
Maria Hybinette, UGA

1

CSCI: 4500/6500 Programming
Languages

Names, Scopes (review) and Binding

Reflecting on the Concepts

Maria Hybinette, UGA 2

Name, Binding and Scope

!! A name is exactly what you think it is

»!Most names are identifiers

»! symbols (like '+') can also be names

!! A binding is an association between two

things, such as a name and the thing it names

»! Example: the association of

–! values with identifiers

!! The scope of a binding is the part of the

program (textually) in which the binding is

active

Maria Hybinette, UGA 3

Binding Time

!! When the “binding” is created or, more

generally, the point at which any
implementation decision is made

»! language design time

»! language implementation time

»! program writing time

»! compile time

»! link time

»! load time

»! run time

Maria Hybinette, UGA 4

Bind Time: Language System View

!! language design time

»! bind operator symbols (e.g., * + …) to operations
(multiplication, addition, …)

»! Set of primitive types

!! language implementation time

»! bind data type, such as int in C to the range of
possible values (determined by number of bits and
affect the precision)

–! Considerations: arithmetic overflow, precision of
fundamental type, coupling of I/O to the OS’ notion of
files

Maria Hybinette, UGA 5

Bind Time: User View

!! program writing time

»! Programmers choose algorithms, data structures
and names.

!! compile time

»! plan for data layout (bind a variable to a data type in
Java or C)

!! link time

»! layout of whole program in memory (names of
separate modules (libraries) are finalized.

!! load time

»! choice of physical addresses (e.g. static variables
in C are bound to memory cells at load time)

Maria Hybinette, UGA 6

Bind Time: User View

!! run time (dynamically)

»! value/variable bindings, sizes of strings

»! subsumes

–! program start-up time

–! module entry time

–! elaboration time (point a which a declaration is first
"seen")

–! procedure entry time

–! block entry time

–! statement execution time

Maria Hybinette, UGA 7

Static and Dynamic

!! Typically means before or at run time?

»!A binding is static if it first occurs before run time
and remains unchanged throughout program
execution.

»!A binding is dynamic if it first occurs during
execution or can change during execution of the
program.

Maria Hybinette, UGA 8

Binding Time Summary

!! Early binding times are associated with
greater efficiency

!! Later binding times are associated with
greater flexibility

!! Compiled languages tend to have early
binding times

!! Interpreted languages tend to have later
binding times (run time)

Maria Hybinette, UGA 9

Lifetime and Storage
Management

Key Events: Need to distinguish between names

and the object to which they refer

!! creation of objects

!! destruction of objects

!! creation of bindings

!! references to variables (which use bindings)

!! (temporary) deactivation of bindings

!! reactivation of bindings

!! destruction of bindings

Maria Hybinette, UGA 10

Storage Binding and Lifetime

!! Binding Lifetime: time between creation and

destruction of a name-to-object binding

!! Object Lifetime: time between creation and

destruction of an object

Implications:

!! If object outlives binding it's garbage

!! If binding outlives object it's a dangling

reference

Maria Hybinette, UGA 11

Storage Allocation Mechanisms

!! Static: absolute address that is retained

throughout program execution

!! Stack: storage bindings are created when

declaration statements are elaborated (e.g.,

subroutine calls and returns are allocated in
last in first-out order).

!! Heap: created and destructed by explicit

directives (e.g. new and delete in Java creates
objects)

Maria Hybinette, UGA 12

Static Allocation

!! Example: Code, globals, static variables,

explicit constants, scalars

!! Advantages: efficiency (direct addressing),

history-sensitive subprogram support (static

variables retain values between calls of
subroutines).

!! Disadvantage: lack of flexibility (does not

support recursion)

Maria Hybinette, UGA 13

Stack Allocation

!! Storage bindings are created for variables when
their declaration statements are elaborated

!! Central stack for parameters, local variables and
temporaries

»!Easy to allocate space for locals on stack:
fixed offset from the stack pointer or frame
pointer at compile time

!! Advantage: allows recursion; conserves storage

!! Disadvantages:

»!Overhead of allocation and deallocation

»! Subprograms cannot be history sensitive

»! Inefficient references (indirect addressing)

Maria Hybinette, UGA 15

Heap Allocation

!! heap-dynamic - Allocated and deallocated by
explicit directives (malloc, new), specified by
the programmer, which take effect during
execution

!! Referenced only through pointers or
references e.g., dynamic objects in C++ (via
new and delete) all objects in Java

!! Advantage: provides for dynamic storage
management

!! Disadvantage: inefficient (instead of static)
and unreliable

Maria Hybinette, UGA 16

Heap Management

!! Speed and space tradeoff:

»! Space fragmentations

–! Internal - space left in internal blocks

–! External - unused space is scattered through heap but not
one single piece is large enough to satisfy a single request

»! Speed - first fit, best fit, buddy systems

Maria Hybinette, UGA 17

Scope Rules

!! A scope is a program section of maximal size in which
no bindings change, or at least in which no re-
declarations are permitted (see below)

!! In most languages with subroutines, we OPEN a new
scope on subroutine entry:

»! create bindings for new local variables,

»! deactivate bindings for global variables that are re-
declared (these variable are said to have a "hole" in
their scope) – ‘shadowed’

»!make references to variables

!! The scope rules (static, dynamic) of a language
determine how references to names are associated
with variables

Maria Hybinette, UGA 18

Static or Lexical Scope

!! Here, scope is defined in terms of the physical
(lexical) structure of the program

»! The determination of scopes can be made by the compiler
(bindings are resolved by examining the program text)

»! Enclosing static scopes (to a specific scope) are called its
static ancestors; the nearest static ancestor is called a static
parent

»! Variables can be hidden from a unit by having a “closer”
variable with the same name

–! Ada and C++ allow access to these (e.g. class_name:: name)

»!Most compiled languages, C and Pascal included, employ
static scope rules

Maria Hybinette, UGA 19

Creating Static Scopes

!! Static scope rules:

»!Most closest nested rule used in blocks

 C and C++: for (...)

 {
 int index;
 ...
 }

»! To resolve a reference, we examine the local scope

and statically enclosing scopes until a binding is

found

Maria Hybinette, UGA 20

!! Nested subroutine scope rules (later in

chapter 8)

!! Access to nonlocal objects

Maria Hybinette, UGA 21

Static Scope

Maria Hybinette, UGA 22

Dynamic and Static Scope Rules

!! Key idea: in static scope rules

»! bindings are defined by the physical (lexical)
structure of the program.

!! With dynamic scope rules, bindings depend
on the current state of program execution

»!They cannot always be resolved by
examining the program because they are
dependent on the calling sequences

»!To resolve a reference, we use the most
recent, active binding made at run time

Maria Hybinette, UGA 23

Dynamic Scope

!! Interpreted languages

»!early LISP dialects assumed dynamic

scope rules (Perl you can chose static or

dynamic)

»!Later use static – e.g., ML.

!!Such languages do not normally have

type checking at compile time because

type determination isn't always

possible when dynamic scope rules are

in effect

Maria Hybinette, UGA 24

Scope Pragmatics (Review)

!! Static scoping:
variables always
refers to its nearest
enclosed binding
(between name and
object). Compile
time

!! Dynamic scoping:
binding depends on
the flow of control
at run time and the
order subroutines
are called, refers to
the closest active
binding,

a: integer // global

procedure first()
 {
 a = 1 // global or local?
 }
procedure second
 {
 a: integer // local
 first()
 }
a = 2
if read_integer() > 0
 second()
else
 first()
write_integer(a)

Static: prints 1 : a is global scope
 of a is closest enclosed a, so
 for “first”’s a refers to global a

Dynamic: prints 1 or 2: if we go to second
 first, first’s a refers to second’s
 local a (closest binding).

- First
+ Second

First

Maria Hybinette, UGA 25

Example: Static versus Dynamic
Scoping

!! Static scope rules require that the reference
resolve to the most recent, compile-time

binding, namely the global variable a

!! Dynamic scope rules, on the other hand,
require that we choose the most recent, active
binding at run time

»! Example use: implicit parameters to subroutines

»! This is generally considered bad programming
practice nowadays

–! Alternative mechanisms exist

!! static variables that can be modified by auxiliary routines

!! default and optional parameters

Maria Hybinette, UGA 26

Referencing Environment

!! The referencing environment of a statement is
the collection of all names that are visible in
the statement (e.g., env: remember scheme)

»! In a static-scoped language, it is the local variables
plus all of the visible variables in all of the
enclosing scopes

!! A subprogram is active if its execution has
begun but has not yet terminated

»! In a dynamic-scoped language, the referencing
environment is the local variables plus all visible
variables in all active subprograms

Maria Hybinette, UGA 27

Dynamic Scope: Accessing
Variables – Trade-Off

1.! keep a stack (association list) of all active

variables (slow access, fast calls)

»! hunt down from top of stack to find a variable

–! This is equivalent to searching the activation records on

the dynamic chain

2.! keep a central table with one slot for every
variable name (fast lookup, slow calls)

»! If names cannot be created at run time, the table layout
(and the location of every slot) can be fixed at compile
time

–! Otherwise, you'll need a hash function or something to do
lookup

»! Every subroutine changes the table entries for its locals
at entry and exit.

Maria Hybinette, UGA 28

Advantages and Disadvantages
Dynamic Scope

!! Advantages:

»! Simple implementation for interpreted languages

»! Lack of static structure (e.g., Unix environment

variables)

!! Disadvantages:

»!Confusing, better to use static variables, default

parameters

Maria Hybinette, UGA 29

Some Binding Rules

!! Recall that a referencing environment of a statement at

run time is the

»! set of active bindings.

»! A referencing environment corresponds to a collection of

scopes that are examined (in order) to find a binding.

!! Scope rules: determine that collection and its order

!! Binding rules: determine which instance of a scope

should be used to resolve references when calling a
procedure that was passed a parameter

»! they govern the binding of referencing environments to

formal procedures

Maria Hybinette, UGA 30

Binding within a Scope

!! Aliasing

!! Overloading

»! operator overloading

»! function overloading

»! polymorphism

»! generic functions

!! Modules

»! between compilations

Maria Hybinette, UGA 31

Aliasing

!! What are aliases good for? (consider uses of
FORTRAN equivalence)

–! space saving - modern data allocation methods are
better

–! multiple representations - unions are better

–! linked data structures - legit

!! Also, aliases arise in parameter passing as an
unfortunate side effect

–! Euclid scope rules are designed to prevent this

!! In general aliases tend to make programs
more confusing and more difficult for
compiler to perform code improvements

Maria Hybinette, UGA 32

Overloading

!! some overloading happens in almost all

languages

»! integer + v. real +

»! read and write in Pascal

»! function return in Pascal

!! some languages get into overloading in a big

way

»!Ada (see Figure 3.18 for examples)

»!C++ (see Figure 3.19 for examples)

Maria Hybinette, UGA 33

Overloaded functions

!!overloaded functions - two different things

with the same name; in C++

»!overload norm

int norm (int a){return a>0 ? a : -a;)

complex norm (complex c) { // ...

!!ad hoc polymorphism

Maria Hybinette, UGA 34

Polymorphism (having many
forms)

!! ad-hoc polymorphism overloading, coercion (finite types)

!! subtype polymorphism – classes related by a super type.

»! e.g., in OO languages allow parameters to have different types in the
same type hierarchy by calling virtual functions appropriate to the
concrete type of the actual parameter.

!! parametric polymorphism :

»! Explicit (generic)

–! Syntactic template that can be instantiated in more than one way
at compile time

!! specify parameters when you declare or use generic

!! Templates in C++

!! Macro expansion

–! Generic Programming (arguably): Only one definition
(e.g., templates, macro, note instantiation is laziness,
“not evaluated until needed” characteristics

»! Implicit (true)

–! Don’t have to specify types for which code works, language
implementation figures it out and won’t let you perform
operations on object that do not support them

–! Lisp (run time), ML (compiler)

Maria Hybinette, UGA 35

Polymorphism (review)

!! Universal polymorphism : Allows writing code that works with
different types

!! Ad-hoc polymorphism : Selecting the right implementation

code to be executed

Polymorphism

Universal

Ad hoc

Parametric (e.g., C
++ templates)

Inclusion(subtyping)

Overloading/Overriding (e.g., C
++, Java)

Coercion (automatic -multi-method,
single dispatch) Maria Hybinette, UGA 36

Separate Compilation

!!Separately-compiled files in C provide
a sort of poor person's modules:

»!Rules for how variables work with separate
compilation are messy

»!Language has been jerry-rigged to match
the behavior of the linker

»!Static on a function or variable outside a
function means it is usable only in the
current source file

–! This static is a different notion from the static
variables inside a function (retains, persistant
value)

Maria Hybinette, UGA 37

Separate Compilation (cont)

»!Extern on a variable or function means

that it is declared in another source file

»!Functions headers without bodies are

extern by default

»!Extern declarations are interpreted as

forward declarations if a later declaration
overrides them

Maria Hybinette, UGA 38

Separate Compilation (cont)

»! Variables or functions (with bodies) that don't say

static or extern are either global or common (a

Fortran term)

–! Functions and variables that are given initial values

are global

–! Variables that are not given initial values are
common

»!Matching common declarations in different files

refer to the same variable

–! They also refer to the same variable as a matching

global declaration

Maria Hybinette, UGA 39

Summary

!!The morals of the story:

»!language features can be surprisingly subtle

»!designing languages to make life easier for

the compiler writer can be a GOOD THING

»!most of the languages that are easy to

understand are easy to compile, and vice

versa

Maria Hybinette, UGA 40

Conclusion

!! A language that is easy to compile often leads to

»! a language that is easy to understand

»!more good compilers on more machines (compare
Pascal and Ada!)

»! better (faster) code

»! fewer compiler bugs

»! smaller, cheaper, faster compilers

»! better diagnostics

Maria Hybinette, UGA 41

Next Week…

!! Project 3 (ML prime numbers, should not take

long)

!! Exam 1 discussed in detail.

!! Contest period – one week after turning back

exams… (after that Spring Break…).

