
Maria Hybinette, UGA

1

CSCI: 4500/6500 Programming
Languages

SED & AWK

Maria Hybinette, UGA 2

sed: Stream Oriented, Non-
Interactive, Text Editor

!! Line-oriented tool for pattern matching and
replacement (stream editor)

»! Looks for patterns one line at a time, like grep

»! “Change” lines of the file (but acts as a filter)

–! Filter, i.e., does not modify input file

»! There is an interactive editor ed that accepts the
same commands

!! Not really a programming language (cf. awk)

Maria Hybinette, UGA 3

 Syntax

!!sed [-n] [-e] [‘command’] [file…]

!!sed [-n] [-f scriptfile] [file…]

»!-n – supress output of input lines

»!-f scriptfile - next argument is a filename
containing editing commands

»!-e command - the next argument is an editing
command rather than a filename, useful if
multiple commands are specified

Maria Hybinette, UGA 4

Command! (function)

!!sed [-n] [-e] [‘command’] [file…]

!!Commands::
»!s – substition [address]s/pattern/flags

»! d – delete

»!And more: y-transform, p-print

!! Example
 echo “UNIX programming” | sed 's/.nc./wonderful &/’

Maria Hybinette, UGA 5

Constraining matches by
addressing

!! Commands can be constrained to accept only
single line addresses or ranges of address (or
a pattern).

Maria Hybinette, UGA 6

!!Diving In Example:
»! echo “UNIX programming” | sed 's/.nc./wonderful &/'

Maria Hybinette, UGA 7

Another Example

!! sed [-n] [-e] [‘command’] [file…]\\

{saffron} cat test1.txt

first:second

one:two

{saffron} sed 's/\(.*\):\(.*\)/\2:\1/' test1

Maria Hybinette, UGA 8

Another Example

!! sed [-n] [-e] [‘command’] [file…]\\

{saffron} cat test1.txt

first:second

one:two

{saffron} sed 's/\(.*\):\(.*\)/\2:\1/' test1

second:first

two:one

Maria Hybinette, UGA 9

Address Example

!! Address:

!! delete lines 1-10: sed -e '1,10d‘

{h70-33-107-14:ingrid:919} sed -e ‘5,14d' afile.txt

1

2

3

4

{h70-33-107-14:ingrid:920}

Maria Hybinette, UGA 10

More examples

!! Convert unix to dos characters.

»!sed -e 's/$/\r/' myunix.txt > mydos.txt!!

!! Transform (by character position)

!! echo “maria hybinette” | sed -e ’y/aie/xyz/’

!! s/Tom/Dick/2

»! Substitutes Dick for the second occurrence of Tom in the
pattern space

!! s/wood/plastic/p

»! Substitutes plastic for the first occurrence of wood and
outputs (prints) pattern space!

Maria Hybinette, UGA 11

Append, Insert, and Change

Syntax for these commands is a little
strange because they must be specified
on multiple lines

!! append [address]a\

 text

!! insert [address]i\

 text

!!change [address(es)]c\

 text

!!append/insert for single lines only, not
range

Maria Hybinette, UGA 12

Change Examples

!! Remove mail headers,
ie; the address specifies
a range of lines
beginning with a line
that begins with From
until the first blank line.

»! The first example
replaces all lines with a
single occurrence of
<Mail Header Removed>.

»! The second example
replaces each line with
<Mail Header Removed>

/^From: /,/^$/c\

 <Mail Headers Removed>

/^From: /,/^$/{

s/^From //p

c\

<Mail Header Removed>

}

Maria Hybinette, UGA 13

Sed Advantages

!! Regular expressions

!! Fast

!! Concise

Maria Hybinette, UGA 14

Sed Drawbacks

!! Hard to remember text from one line to
another

!! Not possible to go backward in the file

!! No way to do forward references

like /..../+1

!! No facilities to manipulate numbers

!! Cumbersome syntax

Maria Hybinette, UGA

15

Awk

Programmable Filters

Maria Hybinette, UGA 16

Aho Weinberger Kernighan

Why is it called AWK?

Maria Hybinette, UGA 17

Awk Introduction

!!A general purpose programmable filter that
handles text (strings) as easily as numbers

»!This makes awk one of the most powerful of the
Unix utilities

!!awk processes fields while sed only processes
lines

!!nawk (new awk) is the new standard for awk

»!Designed to facilitate large awk programs

»!gawk is a free nawk clone from GNU

Maria Hybinette, UGA 18

Awk Input

!!awk gets its input from

»!files

»!redirection and pipes

»!directly from standard input

Maria Hybinette, UGA 19

AWK Highlights

!!A programming language for handling
common data manipulation tasks with only
a few lines of code

!!awk is a pattern-action language, like sed

!!Looks like C but automatically handles
input, field splitting, initialization, and
memory management

»!Built-in string and number data types

»!No variable type declarations

!!awk is a great prototyping language

»!Start with a few lines and keep adding until it
does what you want

Maria Hybinette, UGA 20

Awk Features over Sed

!! Convenient numeric processing

!! Variables and control flow in the actions

!! Convenient way of accessing fields within
lines

!! Flexible printing

!! Built-in arithmetic and string functions

!! C-like syntax

Maria Hybinette, UGA 21

BEGIN {action}

pattern

{action}

pattern

{action}

 .

 .

 .

pattern

{ action}

END {action}

Structure of an AWK Program

!!An optional BEGIN
segment

–! For processing to execute
prior to reading input

!!pattern - action pairs
–! Processing for input data

–! For each pattern matched,
the corresponding action is
taken

!!An optional END segment
–! Processing after end of input

data

Maria Hybinette, UGA 22

Review: What is AWK?

!! Programming language used for manipulating
data and generating pretty reports.

»! Job control too.

Maria Hybinette, UGA 23

Running an AWK Program

!!There are several ways to run an Awk
program

»!awk 'program' input_file(s)

–! program and input files are provided as
command-line arguments

»!awk 'program'

–! program is a command-line argument; input is
taken from standard input (yes, awk is a filter!)

»!awk -f program_file input_files

–! program is read from a file

Maria Hybinette, UGA 24

Patterns and Actions

!! Search a set of files for patterns.

!! Perform specified actions upon lines or fields
that contain instances of patterns.

!! Does not alter input files.

!! Process one input line at a time

!! This is similar to sed

Maria Hybinette, UGA 25

Pattern-Action Structure

!!Every program statement has to have a
pattern or an action or both

»!Default pattern is to match all lines

»!Default action is to print current record

!!Patterns are simply listed;
»! actions are enclosed in { }

!!awk scans a sequence of input lines, or
records, one by one, searching for lines that
match the pattern

»!Meaning of match depends on the pattern

Maria Hybinette, UGA 26

Patterns

!!Selector that determines whether action is
to be executed

!!pattern can be:

»!the special token BEGIN or END

»!regular expression (enclosed with //)

»!relational or string match expression

»!! negates the match

»!arbitrary combination of the above using && ||

–!/NYU/ matches if the string “NYU” is in the record

–!x > 0 matches if the condition is true

–!/NYU/ && (name == "UNIX Tools")

Maria Hybinette, UGA 27

BEGIN and END patterns

!! BEGIN and END provide a way to gain control
before and after processing, for initialization
and wrap-up.

»!BEGIN: actions are performed before the first input
line is read.

»! END: actions are done after the last input line has
been processed.

Maria Hybinette, UGA 28

Actions

!!Action
»! list of one or more C like statements

»! arithmetic and string expressions and

»! assignments and multiple output streams.

!!action is performed on every line that
matches pattern.

»!If pattern is not provided, action is performed on every input
line

»! If action is not provided, all matching lines are sent to

standard output.

Maria Hybinette, UGA 29

An Example

ls | awk '

BEGIN { print "List of html files:" }

/\.html$/ { print }

END { print "There you go!" }

'

List of html files:

index.html

as1.html

as2.html

There you go!

Maria Hybinette, UGA 30

Awk examples

!! Add up first column, print sum and average

!! {s += $1 }

!! END {print “sum is”, s, “average is”, s/NR}

!! awk -f awkprogram awkfile

