
Maria Hybinette, UGA

1

CSCI: 4500/6500 Programming
Languages

Control Flow

Chapter 6

Maria Hybinette, UGA 2

Big Picture: Control Flow
Ordering in Program Execution

Ordering/Flow Mechanisms:

!! Sequencing (statements executed (evaluated) in a specified
order)

–! Imperative language - very important

–! Functional - doesn’t matter as much (emphasizes evaluation of
expression, de emphasize or eliminates statements, e.g., pure fl
don’t have assignment statements)

!! Selection -- Choice among two or more

–! Deemphasized in logical languages

!! Iteration

»! Repeating structure

–! emphasized in imperative languages

!! Procedural abstraction, recursion, requires stack

!! Concurrency

»! 2 or more code fragments executed at the same time

!! Non-determinacy (unspecified order)

Maria Hybinette, UGA 3

Expression Evaluation:
Classification Outline

!! Infix, Prefix or Postfix

!! Precedence & Associativity

!! Side effects

!! Statement versus Expression Oriented Languages

!! Value and Reference Model for Variables

!! Orthogonality

!! Initialization

!! Aggregates

!! Assignment

Maria Hybinette, UGA 4

Evaluation: * fix operators

!! Expression:

»!Operator (built-in function) and operands
(arguments)

!! Infix, prefix, postfix operators

»! (+ 5 5) or 5 + 6

»! operators in many languages are just `syntactic sugar’1
for a function call:

–! a + b ! a.operator+(b) in C++

–! “+”(a, b) in Ada

»! Cambridge Polish prefix and function name inside
parenthesis.

»! Postfix - postscript, Forth input languages, calculators

1 Landin “adding “sugar” to a language to make it easier to read (for humans)

Maria Hybinette, UGA 5

Expression Evaluation:
Precedence & Associativity

How should this be evaluated?

!! a + b * c**d**e / f

How about?

!! ((((a + b) * c) ** d) ** e) / f

!! a + (((b * c) ** d) ** (e / f))

!! a + ((b * (c ** (d ** e))) / f)

»! Fortran does this last option

!! or something else?

Maria Hybinette, UGA 6

Precedence & Associativity

!! Precedence specify that some operators

group more tightly and others

»!Richness of rules across languages varies

(overview next slide)

!! Associativity rules specify that sequences of

operators of equal precedence groups either
left or right (or up or down? for a weird

language of your own creation)

»!Associatively rules are somewhat uniform across

languages but there are variations

Maria Hybinette, UGA 7

Example Precedence:!

!! if A < B and C < D then K = 5!

How would Pascal evaluate this?!

!! A < (B and C) < D!
Maria Hybinette, UGA 8

Precedence

!! Most languages avoid this problem by giving

arithmetic operators higher precedence than
relational (comparison) operators.

Maria Hybinette, UGA 9

Precedence: Rule of Thumb

!! C has 15 levels - too many to remember

!! Pascal has 3 levels - too few for good

semantics

!! Fortran has 8

!! Ada has 6

»!Note: Ada puts and, or at same level

!! Lesson: when unsure (e.g., programmer

using many languages, better to circumvent

precedence and use parentheses!

Maria Hybinette, UGA 10

Associativity Example

!! Basic operators almost always left to right

»! 9-3-2 = (9-3)-2 = 4 (left right)

»! 9-3-2 = 9-(3-2) = 8 (right-left)

!! Exponential operator: **

»! right-left (as do mathematics) in Fortran

–! 4**3**2 = 4**(3**2) = 262,144

»! Language syntax requires parenthesized form (Ada)

!! Assignment ‘=‘ in expressions associates:
right-left

»! a = b = a + c => a = (b = (a+c))

–! assigns (a+c) to b then assigns the same value to a

Maria Hybinette, UGA 11

Side Effects & Idempotent Functions

Side Effects – a function has a side effect if it

influences subsequent computation in any
way other than by returning a value. A side

effect occurs when a function changes the
environment in which it exists

Idempotent – an idempotent function is one that

if called again with the same parameters, will
always give the same result

Maria Hybinette, UGA 12

Referentially transparent - Expressions in a

purely functional language are referentially
transparent, their value depends only on the

referencing environment.

Imperative programming – “Programming with

side effects” (programming in terms of

statements, state).

Maria Hybinette, UGA 13

Side Effects

!! Assignment statements provide the ultimate example of

side effects

–! they change the value of a variable

–! Fundamental in the von Neumann model of computation.

!! Several languages outlaw side effects for functions (these

languages are called single assignment languages)

»! easier to prove things about programs

»! closer to Mathematical intuition

»! easier to optimize

»! (often) easier to understand

!! But side effects can be nice: consider - rand()!
–! Needs to have a side effect, or else the same random number every time it is

called.

Maria Hybinette, UGA 14

Side Effects (cont)

!! Side effects are a particular problem if they affect

state used in other parts of the expression in which

a function call appears:

!! Example:

»!a - f(b) - c * d /* f(b) may affect ‘d’ */!

»!What is evaluated first:!

! a – f(b) !

 c * d!

Maria Hybinette, UGA 15

Ordering within Expressions

!! Another Example:

»! f(a, g(b), c) which parameter is evaluated first?

!! Why is it important:
»! Side-effects:

–! if g(b) modifies a or c then the values passed into f will depend
on the order that parameters are evaluated

»! Code improvements:

–! a = B[i]

–! c = a * b + d * 3

!! Note: precedence or associativity does not say if we evaluated a*b
or d*3 first.

–! Evaluate: d*3 first, so the previous load (slow) of B[i] from
memory occurs in parallel of a doing something different, i.e.
computing d*3.

Maria Hybinette, UGA 16

Evaluation of Operands and Side Effects

int x = 0;!

int foo() !

! !{ !

! !x += 5; !

! !return x; !

! !}!

!int a = foo() + x + foo();!

What is the value of a?

 a = 5 + x + foo()

Maria Hybinette, UGA 17

Re-ordering using mathematical
properties

!! Commutative

»! (a+b) = (b+a)

!! Associative

»! (a+b) + c = a + (b + c)

!! Distributive

»! a * (b + c) = a * b + a * c.

Maria Hybinette, UGA 18

Mathematical Identities

Example:

 a = b + c

 d = c + e + b

Re-order to:

 a = b + c

 d = b + c + e (already evaluated b+c (it is a))

Maria Hybinette, UGA 19

Mathematical Identities

!! Problem: Computer has limited precision

»! associativity (known to be dangerous)

 (a + b) + c

 works if a~=maxint and b~=minint and c<0

 a + (b + c) does not

Maria Hybinette, UGA 20

Expression vs. Statement
Orientation

!! Statements :

»! executed solely for their side effects and

»! return no useful value

»!most imperative languages

»! time dependent

!! Expressions :

»!may or may not have side effects

»! always produces a value and

»! functional languages (Lisp, Scheme, ML)

»! time less

!! C kinda halfway in-between (distinguishes)

»! allows expression to appear instead of statement

Maria Hybinette, UGA 21

Assignment

!! statement (or expression) executed for its side effect

!! assignment operators (+=, -=, etc)

»! handy

»! avoid redundant work (or need for optimization)

–! No need for redundant address calculations (guaranteed)

»! perform side effects exactly once (avoids pecularities)

–! A[f(i)] = A[f(i)] + 1 (f(i) may have a side effect x 2).

–! A[f(i)] += 1

Maria Hybinette, UGA 22

References and Values

!! Assignment seems straightforward

!! Semantic differences depending if languages

uses a

»!A reference model

»! or value model of variables.

!! Impact on programs that use pointers (we will

talk more about pointers after Spring break).

Maria Hybinette, UGA 23

Value Model

!! Variable is a named container for a value

!! left-hand side of expressions denote “locations” and
are referenced as l-values

!! right-hand side of expressions denote “values” and
are referred to as r-values

!! Expressions can be either an l-value or an r-value
depending on context:

»!2 + 3 = a !

»!a = 2 + 3!

»!(f(x)+3) -> b[c] = 2 /* l-value expression */!

»!k = (f(x)+3)->b[c] !

a !4 !

Example languages who use
value model: C and C++

Maria Hybinette, UGA 24

Value Model: Example

a !

b !

c !

4 !

2 !

2 !

1. Put the value 2 in b

2. Copy value of b into c

3. Read b and c and put result in a

b = 2!

c = b!

a = b + c!

a !4 !

Maria Hybinette, UGA 25

Reference Model

!! Variable is a named reference to a value

!! Every “value” is a l-value (location)

»!Only one ‘4’, variables points to the ‘4’, Above the

variable a points to ‘4’

!! To get a “value’’ (r-value) need to dereference

it to obtain value that it contain (points to).

»!Most languages this dereferencing is automatic,

e.g., Clue. In ML need to explicit dereference it.

»! Indirection for accesses (however most compiler

use multiple copies of objects to speed things up).

a ! 4 !

Maria Hybinette, UGA 26

Reference Model

b = 2!

c = b!

a = b + c!

a !

b !

c !

4 !

2 !

1. Let b refer to 2

2. Let c also refer to 2

3. Pass these references to ‘+’

4. Let a refer to the result, namely 4

Maria Hybinette, UGA 27

a !

b !

c !

4 !

2 !

2 !

a !

b !

c !

4 !

2 !

b = 2!

c = b!

a = b + c!

!! Value model: any integer value can contain the value 2

!! Reference model: only one 2 (if variable on right side, need to

dereference to get actual value).

Maria Hybinette, UGA 28

Value/Variable Model
Implications

!! Reference model need to distinguish between

variables that

»! refer to the same object and variables that

»! point to different objects but that have the same

“value’’ (happens to be equal)

!! LISP provided two notions of equality to

distinguish between the two.

Maria Hybinette, UGA 29

Value versus Reference Models

!! Value-oriented languages

»!C, Pascal, Ada

!! Reference-oriented languages

»!most functional languages (Lisp, Scheme, ML)

»!Clu, Smalltalk

!! Algol-68 kinda halfway in-between

!! Java deliberately in-between, uses both:

»! Value model for built-in types (int, double)

»!Reference model for user-defined types (objects)

!! C# and Eiffel allow programmer choose model

for user defined types.
Maria Hybinette, UGA 30

Orthogonality

!! Features that can be used in any

combination (no redundancy)

»! Meaning makes sense

»! Meaning is consistent

 if (if b != 0 then a/b == c else false) then ...!

!if (if f then true else messy()) then ...!

!! Algol makes orthogonality a principal design

goal.

Maria Hybinette, UGA 31

Initialization

Motivation:

!! Improve execution time: Statically allocated variables (by
compiler)

»! e.g. reduce cost of assignment statement at run time.

!! Avoid (weird) errors of evaluating variables with no initial
value

Approach:

!! Pascal has no initialization facility (assign)

!! C/C++ initializes static variables to 0 by default

!! Usage of non-initialized variables may cause a hardware

interrupt (implemented by “initializing” value to NaN)

!! Constructor: automatic initialization at run-time
Maria Hybinette, UGA

32

Control Flow

(Really)

Maria Hybinette, UGA 33

Structured vs. Unstructured
Control Flow

Structured Programming – hot programming trend in the

1970’s

!! Top down design

!! Modularization of code

!! Structured types

!! Descriptive variable names

!! Extensive commenting

!! After Algol 60, most languages had: if…then…else,
while loops

Don’t need to use goto’s …

Maria Hybinette, UGA 34

Types of Control Flow

!! Sequencing -- statements executed (evaluated) in a specified

order

»! Imperative language - very important

»! Functional - doesn’t matter as much (emphasizes evaluation of

expression, de emphasize or eliminates statements, e.g.

assignment statements)

!! Selection -- Choice among two or more

–! Deemphasized in logical languages

!! Iteration -- Repeating structure

–! emphasized in imperative languages

!! Procedural abstraction

!! Recursion, requires stack

!! Concurrency executing statements at the same time

!! Non-determinacy -- unspecified order

Maria Hybinette, UGA 35

Sequencing

!! Simple idea

»! Statements executes one after another

»! Very imperative, von-Neuman

»! Controls order in which side effects occur

!! Statement blocks

»! groups multiple statement together into one statement

»! Examples:

–! {} in C, C++ and Java

–! begin/end in Algol, Pascal and Modula

!! Basic block

»! Block where the only control flow allowed is sequencing

Maria Hybinette, UGA

36

Selection

Maria Hybinette, UGA 37

if statements

!! if condition then statement else statement

»!Nested if statements have a dangling else problem

Maria Hybinette, UGA 38

Dangling else Problem

! !if … then!

! ! !if … then!

! ! !else …!

!! or

! !if … then!

! ! !if then …!

! !else …

!! Which one does the else map to?

Maria Hybinette, UGA 39

Dangling else Problem

!! ALGOL:

»! does not allow “then if”

»! statement has to be different than another if statement
(can be another block, that contains an if)

!! Pascal:

»!else associates with closest unmatched then!

!! Perl:

»!Has a separate elsif keyword (in addition to else

and if)

»! “else if” will cause an error

Maria Hybinette, UGA 40

Strict vs short-circuit evaluation of
conditions

!! strict

»! Evaluate all operands before applying operators

–! Pascal

!! short-circuit

»! Skip operand evaluation when possible

»! Evaluation order important

–! if operand-evaluation has side effects (seen)

–! if programmer knows that some operands can be computed
more quickly than others

»! Examples

–! || and && in C++ and Java

!! always use short-circuit evaluation

–! then if and or else in Ada

!! language supports both strict and short-circuit, programmer decides:
use and, or for strict evaluation

Maria Hybinette, UGA 41

Short Circuiting

!! C++

p = my_list;!

while(p && p->key != val)!

! ! p = p->next;!

!! Pascal

p := my_list;!

while(p <> nil) and (p^.key <> val) do!

! ! p := p^.next!
Ouch!

Maria Hybinette, UGA 42

Short Circuit Jump Code

if ((A > B) and (C > D)) or (E <> F) then

 then_clause

 else

 else_clause

!! Usually purpose of condition is to create a

branch instruction to various locations not a
value to be stored.

Maria Hybinette, UGA 43

No Short Circuiting (Pascal)

! r1 := A !-- load!

! r2 := B"

 r1 := r1 > r2"

 r2 := C"

 r3 := D"

 r2 := r2 > r3"

 r1 := r1 & r2"

 r2 := E"

 r3 := F!

! r2 := r2 $<>$ r3"

 r1 := r1 $|$ r2"

 if r1 = 0 goto L2!

L1: then_clause !-- label not actually used!

! goto L3!

L2: else_clause!

L3:!

if ((A > B) and (C > D)) or (E <> F) then

 then_clause

 else

 else_clause

!! root would name
r1 as the register
containing the
expression value

Maria Hybinette, UGA 44

Short Circuiting

 r1 := A!

 r2 := B!

 if r1 <= r2 goto L4!

 r1 := C!

 r2 := D!

 if r1 > r2 goto L1!

L4: r1 := E!

 r2 := F!

 if r1 = r2 goto L2!

L1: then_clause!

 goto L3!

L2: else_clause!

L3:!

if ((A > B) and (C > D)) or (E <> F) then

 then_clause

 else

 else_clause

!! Inherited attributes of the
conditions root would indicate
that control should “fall
through” to L1 if the condition
is true, or branch to L2 if false.

!! Value of ‘final’ expression
never in a register rather its
value is implicit in the control
flow.

Maria Hybinette, UGA 45

Implications

!! Short-circuiting

»!Can avoid out of bound errors

»!Can lead to more efficient code

»!Not all code is guaranteed to be evaluated

!! Strict

»!Not good when code has build in side effects

Maria Hybinette, UGA 46

Case/Switch Statements

!! Alternative to nested if…then…else blocks
 !

j := … (* potentially complicated expression *)!

IF j = 1 THEN clause_A!

ELSEIF j IN 2,7 THEN clause_B!

ELSEIF j IN 3..5 THEN clause_C!

ELSEIF (j = 10) THEN clause_D!

ELSE clause_E!

END!
CASE … (* potentially complicated expression *) of!

! !1: !clause_A!

 | 2, 7: !clause B!

! | 3..5: !clause C!

! | 10: ! !clause D!

! !ELSE !clause E!

END!

Principal motivation of case statement is to generate

efficient target code not syntactic elegance.

Maria Hybinette, UGA 47

Implementation of Case Statements

!! If…then…else !! Case (uses jump table)

Maria Hybinette, UGA 48

Case vs Switch

!!Switch is in C, C++, and Java

»!Unique syntax

»!Use break statements, otherwise statements fall

through to the next case

!!Case is used in most other languages

»!Can have ranges and lists

»! Some languages do not have default clauses

–! Pascal

Maria Hybinette, UGA 49

Origin of Case Statements

!! Descended from the computed goto of

Fortran

goto (15, 100, 150, 200), J!

if J is 1, then it jumps to label 15!

if J is 4, then it jumps to label 200!

if J is not 1, 2, 3, or 4, then the
statement does ! !nothing!

Maria Hybinette, UGA

50

Iteration

Maria Hybinette, UGA 51

Iteration

!! More prevalent in imperative languages

!! Takes the form of loops

»! Iteration of loops used for their side effects

–! Modification of variables

Maria Hybinette, UGA 52

Iteration

Two (2) kinds of iterative loops:

!! enumeration controlled: Executed once for

every value in a given finite set (iterations
known before iteration begins)

!! logically-controlled: Executed until some

condition changes value

Maria Hybinette, UGA 53

Enumeration-Controlled Loop

!! Early Fortran:

 do 10 i = 1, 50, 2

 . . .

10: continue

!! Equivalent?

10: i = 1 !

! . . . !

 i = i + 2 !

 if i <= 50 goto 10 !

Maria Hybinette, UGA 54

Issue #1

!! Can the step size/bounds be:

»! Positive/negative ?

»!An expression ?

»!Of type Real ?

Maria Hybinette, UGA 55

Issue #2

!! Changes to loop indices or bounds

»! Prohibited to varying degrees

»!Algol 68, Pascal, Ada, Fortran 77/90

–! Prohibit changes to the index within loop

–! Evaluate bound once (1) before iteration

Maria Hybinette, UGA 56

Changes to loop indices or bounds

!! A statement is said to threaten an index

variable if

»!Assigns to it

»! Passes it to a subroutine

»!Reads it from a file

»! Is a structure that contains a statement that

threatens it

Maria Hybinette, UGA 57

Issue #3

!! Test terminating condition before first

iteration

!! Example:

for i := first to last by step do!

 …!

end!

 r1 := first
 r2 := step
 r3 := last
L1: if r1 > r3 goto L2
 …
 r1 := r1 + r2
 goto L1
L2

 r1 := first
 r2 := step
 r3 := last
L1: …
 r1 := r1 + r2
 goto L1
L2: if r1 < r3 goto L1

Maria Hybinette, UGA 58

Issue #4

!! Access to index outside loop

»! undefined

–! Fortran IV, Pascal

»!most recent value

–! Fortran 77, Algol 60

»! index is a local variable of loop

–! Algol 68, Ada

Maria Hybinette, UGA 59

Issue #5

!! Jumps

»!Restrictions on entering loop from outside

–! Algol 60 and Fortran 77 and most of their

descendents prevent the use of gotos to jump into a

loop.

»! “exit” or “continue” used for loop escape

Maria Hybinette, UGA 60

Summary Issues

!! step: size (pos/neg), expression, type

!! changes to indices or bounds within loop

!! test termination condition before first

iteration of loop

!! scope of control variable (access outside

loop)

»! value of index after the loop

Maria Hybinette, UGA 61

Logically Controlled Loops

while condition do statement

!! Advantages of for loop over while loop

»!Compactness

»!Clarity

»!All code affecting flow control is localized in header

Maria Hybinette, UGA 62

Logically Controlled Loops

!! Where to test termination condition?

»! pre-test (while)

»! post-test (repeat)

»! mid-test (when)

–! one-and-a-half loops (loop with exit, mid-test)

loop:!

statement list!

when condition exit!

statement list!

when condition exit!

end loop!

Maria Hybinette, UGA 63

C’s for loop

!! C’s for loop

»! Logically controlled

–! Any enumeration-controlled loop can be written as a

logically-controlled loop

 for(i = first; i <= last; I += step)
 {
 }

i = first;
while(i <= last)

 {
 i += step;
 }

Maria Hybinette, UGA 64

C’s for loop

!! Places additional responsibility on the

programmer

»! Effect of overflow on testing of termination

condition

»! Index and variable in termination condition can be

changed

–! By body of loop

–! By subroutines the loop calls

Maria Hybinette, UGA 65

Combination Loops

!! Combination of enumeration and logically

controlled loops

!! Algol 60’s for loop

For_stmt -> for id := for_list do stmt

For_list -> enumerator (, enumerator)*

Enumerator -> expr

 -> expr step expr until expr

 -> expr while condition

Maria Hybinette, UGA 66

Algol 60’s for loop

!! Examples: (all equivalent)

for i := 1, 3, 7, 9 do…

for i := 1 step 2 until 10 do …

for i := 1, i + 2 while i < 10 do …

!! Problems

»!Repeated evaluation of bounds

»!Hard to understand

Maria Hybinette, UGA 67

Iterators: HW - Read in Textbook

!! True Iterators

!! Iterator Objects

!! Iterating with first-class functions

!! Iterating without iterators

Maria Hybinette, UGA

68

Recursion

Maria Hybinette, UGA 69

Recursive Computation

!! Decompose problem into smaller problems

by calling itself

!! Base case- when the function does not call

itself any longer; no base case, no return

value

!! Problem must always get smaller and

approach the base case

Maria Hybinette, UGA 70

Recursive Computation

!! No side effects

!! Requires no special syntax

!! Can be implemented in most programming

languages; need to permit functions to call
themselves or other functions that call them

in return.

!! Some languages don’t permit recursion:

Fortran 77

Maria Hybinette, UGA 71

Tracing a Recursive Function

(define sum (lambda(n)

 (if (= n 0)

 0

 (+ n (sum (- n 1))))))

Maria Hybinette, UGA 72

Tracing a Recursive Function

>(trace sum)

#<unspecified> >

>(sum 5)

"CALLED" sum 5

 "CALLED" sum 4

 "CALLED" sum 3

 "CALLED" sum 2

 "CALLED" sum 1

 "CALLED" sum 0

 "RETURNED" sum 0

 "RETURNED" sum 1

 "RETURNED" sum 3

 "RETURNED" sum 6

 "RETURNED" sum 10

"RETURNED" sum 15

15

Maria Hybinette, UGA 73

Embedded vs. Tail Recursion

Analogy: You’ve been asked to measure the distance between
UGA and Georgia Tech

Embedded:

1.! Check to see if you’re there yet

2.! If not, take a step, put a mark on a piece of paper to keep
count, restart the problem

3.! When you’re there, count up all the marks

Tail:

1.! Write down how many steps you’re taken so far as a
running total

2.! When you get to Georgia Tech, the answer is already there;
no counting!

Maria Hybinette, UGA 74

Recursion

!! Tail recursion: No computation follows

recursive call

/* assume a, b > 0 */

int gcd (int a, int b)

 {

 if (a == b) return a;

 else if (a > b) return gcd (a - b, b);

 else return gcd (a, b – a);

 }

Maria Hybinette, UGA 75

Which is Better?

!! Tail.

!! Additional computation never follows a

recursive call; the return value is simply
whatever the recursive call returns

!! The compiler can reuse space belonging to

the current iteration when it makes the
recursive call

!! Dynamically allocated stack space is

unnecessary

Maria Hybinette, UGA 76

!! Any logically controlled iterative algorithm can be

rewritten as a recursive algorithm and vice versa

!! Iteration: repeated modification of variables
(imperative languages)

»! Uses a repetition structure(for, while)

»! Terminates when loop continuation condition fails

!! Recursion: does not change variables (functional

languages)

»! Uses a selection structure (if, if/else, or switch/
case)

»! Terminates when a base case is recognized

Maria Hybinette, UGA 77

Tail Recursion Example

/* assume a, b > 0 */

int gcd (int a, int b)

 {

 if (a == b) return a;

 else if (a > b) return gcd (a -

b, b);

 else return gcd (a, b – a);

 }

/* assume a, b > 0 */

int gcd (int a, int b)

 {

 start:

 if (a == b) return a:

 else if (a > b)

 {

 a = a - b

 goto start;

 }

 else

 {

 b = b - a;

 goto start;

 }

 }
Maria Hybinette, UGA 78

Which is tail recursive?

(define summation (lambda (f low high)

 (if (= low high)

 (f low)

 (+ (f low) (summation f (+ low 1) high)))))

(define summation (lambda (f low high subtotal)

 (if (= low high)

 (+ subtotal (f low))

 (summation f (+ low 1) high (+ subtotal (f low))))))

Last one: Note that it passes
along an accumulator.

Maria Hybinette, UGA 79

Recursion

!! equally powerful to iteration

!! mechanical transformations back and forth

!! often more intuitive (sometimes less)

!! naïve implementation less efficient

»! no special syntax required

»! fundamental to functional languages like Scheme

Maria Hybinette, UGA 80

Expression Evaluation: Short
Circuiting

!!Consider (a < b) && (b < c):

»!If a >= b there is no point evaluating

whether b < c because (a < b) && (b

< c) is automatically false

!!Other similar situations

 if (b != 0 && a/b == c) ...

 if (*p && p->foo) ...

 if (f || messy()) ...

