
Maria Hybinette, UGA 1

CSCI: 4500/6500 Programming
Languages

Functional Programming Languages
Part 3: Evaluation and Application Cycle

Lazy Evaluation

Maria Hybinette, UGA 2

LuisGuillermo.com

Maria Hybinette, UGA 3

Back to the Basics: Steps in
Inventing a Language

!! Design the grammar

»!What strings are in the language?

»!Use BNF to describe all the strings in the language

!! Make up the evaluation rules

»!Describe what everything the grammar can produce
means

!! Build an evaluator

»!A procedure that evaluates expressions in the
language

–! The evaluator, which determines the meaning of
expressions in the programming language, is just another
program.

Maria Hybinette, UGA 4

Programming an Evaluator

!! If a language is just a program, what language

should we program the language (evaluator)
in?

Maria Hybinette, UGA 5

Metacircular Evaluator

!! An evaluator that is written in the same

language that it evaluates is said to be
metacircular

!! One more requirement: The language

interpreted does not need additional definitions

of semantics other than that is defined for the
evaluator (sounds circular).

»! Example: The C compiler is written is C but not meta
circular because the compiler specifies extremely

detailed and precise semantics for each and every

construct that it interprets.

Sounds like recursion: It's circular recursion. There is no

termination condition. It's a chicken-and-the-egg kind of thing.

(There's actually a hidden termination condition: the

bootstrapping process.)

Maria Hybinette, UGA 6

Evaluation Basics

To evaluate a combination:

!! Evaluate each element (all the

subexpressions) of the combination

!! Apply the procedure to the value of the left-

most subexpression (the operator) to the

arguments that are the values of the other
subexpressions (the operands)

Observation: This is recursive

*

+

* 4 6

+ 3 5 7 2

Evaluation rule is applied on 4

combinations:!

(* (+ 2 (* 4 6))!

 (+ 3 5 7))!

24!

15!26!

390!

values of the
operands

percolate upward

Maria Hybinette, UGA 7

Example: Procedural Building
Blocks

(define (square x) (* x x))!

»! (square (+ 2 5)) ! 49!

(define (sum-of-squares x y) !; use square for!

(+ (square x) (square y)) !; x2 + y2!

»! (sum-of-squares 3 4) ! 25!

(define (f a)!

 (sum-of-squares (+ a 1) (* a 2)))!

»! (f 5) ! 136 !

!! square - is a compound procedure which is given the name square which is

represents the operation of multiplying something by itself.

!! Evaluating the definition creates the compound procedure and associates it

with the name square (lookup)

!! Application: To apply a compound procedure to arguments, evaluate the body

of the procedure with each formal parameter replaced by the ‘real’ arguments.

(substitution model -- an assignment model <-variable<-env)
Maria Hybinette, UGA 8

Environmental Model of
Evaluation

1.! To evaluate a combination (compound expression)

•! evaluate all the subexpressions and then

•! apply the value of the operator subexpression (first

expression) to the values of the operand subexpressions

(other expressions).

2.! To apply a procedure to a list of arguments,

•! evaluate the body of the procedure in a new environment

(by a frame) that binds the formal parameters of the

procedure to the arguments to which the procedure is

applied to.

procedure,

arguments
expression,

environment

Maria Hybinette, UGA 9

Core of the Evaluator

!! Basic cycle in which

»! expressions to be evaluated in environments are

»! reduced to procedures to be applied to arguments,

!! Which in turn are reduced to new expressions

»! to be evaluated in new environments, and so on,

»! until we get down to

–! symbols, whose values are looked up in the environment

–! primitive procedures, which are applied directly.

procedure,

arguments
expression,

environment

Maria Hybinette, UGA 10

The evaluator - metacircularity
(eval expression environment)

!! Evaluates the the expression relative to the environment

»! Examples: environments (returns a specifies for the environment)

–! scheme-report-environment version

–! null-environment version

!! Primitives:

»! self-evaluating expressions, such as numbers, eval returns the
expression itself

»! variables, looks up variables in the environment

!! Some special forms (lambda, if, define etc). eval provide direct
implementation:

»! Example: quoted: returns expression that was quoted

!! Others lists:

»! eval calls itself recursively on each element and then calls apply,
passing as argument the value of the first element (which must be a
function) and a list of the remaining elements. Finally, eval returns what
apply returned

Maria Hybinette, UGA 11

Eval

(define (eval exp env)!

 (cond ((self-evaluating? exp) exp)!

 ((variable? exp) (lookup-variable-value exp env))!

 ((quoted? exp) (text-of-quotation exp))!

 ((assignment? exp) (eval-assignment exp env))!

 ((definition? exp) (eval-definition exp env))!

 ((if? exp) (eval-if exp env))!

 ((lambda? exp)!

 (make-procedure (lambda-parameters exp)!

 (lambda-body exp)!

 env))!

 ((begin? exp) !

 (eval-sequence (begin-actions exp) env))!

 ((cond? exp) (eval (cond->if exp) env))!

 ((application? exp)!

 (apply (eval (operator exp) env)!

 (list-of-values (operands exp) env)))!

 (else!

 (error "Unknown expression type - EVAL" exp)))

Maria Hybinette, UGA 12

Eval: Example

(eval ‘(* 7 3) (scheme-report-environment 5)) !

!!=> 21!

(eval (cons '* (list 7 3)) (scheme-report-environment 5)) !

!!=> 21!

Current Scheme doesn’t recognize ‘scheme-report-environment’

Maria Hybinette, UGA 13

apply

!! apply applies its first argument (a function) and applies it to its
second argument (a list)

(apply max '(3 7 2 9)) => 9

!! Primitive function, apply invokes it.

!! Non-primitive function (f),

»! Retrieves the referencing environment in which the
function’s lambda expression was originally evaluated and
adds the names of the function’s parameters (the list) (call
this resulting environment (e))

»! Retrieves the list of expressions that make up the body of f.

»! Passes the body’s expression together with e one at a time
to eval. Finally, apply returns what the eval of the last
expression in the body of f returned.

Maria Hybinette, UGA 14

Apply

(define (apply procedure arguments)!

 (cond ((primitive-procedure? procedure)!

 (apply-primitive-procedure procedure arguments))!

 ((compound-procedure? procedure)!

 (eval-sequence!

 (procedure-body procedure)!

 (extend-environment!

 (procedure-parameters procedure)!

 arguments!

 (procedure-environment procedure))))!

 (else!

 (error!

 "Unknown procedure type - APPLY" procedure))))!

Maria Hybinette, UGA 15

Example: Evaluating (cadr p)

!! (define cadr (lambda (x) (car (cdr x))))

!! Stored Internally as three element list C: (E (x) (car (cdr (x))))
–! surrounding referencing environment (global)

–! list of parameters (x)

–! list of body expressions (one element: (car (cdr x)))

!! Suppose: p is defined to be a list: (define p ‘(a b))

»! (cadr p) => b

!! Evaluating (cadr p) scheme interpreter executes:

»! (eval ‘(cadr p) (scheme-report-environment 5))

–! Note: assumes p is defined in scheme-report-environment 5

1.! Evaluate the car of it’s car of the first argument,

»! cadr via a recursive call returns function c to which cadr is bound,
represented internally as a three element list C.

2.! Eval calls itself recursively on ‘p’ returning (a, b)

3.! Execute (apply c ‘(a b)) and return results

Maria Hybinette, UGA 16

Example: Evaluating (cadr p)

!! (define cadr (lambda (x) (car (cdr x))))

!! Suppose: p is defined to be a list: (define p ‘(a b))

!! Evaluating (cadr p) scheme interpreter executes:

1.! (eval ‘(cadr p) (scheme-report-environment 5))

–! Note: assumes p is defined in scheme-report-environment 5

2.! Evaluate the car of it’s car of the first argument,

»! cadr via a recursive call returns function c to which cadr is bound,
represented internally as a three element list C.

3.! Eval calls itself recursively on ‘p’ returning (a, b)

4.! Execute (apply c ‘(a b)) and return results

5.! Apply then notice the internal list representation cadr, C.

 (E (x) (car (cdr (x)))) and then apply would execute:

6.! (eval ‘(car (cdr (x))) (cons (cons ‘x ‘(a b)) E)) and return the results

Maria Hybinette, UGA 17

Summary of Scheme

!! The core of a Scheme evaluator is eval and

apply, procedures that are defined in terms
of each other.

»! The eval procedure takes an expression and an

environment and evaluates to the value of the
expression in the environment;

»! The apply procedure takes a procedure and its

operands and evaluates to the value of applying the

procedure to its operands.

Maria Hybinette, UGA 18

Evaluation Order

!! Scheme uses applicative order evaluation (as
most imperative languages, sometimes called
eager or aggressive evaluation)

»! Evaluate function arguments before passing them
to functions

Maria Hybinette, UGA 19

Example

!! (define double (lambda (x) (+ x x)))

!! Eager evaluation of (double (* 3 4))

!! (double 12)

!! (+ 12 12)

!! 24

Maria Hybinette, UGA 20

Evaluation Order

!! Scheme uses applicative order evaluation (as
most imperative languages, sometimes called
eager or aggressive evaluation)

»! Evaluate function arguments before passing them
to functions

!! We can change the evaluator to evaluate
applications “lazily” instead, by only
evaluating the value of an operand when it is
needed (also called normal order evaluation,
call by need).

»!Miranda & Haskell evaluates lazily by default, call-
by-name in imperative languages is a form of lazy
evaluation.

Maria Hybinette, UGA 21

Lazy Evaluation

!! Don’t evaluate expressions until their value is

really needed.

»!We might save work this way…

»!We might change the meaning of some

expressions, since the order of evaluation matters

Maria Hybinette, UGA 22

Check: Is being Lazy any Good?

!! (define double (lambda (x) (+ x x)))

!! Eager evaluation of (double (* 3 4))

!! (double 12)

!! (+ 12 12)

!! 24

•! Lazy evaluation (double (* 3 4)) – delays computations

!! (+ (* 3 4) (* 3 4))

!! (+ 12 (* 3 4))

!! (+ 12 12)

!! 24

!! QED (Quod Erat Demonstrandum): Proof that lazy is
bad!

!! Causes us to evaluate (* 3 4) twice!

Maria Hybinette, UGA 23

Is lazy ever good!

(define switch (lambda (x a b c)

(cond

((< x 0) a)

((= x 0) b)

((> x 0) c))))

Eager evaluation of (switch -1 (+ 1 2) (+2 3) (+ 3 4))

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))

!! (switch -1 3 (+ 2 3) (+ 3 4))

!! (switch -1 3 5 (+ 3 4))

!! (switch -1 3 5 7)

!! (cond

 ((< -1 0) 3)

 ((= -1 0) 5)

 ((> -1 0) 7))

 (cond (#t 3)

 ((= -1 0) 5)

 ((> -1 0) 7))

!! 3

Maria Hybinette, UGA 24

Is lazy ever good!

(define switch (lambda (x a b c)

(cond

((< x 0) a)

((= x 0) b)

((> x 0) c))))

Lazy evaluation of (switch -1 (+ 1 2) (+2 3) (+ 3 4))

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))

!! (cond

 ((< -1 0) (+ 1 2))

 ((= -1 0) (+ 2 3))

 ((> -1 0) (+ 3 4)))

!! ((#t (+ 1 2))

 ((= -1 0) (+ 2 3))

 ((> -1 0) (+ 3 4)))

!! (+ 1 2)

!! 3

Lazy evaluation avoids evaluating both (+2 3) and (+ 3 4)

Maria Hybinette, UGA 25

 lazy is good!

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))

!! (switch -1 3 (+ 2 3) (+ 3 4))

!! (switch -1 3 5 (+ 3 4))

!! (switch -1 3 5 7)

!! (cond

 ((< -1 0) 3)

 ((= -1 0) 5)

 ((> -1 0) 7))

!! (cond (#t 3)

 ((= -1 0) 5)

 ((> -1 0) 7))

!! 3

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))

!! (cond

 ((< -1 0) (+ 1 2))

 ((= -1 0) (+ 2 3))

 ((> -1 0) (+ 3 4)))

!! ((#t (+ 1 2))

 ((= -1 0) (+ 2 3))

 ((> -1 0) (+ 3 4)))

!! (+ 1 2)

!! 3

Maria Hybinette, UGA 26

Check Scheme

!! Secret is out: Scheme does use lazy

evaluation for cond

»! and special forms (aka macros)

!! Functions use eager evaluation for functions

defined with lambda

Maria Hybinette, UGA 27

Evaluation Order

!! We can also change the evaluator to evaluate
applications “lazily” instead, by only
evaluating the value of an operand when it is
needed (also called normal order evaluation,
call by need).

»! In Scheme these can be done with the operator
“delay”.

Maria Hybinette, UGA 28

Evaluation Order?

!! First Review: What does Scheme return
below?

 (define (try a a-expression)!
 !(if (= a 0) 1 a-expression)) !

!(define y 4)!

!(define x 0)!

! (try y (/ 1 y)) ; inverse!

 (try x (/ 1 x)) !

Maria Hybinette, UGA 29

; try with 2 arguments!

(define (try a a-expression) ; (try a (a-expression)) => evaluates!

 (if (= a 0) 1 a-expression)) ; inner expression first : problem if a = 0 even with if

test.!

(define y 4) ; (try y (/ 1 y))!

(define x 0) ; (try x (/ 1 x))!

; impact evaluation order by using lazy evaluation 'delay' in scheme!

(define (delay-inverse x) (delay (/ 1 x))) ; (try x (delay-inverse 0))!

(define (aggressive-inverse x) (/ 1 x)) ; (try x (aggressive-inverse 0))!

(define double (lambda (x) (+ x x)))!

Maria Hybinette, UGA 30

Evaluation of Argument
Summary

!! Applicative Order (“eager evaluation”)

»! Evaluate all subexpressions before apply

»! The standard Scheme rule, Java

!! Normal Order (“lazy evaluation”)

»! Evaluate arguments just before the value is needed

»!Algol60 (sort of), Haskell, Miranda

“Normal” Scheme order is not “Normal Order”!

Maria Hybinette, UGA 31

Strict and Non-Strict Languages

!!A strict language requires all

arguments to be well-defined, so

applicative (eager) order can be used

!!A non-strict language does not require

all arguments to be well-defined; it

requires normal-order (lazy) evaluation

Maria Hybinette, UGA 32

Comparing Functional and
Imperative Languages

!! Imperative Languages:

»! Efficient execution

»! Complex semantics

»! Complex syntax

»! Concurrency is programmer designed

!! Functional Languages:

»! Simple semantics

»! Simple syntax

»! Inefficient execution

»! Programs can automatically be made concurrent

Maria Hybinette, UGA 33

Functional Programming in
Perspective (pros)

!! Advantages of functional languages

»! lack of side effects makes programs easier to
understand

»! lack of explicit evaluation order (in some

languages) offers possibility of parallel evaluation

(e.g. MultiLisp)

»! lack of side effects and explicit evaluation order

simplifies some things for a compiler (provided you
don't blow it in other ways)

»! programs are often surprisingly short

»! language can be extremely small and yet powerful

Maria Hybinette, UGA 34

Functional Programming in
Perspective (cons)

!! Advantages of functional languages

»! difficult (but not impossible!) to implement efficiently on
von Neumann machines

–! lots of copying of data through parameters

–! (apparent) need to create a whole new array in order to

change one element

–! heavy use of pointers (space/time and locality problem)

–! frequent procedure calls

–! heavy space use for recursion

–! requires garbage collection

–! requires a different mode of thinking by the programmer

–! difficult to integrate I/O into purely functional model

