr>)

<op> ::= + | - | * | /

Maria Hybinette, UGA 19

Ambiguity

!! The fact that some strings are the yield of

more than one parse tree tells us that the
grammar is ambiguous.

!! Compiler often base the semantic on a

phrase’s parse tree

»!More than one tree - cannot determine the meaning

–! Unless there are some additional non-grammatical

information

!! Can include it in the grammar to facilitate the

compiler to evaluate from the parse tree

!! Precedence and associatively can be defined

outside the grammar.

Maria Hybinette, UGA 20

Unambiguous Expression
Grammar

!! If we use the parse tree to indicate precedence

levels of operators we cannot have ambiguity

<expr> ::= <expr> <op> <expr> | const

<op> ::= / | -

<expr> ::= <expr> - <term> | <term>

<term> ::= <term> / const | const

Hint: Higher precedence

operators are lower in

tree, here “/” has

higher precedence than

“-”

Lower = so division has higher

precedence

Maria Hybinette, UGA 21

Associativity

!! Operator associativity can also be indicated by a grammar

!! Left Associative: 9+5+2 is equivalent to (9 + 5) + 2

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

Note first addition is

lower

Lower = so this + has higher precedence

Maria Hybinette, UGA 22

2 Major Classes of Parsers

!! LL - Left to right, left-most (discovers left most

derivations – top down). Predictive parser.

»!Works down the tree: left-right, predicting expanding nodes

and tracking left most derivations.

!! LR – (YACC) Left to right, right-most (discovers right

most derivations). Bottom up parsers (e.g., Yacc -
our focus).

»!Notice a left is an ID next is a “,” and then another ID. So it

shifts until it can ‘reduce’. Which doesn’t happen until it

sees a ‘;’.

!! HW: See textbook (p. 63) for example on how these

differ. <id-list> ::= id <id-list-tail>

<id-list-tail> ::= , id <id-list-tail>

<id-list-tail> ::= ;

A,B,C;

Maria Hybinette, UGA 23

!! Programming languages require precise

definitions (i.e., no ambiguity)

»! Language form (Syntax)

»! Language meaning (Semantics)

!! Consequently, PLs are specified using formal

notation:

»! Formal syntax

–! Tokens

–! Grammar

»! Formal semantics

–! Static Semantics - Attribute Grammars (Compile Time)

–! Dynamic Semantics (Run Time)

Maria Hybinette, UGA 24

Static vs. Dynamic properties

!! Static properties

»! any property that may be determined through analysis of
program text

–! e.g., for some languages, the type of a program may be
determined entirely through analysis of program source

!! e.g., ML, Java, & Pascal have “static type inference”

!! Dynamic properties

»! any property that may only be discovered through
execution of the program

–! e.g., “the final result of program p is 42” – may not be
discovered without some form of execution

!! Compilation involves forms of “static analysis”

»! e.g., type checking, the definition and use of variables,
information of data and control flow and much more.

Maria Hybinette, UGA 25

Why Attribute Grammar?

!! Semantic Analyzer: Analyses the “meaning”

to Syntax.

!! Enables type compatibility checks (e.g., float

= int OK, int = float not OK) would require too

many rules

!! Enables Checking Declaring all variables

before they are referenced can’t be specified

in BNF

Who?: Donald Knuth (father of the analysis of

computer algorithms) designed Attribute
Grammars to describe both syntax & static

semantics (compile time)
Maria Hybinette, UGA 26

What is an Attribute Grammar?

!! Attribute Grammar = Context Free Grammar
plus (+):

»!Attributes (values assigned to grammar symbols)

»!Attribute computation functions (how to compute

attribute values)

»! Predicate functions (static semantic rules)

Maria Hybinette, UGA 27

How ?

!! Embellishes (decorates) the Context Free

Grammar (Syntax) Tree, the parse tree:

»!Annotates a simplified version (Abstract Syntax

Tree) of the Syntax Tree (Concrete Syntax Tree).

–! Add values and semantics rules to grammar

productions

–! Variable declared before they are declared

–! Type checking.

1. ! During Parsing Create Tree

2. ! Simplify Tree –and create Abstract Syntax Tree (AST)

3. ! Annotate the AST

Maria Hybinette, UGA 28

Abstract Syntax Tree (AST) -
Review

!! Derivation = sequence of

applied productions

»! S # E+S # 1+S # 1+E #1+2

!! Parse tree = graph

representation of a

derivation

»! Doesn’t capture the order of

applying the productions

!! AST discards unnecessary

information from the parse

tree

+

+ 5

1 +

2 +

3 4

S

E + S

(S) E

E + S 5

E + S 1

2 E

(S)

E + S

E 3 4

Maria Hybinette, UGA 29

Simple Example: Abstract
Syntax Tree

:=

Id +

* Id

Const Id

For “Y := 3 * X + I”

* such a tree could be produced by a compiler’s “front end”
Maria Hybinette, UGA 30

ASTs with “Attributes”

:=

Id +

* Id

Const Id

Attribute grammars are CFGs with extra information

 (a.k.a., “attributes”) stored at the nodes

* red data are “initial attributes” in the lingo.

:=

Id(Y) +

* Id(I)

Const(3) Id(X)

Maria Hybinette, UGA 31

Attribute Grammars and Static
Type checking

Assume: we know Y, I, and X are variables of type float

Question: is the following a legal program?

:=

Id(Y) +

* Id(I)

Const(3) Id(X)

Maria Hybinette, UGA 32

Attribute grammars and static
checking

Assume: we know Y, I, and X are variables of type float

Question: is the following a legal program?

:=

Id(Y) +

* Id(I)

Const(3) Id(X)

Answer: it depends on the language

 definition

•! ML, Java, etc: no implicit coercion

•! C, Basic, Scheme would allow

Maria Hybinette, UGA 33

Attribute grammars and static
checking

First Case (Java, ML): it’s illegal

:=

Id(Y) +

* Id(I)

Const(3) Id(X)

integer float

float

float

:=

Id(Y) +

* Id(I)

Const(3) Id(X)

integer float

no attribute

can be

calculated for

this node!

Maria Hybinette, UGA 34

Attribute grammars and static
checking

Second Case (C, Scheme): implicitly coerce the constant so

that it makes sense; calculate the types of the intermediate

 expressions

:=

Id(Y) +

* Id(I)

Const(3) Id(X)

integer float

float

float

:=

Id(Y) +

* Id(I)

Const(3.0) Id(X)

float float

float float

Maria Hybinette, UGA 35

Attribute grammars and static
checking

:=

Id(Y) +

* Id(I)

Const(3.0) Id(X)

float float

float float “synthesized attributes”

“initial attributes”

Maria Hybinette, UGA 36

Attribute Flow
Example (Text Book p. 169)

!! The figure shows the
result of annotating the
parse tree for (1+3)*2

!! Each symbols has at most one
attribute shown in the
corresponding box

»! Numerical value in this
example

»! Operator symbols have no
value

!! Arrows represent the
attribute flow

Maria Hybinette, UGA 37

Copy Rules & Semantics Functions

Maria Hybinette, UGA 38

Attribute Flow
Synthetic and Inherited Attributes

!! In the previous example, semantic

information is pass up the parse tree

»!We call this type of attributes are called synthetic

attributes

»!Attribute grammar with synthetic attributes only are

said to be S-attributed

!! Semantic information can also be passed

down the parse tree

»!Using inherited attributes

»!Attribute grammar with inherited attributes only are

said to be non-S-attributed

Maria Hybinette, UGA 39

HW: Reading

!! Chapters 1,2

»!Derivations of Parse Trees

»!Difference between Top DOWN and Bottom UP

Parsing

!! Sections: 4.1-4.4

»! Semantic Analysis

–! Dynamic, Static Checks

–! Attribute Grammar

–! Evaluating Attribute

!! Synthesized

!! Inherited

!! Attribute Flow

