
Maria Hybinette, UGA 1

CSCI: 4500/6500 Programming
Languages

Functional Programming Languages
Part 4: Standard Meta Language (SML) & Haskell

Maria Hybinette, UGA 2

Standard ML

!! ML - historically stands for Meta Language. ML
was a meta language for expressing and
manipulating logical proofs.

!! General purpose, modular functional programming
language developed a team in the 1970s at the
University of Edinburgh, headed by Robin Milner
(polymorphism paper in reading list).

»! Polymorphism – one behavior for different types

»! First language to include “polymorphic type
inference” (functions with multiple different types –
different input parameters) together with a type-safe
exception handling mechanism.

Maria Hybinette, UGA 3

Preview: Polymorphism

!! One behavior (e.g., a function definition) for multiple

different types (e.g., a function handles different types of input

parameters).

!! Ad-Hoc Polymorphism: range of actual types is finite and the
combinations must be specified individually prior to use so
multiple definitions (overloading, coercision) -> compiler
calls the right definition!

!! Parametric Polymorphism (first type of polymorphism to appear

in an actual programming language – ML in 1976)!

»! NO explicit type definition (e.g., the append function of a list)!

»! Used transparently with any number of types!

»! Generic Programming (arguably): Only one definition (e.g.,
templates, macro, note instantiation is laziness, “not
evaluated until needed” characteristics)!

!! Suptyping Polymorphism (inheritance) – classes related by
supertype.! Maria Hybinette, UGA 4

Polymorphism

!! Universal polymorphism : Allows writing code that works with
different types

!! Ad-hoc polymorphism : Selecting the right implementation

code to be executed

Polymorphism

Universal

Ad hoc

Parametric (e.g., C
++ templates)

Inclusion(subtyping)

Overloading/Overriding (e.g., C
++, Java)

Coercion (automatic -multi-method,
single dispatch)

Maria Hybinette, UGA 5

Standard ML

!! Uses type declarations, but also does type inferencing to
determine the types of undeclared variables

»! type of all variables can be determined at compile time.

»! function Foo(a b) = a + b

!! Static-scoped

!! Syntax is closer to Pascal than to LISP

»! e.g., infix arithmetic expressions instead of Cambridge postfix

!! Restrictions on how data types are intermixed (more later):

»! Example: integer division may not be used on strings

»! ML is strongly typed (whereas Scheme is essentially typeless)
and has no type coercions (talk more about this later in the
Semester)

!! Includes exception handling

!! Module facility for implementing abstract data types.

!! Permits side-effect (therefore an impure functional language)

Maria Hybinette, UGA 6

Standard ML (cont)

!! Standard ML is a domain-specific language

that is appropriate for building compilers

!! Support for

»!Complex data structures (abstract syntax, compiler

intermediate forms)

»!Memory management like Java

»! Large projects with many modules

»!Advanced type system for error detection

Maria Hybinette, UGA 7

Learn more details

!! Today we will cover the basics so you can get started.

!! Resources:

»! Robert Harper’s (pdf book)

–! http://www.cs.cmu.edu/~rwh/smlbook/online.pdf

»! Peter Lee’s:

–! http://www.cs.cmu.edu/afs/cs/local/sml/common/smlguide/smlnj.htm

»! SML/NJ Literature:

–! http://www.smlnj.org/doc/literature.html#tutorials

–! Runs on Microsoft Windows, MacOS X (yay!), UNIX,

»! Short & concise tutorial (not available)

–! http://cs.wwc.edu/Environment/SML-Tutorial.html

Maria Hybinette, UGA 8

Installation

Distribution (SML of New Jersey):

!! http://www.smlnj.org/dist/working/110.69/index.html

!! Developed at Bell laboratories and Princeton University

!! Installation (straight forward): Set your PATH variable where
you install it.

»! Forgot?

–! find / -name sml –print!

–! /usr/local/smlnj-110.69/bin/sml # default on a MAC!

–! export PATH=$PATH:/usr/local/smlnj-110.69/bin!

–! setenv PATH $PATH:/usr/local/smlnj-110.69/bin!

!! Run:

{saffron:ingrid:219} sml

Standard ML of New Jersey v110.69 [built: Tue Feb
3 22:24:07 2009]

-

Maria Hybinette, UGA 9

ML

Interactive

!! Type in expressions

!! Evaluate and print type and result

!! End with ;

!! Exit (enter end of file)

Compileable

Maria Hybinette, UGA 10

Hello word! in SML

- print("Hello world!\n");

Hello world

val it = () : unit

-

“it” is the default name of the

expression.

Maria Hybinette, UGA 11

Preliminaries

!! Read – Eval – Print – Loop:

- 3+2;

Maria Hybinette, UGA 12

Preliminaries

!! Read – Eval – Print – Loop:

- 3+2;

val it = 5 : int

Maria Hybinette, UGA 13

Preliminaries

!! Read – Eval – Print – Loop:

- 3+2;

val it = 5 : int

- it + 7 ;

Maria Hybinette, UGA 14

Preliminaries

!! Read – Eval – Print – Loop:

- 3+2;

val it = 5 : int

- it + 7 ;

val it = 12 : int

Maria Hybinette, UGA 15

Preliminaries

!! Read – Eval – Print – Loop:

- 3+2;

val it = 5 : int

- it + 7 ;

val it = 12 : int

- it - 3 ;

Maria Hybinette, UGA 16

Preliminaries

!! Read – Eval – Print – Loop:

- 3+2;

val it = 5 : int

- it + 7 ;

val it = 12 : int

- it - 3 ;

val it = 9 : int

Maria Hybinette, UGA 17

Preliminaries

!! Read – Eval – Print – Loop:

- 3+2;

val it = 5 : int

- it + 7 ;

val it = 12 : int

- it - 3 ;

val it = 9 : int

- 4 + true

Maria Hybinette, UGA 18

Preliminaries

!! Read – Eval – Print – Loop:

- 3+2;

val it = 5 : int

- it + 7 ;

val it = 12 : int

- it - 3 ;

val it = 9 : int

- 4 + true

= ;

stdIn:14.1-14.9 Error: operator and operand don't
agree [literal]

 operator domain: int * int

 operand: int * bool

 in expression:

 4 + true

Maria Hybinette, UGA 19

!! Copy and paste the following text into a

Standard ML window:

2+2; (* note semicolon at end*)

3*4;

4/3; (* an error! *)

6 div 2; (* integer division *)

7 div 3;

Maria Hybinette, UGA 20

- 4/3 ;

stdIn:20.1-20.4 Error: operator and operand

don't agree [literal]

 operator domain: real * real

 operand: int * int

 in expression:

 4 / 3

- 4.0 / 3.0 ;

val it = 1.33333333333 : real

Maria Hybinette, UGA 21

List functions

!! [1,2,3,4];

-val it : [1,2,3,4] : int list

!! val myList = [1,2,3,4];

-val myList : [1,2,3,4] : int list

!! 0 :: [1,2, 3];

-val it = [0,1,2,3] : int list - 213 :: 0 :: [1,2, 3];val it

= [213,0,1,2,3] : int list

Maria Hybinette, UGA 22

!! Includes lists and list operations

!! The val statement binds a name to a value

(similar to DEFINE in Scheme)

!! Function declaration form:

 fun function_name (formal_parameters) =

 function_body_expression;

 e.g.,

 fun cube(x : int) = x * x * x ;

 fun square(x: int) : int = x * x ;

Maria Hybinette, UGA 23

Haskell

!! Similar to ML (syntax, static scoped, strongly

typed, type inferencing)

!! Different from ML (and most other functional

languages) in that it is purely functional (e.g.,

no variables, no assignment statements, and
no side effects of any kind)

Maria Hybinette, UGA 24

Haskell

!! Most Important features

»!Uses lazy evaluation (evaluate no subexpression
until the value is needed)

»!Has list comprehensions, which allow it to deal with

infinite lists

Maria Hybinette, UGA 25

Our First Program

!! ghci

!! “Hello World “

!! putStrLn "Hello World”

Compile:

 ghc -o hello hello.hs

 ./hello

Maria Hybinette, UGA 26

Function Definition

»! let fac n = if n == 0 then 1 else n * fac

(n-1)

!! fac 10

Maria Hybinette, UGA 27

Haskell

!! Next project: you can choose Haskell or SML.

!! For Haskell you are expected to use the

Glasgow compiler (co-dependencies – perl,
gcc) -> compiles like C (ghc –o main main.hs)

!! Other compilers: Glasgow (Glorious), Helium,

Hugs, Omega (is strict).

Maria Hybinette, UGA 28

Concurrent Haskell

!! ghc spare --make -threaded

!! Enable threads:

»! time ./primes-test +RTS -N2

!! Run Example Program in threaded and

unthreaded mode

»! “True Parellelism”

»!Running threads in parallel & multiple processors

–! Pitfalls?

Maria Hybinette, UGA 29

Applications of Functional
Languages

!! APL is used for throw-away programs

!! LISP is used for artificial intelligence

»! Knowledge representation

»! Machine learning

»! Natural language processing

»! Modeling of speech and vision

!! Scheme is used to teach introductory
programming at a significant number of
universities

Maria Hybinette, UGA 30

Comparing Functional and
Imperative Languages

!! Imperative Languages:

»! Efficient execution

»! Complex semantics

»! Complex syntax

»! Concurrency is programmer designed

!! Functional Languages:

»! Simple semantics

»! Simple syntax

»! Inefficient execution

»! Programs can automatically be made concurrent

Maria Hybinette, UGA 31

Functional Programming in
Perspective (pros)

!! Advantages of functional languages

»! lack of side effects makes programs easier to
understand

»! lack of explicit evaluation order (in some

languages) offers possibility of parallel evaluation

(e.g. MultiLisp)

»! lack of side effects and explicit evaluation order

simplifies some things for a compiler (provided you
don't blow it in other ways)

»! programs are often surprisingly short

»! language can be extremely small and yet powerful

Maria Hybinette, UGA 32

Functional Programming in
Perspective (cons)

!! Advantages of functional languages

»! difficult (but not impossible!) to implement efficiently on
von Neumann machines

–! lots of copying of data through parameters

–! (apparent) need to create a whole new array in order to

change one element

–! heavy use of pointers (space/time and locality problem)

–! frequent procedure calls

–! heavy space use for recursion

–! requires garbage collection

–! requires a different mode of thinking by the programmer

–! difficult to integrate I/O into purely functional model

