
Maria Hybinette, UGA 1

CSCI: 4500/6500 Programming
Languages

Functional Programming Languages

Part 1: Introduction

Thanks again to Profs David Evan’s, University Virginia and Prof. Sebesta, author of our other book

Maria Hybinette, UGA 2

Review: Language Perspectives

!! Imperative: Mode of computation - a variable
(state)

»! Von Neumann Machines

–! modify variables in memory

»! Turing machines - imperative - changes values in
cells (variables) on tape

!! Functional: Mode of computation - a function

»! Lambda calculus

»! apply a function (a program) to transform its
input (parameters) to output (result)

!! Relational: Mode of computation - constraints

»! programmer writes set of axioms that allow the
computer to discover a constructive proof for a
particular set of inputs

Memory

Processor Input Output

Program (a function) Input Output

Maria Hybinette, UGA 3

Functional Programming

!! Do everything by using functions and
evaluate them

»!Great advantages:

–! no side effects

–! no mutable state

!! Based on “mathematical functions”

»!Historically from Church’s model of computation

called the lambda calculus (! - calculus)

–! Study of function application and recursion

!! Example Languages: LISP, Scheme, FP, ML,
Miranda and Haskell

Maria Hybinette, UGA 4

Functional programming: Focus

on Functions

!! First class objects:

»! can be created during execution

»! stored in data structures

»! can be used as parameters or inputs to other functions

»! can be returned

!! Higher order functions:

»! can take other functions as arguments

»! and/or return function as results

»!Basic building blocks of functional languages!

Maria Hybinette, UGA 5

History: LISP first functional
programming language

!! LISt Processing Language (McCarthy (MIT) 1959)

»! Processes data in lists

!! Two objects (originally)

»! atoms and lists

!! Lists are delimiting their items in parenthesis.

»! Simple list: (A B C D)

!! Functions and data are represented in the same form,
e.g.:

»! (A B C) as data is a simple list of 3 atoms: A, B and C

»! (A B C) as a function is interpreted as the function named
“A” applied to two parameters, B and C: (+ 4 5)

–! Cambridge Polish (parenthesized prefix notation)

Maria Hybinette, UGA 6

LISP

!! List forms parenthesized
collection of sub lists
and/or atoms:

!! Stored as a linked list
each node has two
pointers

»! First pointer to a
representation of the
element (e.g., symbol or
number) or another
sublist

»! Second pointer next
element of list

!! Example:

»! (A B C D)

»! (A (B C) D (E (F G)))

A D C B

D

B C

A

E

F G

Maria Hybinette, UGA 7

Variants of LISP

!! Pure (original Lisp)

»! purely functional no imperative features (e.g., assignment
statement)

»! dynamically scoped (as all early versions of LISP) more
on this later.

!! All other Lisp’s have some imperative features (e.g.,
variable, assignment)

!! COMMON Lisp

»! brought all LISPs under a common umbrella

–! HUGE, and very complicated, provides dynamic scope as an
option

!! Scheme a mid-1970s dialect of LISP designed to be
cleaner, more modern and simpler version than
dialects of Lisps

»! Statically scoped

Maria Hybinette, UGA 8

Scope: A Preview

!! Static scoping:

variables always refers

to its nearest enclosed
binding (between name

and object).

Lexiographic --

Compile time

!! Dynamic scoping:

binding depends on the

flow of control at run

time and the order

subroutines are called,
refers to the closest

active binding

a: integer // global

procedure first()
 {
 a = 1 // global or local?
 }
procedure second
 {
 a: integer // local
 first()
 }
a = 2
if read_integer() > 0
 second()
else
 first()
write_integer(a)

Static: prints 1 a is global scope
 of a is closest enclosed a, so
 for “first”’s a refers to global a

Dynamic: prints 1 or 2: if we go to second
 first, first’s a refers to second’s
 local a (closest active binding).

Maria Hybinette, UGA 9

Introduction to Scheme

!! Mid-1970s dialect to Lisp, designed to be

cleaner, more modern and simpler than
contemporary dialects of LIPS

!! Uses static scoping

!! Functions are first class entities

»!Can be values of expressions and elements of a list

»!Can be assigned variables and passed as

parameters

!! Have some imperative features (will not focus

on these)

Maria Hybinette, UGA 10

Scheme

!! Is a collection of function definitions and lots

of parenthesis.

»! primitive functions (a form of an expression)

–! +, - *

–! (+ 3 4)

–! ((+ 3 4)) -> error

!! Calls + with 3 and 4 as parameters, then call 7 as a 0
parameter function = a run time error

»!A simple expression could just be value

–! 5

–! 5 is evaluated to be “5”

Maria Hybinette, UGA 11

How do we create more complex
functions?

!! Lambda (!) expressions

»! (lambda (parameters) expression)

»! (lambda (x) (* x x)

–! is a nameless function that returns the square of its
parameters (nameless don’t need to use it again).

–! can be applied like normally containing a list that
contains the actual parameters

»! ((lambda (x) (* x x)) 7). Here x is called a bound
variables and does not change after being bound to
a parameter (we can bind a name to a lambda
expression too, by using define)

!! ((lambda (a b) (if (< a b) a b)) 5 6)

!! ((lambda (a b) (if (< a b) a b)) 6 5)

Maria Hybinette, UGA 12

Give an expression a name:
“define”

!! Binds name to a value

»! (define symbol expression)

»! (define pi 3.14159)

!! Binds a name to a Lambda (!)

»! expression is abbreviated (no word “lambda” is needed)

»! takes two lists as parameters

–! prototype of function

!! function name followed by formal parameters

–! one or more expressions to which name is to be bound

»! (define (function_name parameters) expression {expression})

»! Example:

–! (define (square number) (* number number))

–! (square 5)

!! displays 25

Maria Hybinette, UGA 13

Currying

!! Transforms a multiple argument function so that it can be called

as a chain of functions each with a single argument.

»! Example: Allows languages to reduce the function (+ 1 4) [plus-one] to one
argument. Pre apply +1 to the function and wait for the “4”

–! ++, -- (plus one with a single argument – “1” is removed as an argument.

»! (define curried-plus (lambda (a) (lambda (b) (+ a b))))

–! ((curried-plus 1) 4) ; chain here – one argument at a time.

–! (define plus-1 (curried-plus 1))

–! (plus-1 4)

»! Idea: If you “fix” some arguments you get reduce the function

arguments to only use the remaining arguments. Example:

–! yx and fix y = 2 then you get the function of one variable 2x.

!! What is it really? An incomplete application of arguments to a

function

turmeric coriander
garlic

chile pepper

Haskell Curry:
Combinatory Logic
(precursor of lambda
calculus). Combinator –
higher order function

Maria Hybinette, UGA 14

Examples: Currying

!! (define curried-plus (lambda (a) (lambda (b) (+ a b))))

!! (curried-plus 3) : adds 3 to an argument b (not given yet)

»! ((curried-plus 3) 4) => 7

!! (define plus-three (curried-plus 3))

»! (plus-three 4) => 7, (plus-three 5) => 8

!! General purpose “function” that curries its (binary) arguments:
»! (define curry (lambda (f) (lambda (a) (lambda (b) (f a b)))))

»! f can be defined as addition ‘+’ separately

–! (define curried-plus (curry +)) -> ((curried-plus 3) 4)
-> 7

–! (define curried-mult (curry *)) -> ((curried-mult 3) 4)
-> 12

Maria Hybinette, UGA 15

Currying

!! Rewriting a function with multiple parameters as a

composition of functions of one parameter

»! plus = f(a, b) = a + b f(3, 2) = 5 (not curried)

»! curried_plus = [f(b) => f(a) = a + b]

–! takes a single argument b and returns a function that takes

a single argument ‘b’ and returns the results a + b

–! plus_one = curried_plus(1), and now

!! plus_one(5) returns 6 and plus_one(2) returns 3

Maria Hybinette, UGA 16

Essential Scheme

Expression ::= (Expression Expression*)

Expression ::= (if Expression Expression
 Expression)

Expression ::= (define name Expression)

Expression := Primitive

Primitive := number

Primitive ::= + | - | * | / | < | > | =

Primitive := … (many other)

Grammar is simple, just

follow the replacement

rules. What does it all

mean?

Maria Hybinette, UGA 17

Scheme: Functional programming

In General – 2 things (Evaluate and Apply):

!! Evaluate the functions or the expressions then

!! Apply the value of the first expression (a function) to

the values of all the other expressions

Examples:

!! (+ 655 58), (* 5 7 8), (-24 (* 4 3))

What is going on, really?

Maria Hybinette, UGA 18

Evaluation: Expressions and Value

!! Expression has a value (almost always)

!! When an expression with a value is evaluated

its value is produced

!! How do we evaluate:

»! primitives

»! names

»! applications (expression)

Maria Hybinette, UGA 19

Evaluating: Primitives

!! Primitives are self evaluating

»! 2

2

»! #t

#t

»! +

#<primitive:+>

Maria Hybinette, UGA 20

Evaluating: Names

!! Evaluates to the value associated with the

name.

>(define two 2)

>two

2

Maria Hybinette, UGA 21

Evaluating Applications

Evaluate:

 all the sub expressions of the combination

!! Apply the value of the first sub expression to the

values of all the other sub expressions

»! (expression expression expression)

Maria Hybinette, UGA 22

Avoiding Evaluation

!! Anything inside parenthesis are function calls

(and therefore evaluated) unless quoted:

»!QUOTE - takes one parameter; returns the parameter

without evaluation, abbreviated ‘

»! e.g., '(A B) is equivalent to (QUOTE (A B))

!! ‘(a) returns a (it makes scheme think it is not

something of value).

!! (‘(a b c)) returns (a b c)

Maria Hybinette, UGA 23

Dealing with Lists

!! LISP - Lots of Insipid Silly Parenthesis

!! LISt Processing Language

!! Lets talk about how to make lists…

Maria Hybinette, UGA 24

CONS: CONStructs a pair

!! (cons 1 2)

»! (1 . 2)

!! Creates a dotted pair,
consisting of two atoms

!! A list

»! (1 . (2. nil)) -> (1 2)

!! CONS builds a list from two
parameters, the first is either
an atom or a list, the second
is usually a list.

»! (cons ‘1 ‘()) -> 1

1 2

1

2 NULL

Maria Hybinette, UGA 25

Splitting a Pair (car and cdr)

!! (car (cons 1 2)) -> 1

!! (cdr (cons 1 2)) -> 2

car extracts the first part of a pair

cdr extracts second part of a pair

1 2

Maria Hybinette, UGA 26

Why “car” and “cdr”?

!! Original (1950s) LISP on IBM 704

»! stored cons pairs in memory registers

»! car = “contents of the address part of register”

»! cdr = “contents of the decrement part of the

register (“could-er”)

!! Think of them as the first and the rest (or

head of list and tail of list)

»! (define first car)

»! (define rest cdr)

Maria Hybinette, UGA 27

More examples

!! car takes a list parameter; returns the first
element of that list

 e.g., (car '(A B C)) yields A

 (car '((A B) C D)) yields (A B)

!! cdr takes a list parameter; returns the list
after removing its first element

 e.g., (cdr '(A B C)) yields (B C)

 (cdr '((A B) C D)) yields (C D)

 (cdr ‘A) is an error

Maria Hybinette, UGA 28

Defining Threesomes

A triple is a pair where one of the pairs is a pair

(define (triple a b c) (cons a (cons b c)))

(define (triple-first t) (car t))

(define (triple-second t) (car (cdr t)))

(define (triple-third t) (cdr (cdr t)))

Maria Hybinette, UGA 29

Lists

!! List := (cons element list)

!! A list is a pair where the second part is a list,

»! ugh, how do we stop… this only allows infinitely long lists…

!! A list is either

»! a pair where the second pair is a list (cons Element List)

»! or, empty (null)

Maria Hybinette, UGA 30

Characteristics of “Pure”
Functional Languages

!! No side effects (e.g. no access to global

variables)

!! No assignment statements

!! Often no variables

!! Small concise framework

!! Simple uniform syntax

!! Recursive (that is how we get things done)

!! Interpreted

Maria Hybinette, UGA 31

Next Time

!! Tutorial on Scheme

