
Maria Hybinette, UGA 1

CSCI: 4500/6500 Programming
Languages

Motivation & Big Picture

Maria Hybinette, UGA 2

Why learn new [programming]
languages?

!  Communicate ideas better
» Become a better communicator (programming skills)

–  Translate ideas to words
» Become a better listener (‘compile’ information

efficiency)
–  Translate words to ideas

!  Comprehension:
»  Speakers ability to translate ideas into language
»  Listeners ability to translate work into ideas

Maria Hybinette, UGA 3

Why study programming
language concepts?

!  One School of thought in Linguists:
»  A Language “shapes the way we think” and determines
“what we can think about” [Whorf-Sapir Hypothesis 1956]

»  Programmers only skilled in one language may not have a
deep understanding of concepts of other languages,
whereas those who are multi-lingual can solve problems in
many different ways.

!  Help you choose appropriate languages for different
application domains

!  Increased ability to learn new languages
»  Concepts have more similarities

!  Easier to express ideas
!  Helps you make better use of whatever language you do

use

Maria Hybinette, UGA 4

What is programming language?

!  Translator between you (ideas), the programmer
and the computer’s native language

!  Computer’s native language:
» A computer is composed of on/off switches that tells

the computer what to do.
–  01111011 01111011 01111011 !

!  How?
» Read by assemblers, compilers and interpreters and

converted into machine code that the computer
understands

Maria Hybinette, UGA 5

What are components of a
programming language?

!  Like English -- each programming language has
its own grammar, syntax (more details on this
next week) and semantics.

Maria Hybinette, UGA 6

Programming Language
Definition

!  Syntax
»  Similar to the grammar of a natural language
»  Most languages defined uses a context free grammar (Chomsky’s type

2 grammar which can be described by non-deterministic PDA):
–  Production rules: A ! ", where A is a single non terminal and " is string

of terminals and non terminals (regular languages are more restrictive " #
{ $, aA, a })

–  Example: the language of properly matched parenthesis is generated by
the grammar: S ! | SS | (S) | $

–  <if-statement> ::= if (<expression>) <statement> [else <statement>]

!  Semantics
»  What does the program “mean”?
»  Description of an if-statement [K&R 1988]:

–  An if-statement is executed by first evaluating its expression, which must have
arithmetic or pointer type, including all side-effects, and if it compares unequal to
0, the statement following the expression is executed. If there is an else part,
and the expression is 0, the statement following the else is executed.

Maria Hybinette, UGA 7

Why are there so many
programming languages?

!  Evolution: We learn ‘better’ ways of doing
things over time

!  Application Domains: Different languages are
good for different application domains with
different needs that often conflict (next slide)

»  Special purpose: Hardware and/or Software
!  Socio-Economical: Proprietary interests,

commercial advantage
!  Personal Preferences: For example, some

prefers recursive thinking and other prefers
iterative thinking

Maria Hybinette, UGA 8

Some Application Domains

!  Scientific computing: Large number of floating point
computations (e.g. Fortran)

!  Business applications: Produce reports, use decimal
numbers and characters (e.g. COBOL)

!  Artificial intelligence: Symbols rather than numbers
manipulated (e. g. LISP)

!  Systems programming: Need efficiency because of
continuous use, low-level access (e.g., C)

!  Web Software: Eclectic collection of languages:
markup (e.g., XHTML-- not a programming language),
scripting (e.g., PHP), general-purpose (e.g., Java)

!  Academic: Pascal, BASIC

Maria Hybinette, UGA 9

What makes a language
successful?

!  Expressiveness: Easy to express things, easy use
once fluent, "powerful” (C, Common Lisp, APL,
Algol-68, Perl)

!  Learning curve: Easy to learn (BASIC, Pascal, LOGO,
Scheme)

!  Implementation: Easy to implement (BASIC, Forth)
!  Efficient: Possible to compile to very good (fast/small)

code (Fortran)
!  Sponsorship: Backing of a powerful sponsor (COBOL,

PL/1, Ada, Visual Basic)
!  Cost: Wide dissemination at minimal cost (Pascal,

Turing, Java)

Maria Hybinette, UGA 10

What makes a good language?

Lets look at some characteristics and see how they
affect the criteria below [Sebesta]:

!  Readability: the ease with which programs can be
read and understood

!  Writability: the ease with which a language can be
used to create programs

!  Reliability: conformance to specifications (i.e.,
performs to its specifications)

!  Cost: the ultimate total cost (includes efficiency)

No universal accepted metric for design.
The “Art “ of designing programming languages

Maria Hybinette, UGA 11

Characteristics

!  Simplicity:
» Modularity, Compactness

(encapsulation, abstraction)
» Orthogonality (mutually

independent; well separated)

!  Expressivity
!  Syntax
!  Control Structures
!  Data types & Structures
!  Type checking
!  Exception handling

sets of library or system
calls runs up against human
cognitive constraints
producing Hatton’s U-Curve]
Raymond’s The Art of Unix
Programming]!

Bug Density

0
Module Size (logical lines)

200 400 600 800

Too small Just right Too large

Maria Hybinette, UGA 12

Compactness (Raymond)

!  Compact: Fits inside a human head
»  Test: Does an experienced user normally need a

manual?
» Not the same as weak (can be powerful and flexible)
» Not the same as easily learned

–  Example: Lisp has a tricky model to learn then it
becomes simple

» Not the same as small either (may be predictable
and obvious to an experienced user with many
pieces)

!  Semi-compact: Need a reference or cheat
sheet card

Maria Hybinette, UGA 13

Compactness

!  The Magical Number Seven, Plus or Minus Two: Some
Limits on Our Capacity for Processing Information
[Miller 1956]

»  Does a programmer have to remember more than seven
entry points? Anything larger than this is unlikely to be
strictly compact.

!  C & Python are semi-compact
!  Perl, Java and shells are not (especially since serious

shell programming requires you to know half-a-dozen
other tools like sed(1) and awk(1)).

!  C++ is anti-compact -- the language's designer has
admitted that he doesn't expect any one programmer
to ever understand it all.

Maria Hybinette, UGA 14

Orthogonality

!  Mathematically means: ”Involving right angles”
!  Computing: Operations/Instructions do not have side

effects; each action changes just one thing without
affecting others.

!  Small set of primitive constructs can be combined in a
relatively small number of ways (every possible
combination is legal)

»  Example monitor controls:
–  Brightness changed independently of the contrast level, color

balance independently of both.
!  Don’t repeat yourself rule: Every piece of knowledge must

have a single, unambiguous, authoritative representation
within a system, or as Kernighan calls this: the Single Point
Of Truth or SPOT rule.

!  Easier to re-use mutually independent and well separated

Maria Hybinette, UGA 15

Affects Readability

!  Overall simplicity
»  Compactness
»  Few “feature multiplicity” (c+=1, c++)

–  (means of doing the same operation)
»  Minimal operator overloading

!  Orthogonality
!  Syntax considerations

»  Special words for compounds (e.g., end if.)
»  Identifier forms (short forms of Fortran example)

!  Control statements
»  Data structures facilities (true/1)
»  Control structures (while vs goto example next!

Simplicity x

Control Structures x
Data types &
Structures

x

Syntax Design x
Support Abstraction

Expressivity

Type Checking

Exception Handling

Restrictive Aliasing

Maria Hybinette, UGA 16

while vs goto
!
while(incr < 20)!
!{!
!while(sum <= 100)!
! !{!
! !sum += incr;!
! !}!
!incr++;!
!}!
!

!
loop 1:!
!if(incr >= 20)!
! !goto out;!
loop 2:!
!if(sum > 100)!
! !goto next;!
!sum += incr;!
!goto loop 2;!
next:!
!incr++;!
!goto loop 1;!
out:!!  Comparison of a nested loop

versus doing the same task in a
language without adequate control
statements.

!  Which is more readable?

Maria Hybinette, UGA 17

Affect Writability

!  Simplicity and orthogonality
»  Few constructs, a small number of

primitives, a small set of rules for
combining them

!  Support for abstraction
»  The ability to define and use complex

structures or operations in ways that
allow details to be ignored

!  Expressivity
»  A set of relatively convenient ways of

specifying operations
»  Example: the inclusion of for

statement in many modern languages

Simplicity
Orthogonality

x

Control Structures x
Data types &
Structures

x

Syntax Design x
Support
Abstraction

x

Expressivity x
Type Checking

Exception Handling

Restrictive Aliasing

Maria Hybinette, UGA 18

Affects Reliability

!  Type checking
»  Testing for type errors

!  Exception handling
»  Intercept run-time errors and take

corrective measures
!  Aliasing

»  Presence of two or more distinct
referencing methods for the same
memory location

!  Readability and writability
»  A language that does not support
“natural” ways of expressing an
algorithm will necessarily use
“unnatural” approaches, and hence
reduced reliability

Simplicity
Orthogonality

x

Control Structures x
Data types &
Structures

x

Syntax Design x
Support Abstraction x
Expressivity x
Type Checking x
Exception Handling x
Restrictive Aliasing x

Maria Hybinette, UGA 19

Summary

Criteria

Readability Writability Reliability

Simplicity: Modular,
Compact & Orthogonal x x x

Control Structures x x x
Data types & Structures x x x
Syntax Design x x x
Support Abstraction x x
Expressivity x x
Type Checking x
Exception Handling x
Restrictive Aliasing x

Maria Hybinette, UGA 20

Affects Cost

!  Training programmers to use language
!  Writing programs (closeness to particular

applications)
!  Compiling programs
!  Executing programs
!  Language implementation system: availability

of free compilers
!  Reliability: poor reliability leads to high costs
!  Maintaining programs

Maria Hybinette, UGA 21

Others

!  Portability
»  The ease with which programs can be moved from

one implementation to another

!  Generality
»  The applicability to a wide range of applications

!  Well-definedness
»  The completeness and precision of the language’s

official definition

Maria Hybinette, UGA 22

Design Trade-offs

!  Reliability vs. cost of execution
»  Example: Java demands all references to array elements

be checked for proper indexing but that leads to
increased execution costs

!  Readability vs. writability
»  Example: APL provides many powerful operators (and a

large number of new symbols), allowing complex
computations to be written in a compact program but at
the cost of poor readability

!  Writability (flexibility) vs. reliability
»  Example: C++ pointers are powerful and very flexible but

not reliably uses

Maria Hybinette, UGA 23

Language Implementation Methods

!  Compilation vs. Interpretation
»  Not opposites, not a clear cut

distinction
!  Pure Compilation

»  The compiler translates the
high-level source program
into an equivalent target
program (typically in machine
language), and then goes
away:

Source Program

Target Program

Compiler

Input Output

Maria Hybinette, UGA 24

Compilation vs. Interpretation

!  Pure Interpretation
»  Interpreter stays around for the execution of the

program
»  Interpreter is the locus of control during execution

Source Program

Interpreter

Input

Output

Maria Hybinette, UGA 25

Compilation vs. Interpretation

!  Interpretation:
» Greater flexibility
» Better diagnostics (error messages, related to the

text of source)
»  Platform independence
»  Example: Java, Perl, Ruby, Python, Lisp, Smalltalk

!  Compilation:
» Better performance
» C, Fortran, Ada, Algol

Maria Hybinette, UGA 26

Hybrid: Compilation and
Interpretation

!  Compilation or simple preprocessing
followed by interpretation

!  In practice most language implementations
include a mixture of compilation and
interpretation (Perl)

!  “Initial translation is simple” : Interpreted
!  “Translation process is complicated” : Compiled

Source Program

Virtual Machine

Translator

Intermediate
program

Input
Output

Maria Hybinette, UGA 27

Other implementation strategies

!  Preprocessor - removes comments and
white space, expand macros.

!  Library routines and linking - math
routines, system programs (e.g., I/O)

!  Post-compilation assembly - compiler
compiles to assembly. Facilitates
debugging & isolate debugger from
changes in machine language (only
assembler need to be changed)

!  Just-In-Time Compilation - delay
compilation until last possible moment

»  Lisp, Prolog - compiles on fly
»  Java’s JIT - byte code ! machine code
»  C# ! .NET Common Intermediate

Language (CIL) ! machine code

Preprocessor

Linker

Compiler
Library
routines

Incomplete machine
language

Source program

Machine language

Maria Hybinette, UGA 28

Overview Compilation Process

Code Generator

Intermediate
Code Generator

Semantic
Analyzer

Scanner

Lexical
Analyzer

Parser

Syntax
Analyzer

Computer

Symbol
Table

Lexical units, token stream

Parse tree

Abstract syntax tree or
 other intermediate form

Machine Language

Optimizer
(optional)

Source program

Maria Hybinette, UGA 29

Scanning

!  Divides the program into "tokens”
»  These are the smallest meaningful

units; this saves time, since
character-by-character processing
is slow

–  you can design a parser to take
characters instead of tokens as
input, but it isn't pretty

!  We can tune the scanner better if its
job is simple; it also saves
complexity (lots of it) for later
stages

!  Scanning is recognition of a regular
language, e.g., via DFA

!  Examples: Lex, Flex (tutorial next
week)

Abstract syntax tree or
 other intermediate form

Code Generator

Scanner

Lexical
Analyzer

Parser

Syntax
Analyzer

Symbol
Table

Lexical units, token stream

Parse tree

Machine Language

Optimizer
(optional)

Source program

Intermediate

Semantic
Analyzer

Maria Hybinette, UGA 30

Parsing

!  A parser recognize how the tokens
are combined in more complex
syntactic structures determining its
grammatical structure given a
grammar.

!  Informally, it finds the structure you
can describe with syntax diagrams
(the "circles and arrows" in a Pascal
manual)

!  Example Tools: Yacc, Bison (tutorial
next week).

Abstract syntax tree or
 other intermediate form

Code Generator

Scanner

Lexical
Analyzer

Parser

Syntax
Analyzer

Symbol
Table

Lexical units, token stream

Parse tree

Machine Language

Optimizer
(optional)

Source program

Intermediate

Semantic
Analyzer

Maria Hybinette, UGA 31

Semantic Analysis

!  Discovery of meaning in the
program

!  The compiler actually does what is
called STATIC semantic analysis.
That's the meaning that can be
figured out at compile time

!  Some things (e.g., array subscript
out of bounds) can't be figured out
until run time. Things like that are
part of the program's DYNAMIC
semantics

Abstract syntax tree or
 other intermediate form

Code Generator

Scanner

Lexical
Analyzer

Parser

Syntax
Analyzer

Symbol
Table

Lexical units, token stream

Parse tree

Machine Language

Optimizer
(optional)

Source program

Intermediate

Semantic
Analyzer

Maria Hybinette, UGA 32

Intermediate Form (IF)

!  Done after semantic analysis (if
the program passes all checks)

!  IFs are often chosen for machine
independence, ease of
optimization, or compactness
(these are somewhat
contradictory)

!  They often resemble machine code
for some imaginary idealized
machine; e.g. a stack machine, or
a machine with arbitrarily many
registers

!  Many compilers actually move the
code through more than one IF

Abstract syntax tree or
 other intermediate form

Code Generator

Scanner

Lexical
Analyzer

Parser

Syntax
Analyzer

Symbol
Table

Lexical units, token stream

Parse tree

Machine Language

Optimizer
(optional)

Source program

Intermediate

Semantic
Analyzer

Maria Hybinette, UGA 33

Optimization and Code
Generation Phase

!  Optimization takes an intermediate
code program and produces
another one that does the same
thing faster, or in less space

»  The term is a misnomer; we just
improve code

»  The optimization phase is optional
»  Certain machine-specific

optimizations (use of special
instructions or addressing modes,
etc.) may be performed during or
after code generation

!  Code generation phase produces
assembly language or (sometime)
relocatable machine language

Abstract syntax tree or
 other intermediate form

Code Generator

Scanner

Lexical
Analyzer

Parser

Syntax
Analyzer

Symbol
Table

Lexical units, token stream

Parse tree

Machine Language

Optimizer
(optional)

Source program

Intermediate

Semantic
Analyzer

Maria Hybinette, UGA 34

Symbol Table

!  All phases rely on a symbol table
that keeps track of all the
identifiers in the program and what
the compiler knows about them

!  This symbol table may be retained

(in some form) for use by a
debugger, even after compilation
has completed

Abstract syntax tree or
 other intermediate form

Code Generator

Scanner

Lexical
Analyzer

Parser

Syntax
Analyzer

Symbol
Table

Lexical units, token stream

Parse tree

Machine Language

Optimizer
(optional)

Source program

Intermediate

Semantic
Analyzer

Maria Hybinette, UGA 35

!  Next week more details on syntax (tutorial)
!  Next week:

»  Programming language history
» Overview of different programming paradigms

–  Imperative, Functional, Logical, !

