
Maria Hybinette, UGA 1

CSCI: 4500/6500 Programming
Languages

Origin & Evolution

Maria Hybinette, UGA 3

Programming Paradigm:
Imperative

!! Imperative programming: Describes computation in terms of a
program state and statements that change the program state. !

»! Central features are variables, assignment statement and iterations!

»! sequence of commands for the computer to perform

»! FORTRAN, Algol, Pascal, C

»! von Neumann

!! Object Oriented programming: Computer program is composed

of a collection of units, or objects that act on each other (instead
of a collection of functions. Each objects is capable of receiving a
message, processing data and sending messages to other objects

!! Scripting

Maria Hybinette, UGA 4

Programming Paradigm:
Declarative

!! Not Imperative: Describes what computation should be performed
and not how to compute it

!! Functional or Applicative, Programming: Treats computation as

the evaluation of mathematical functions.

»! Reactive

»! emphasizes the definitions of functions rather than implementations of
state machines (idea is to apply functions to given parameters).

»! Can be done without assignment statements, and without iteration.

»! Advantage: no side-effects

»! Scheme, LISP, SM

!! Logic programming: Defines “what” to be computed, rather than

“how” the computation takes place. Example, in Prolog, you
supply a database of facts and rules: and perform queries on the
database.

»! Goal directed: Contraints

Maria Hybinette, UGA 5

First General Purpose Machine

!! Charles Babbage designed the first computer,

the Analytical Engine, starting in 1823 never
completed but build 100 years later

!! A store (memory) holding 1000 numbers

!! An arithmetical unit

!! Assembly like language

!! Loops

!! Conditionals

!! 3 types of punch cards (similar to ones that

described patterns for weaving machines)

»! one for arithmetical , constants, one for

loads/store

Maria Hybinette, UGA 6

Ada Lovelace: First Programmer

!! Worked with Babbage,

daughter of Lord Byron

!! Mathematician

!! Created first program for the

Analytical Engine

»! Plan for calculating Bernoulli

numbers

!! Language ADA named in her

honor

Maria Hybinette, UGA 7

Zuse’s Plankalkül: First High-
Level Programming Language

!! Formulated a language using predicate
logic (Prolog like), boolean algebra and
data structures for his general purpose
relay computer called the Z4 (which
survived the war) around 1942-1945,
not published until 1972. First compiler
implemented in 2000 5 years after
Zuse’s death.

!! Assignment statements, subroutines,
conditional statements, iteration,
floating point, hierarchical records,
assertions, exceptions handling, goal
directed execution, arrays.

Maria Hybinette, UGA 8

Grace Hoper: The First Compiler

!! Mathematical PhD Yale 1934

!! Wrote first compiler, the “A”

compliler for programming

!! Co-designer of COBOL

(Common Business Oriented

Language) the most widely
used programming language

until recently (1959). 1960 –
compiler built. Influenced by

Flowmatic.

First Computer Bug?

http://www.history.navy.mil/photos/images/h96000/h96566kc.htm

Photo #: NH 96566-KN (Color)!

The First "Computer Bug"!

Moth found trapped between points at Relay

70, Panel F, of the Mark II Aiken Relay

Calculator while it was being tested at

Harvard University, 9 September 1945. The

operators affixed the moth to the computer

log, with the entry: "First actual case of bug

being found". They put out the word that

they had "debugged" the machine, thus

introducing the term "debugging a computer

program".!

In 1988, the log, with the moth still taped by

the entry, was in the Naval Surface Warfare

Center Computer Museum at Dahlgren,

Virginia.!

Courtesy of the Naval Surface Warfare

Center, Dahlgren, VA., 1988.!

U.S. Naval Historical Center Photograph.!

Maria Hybinette, UGA 10

First Major Language:
FORTRAN

!! Developed by John Backus for IBM
704 (1955)

!! Scientific Computing

!! Names could have up to six
characters

!! Post-test counting loop (DO)

!! Formatted I/O

!! User-defined subprograms

!! Three-way selection statement
(arithmetic IF)

!! No data typing statements

Maria Hybinette, UGA 11

Fortran II

!! Distributed in 1958

»! Independent compilation

»! Fixed the bugs

Maria Hybinette, UGA 12

Fortran IV

!! Evolved during 1960-62

»! Explicit type declarations

»! Logical selection statement

»! Subprogram names could be parameters

»!ANSI standard in 1966

Maria Hybinette, UGA 13

Fortran 77

!! Became the new standard in 1978

»!Character string handling

»! Logical loop control statement

»!IF-THEN-ELSE statement

Maria Hybinette, UGA 14

Fortran 90

!! Most significant changes from Fortran 77

»!Modules

»!Dynamic arrays

»! Pointers

»!Recursion

»!CASE statement

»! Parameter type checking

Maria Hybinette, UGA 15

Fortran Evaluation

!! Highly optimizing compilers (all versions

before 90)

»! Types and storage of all variables are fixed before

run time

!! Dramatically changed forever the way

computers are used

Maria Hybinette, UGA 16

Functional Programming: LISP

!! LISt Processing language (2nd oldest high

level programming language – FORTRAIN is
oldest)

»! Designed at MIT by McCarthy (1958)

!! AI research needed a language to

»! Process data in lists (rather than arrays)

»! Symbolic computation (rather than numeric)

!! Only two data types: atoms and lists

!! Syntax is based on Alonzo Church’s lambda

calculus

Maria Hybinette, UGA 17

Representation of Two LISP Lists

Maria Hybinette, UGA 18

LISP Evaluation

!! Pioneered functional programming

»!No need for variables or assignment

»!Control via recursion and conditional expressions

!! Still the dominant language for AI

!! COMMON LISP and Scheme are

contemporary dialects of LISP

!! ML, Miranda, and Haskell are related

languages

Maria Hybinette, UGA 19

Scheme

!! Developed at MIT in mid 1970s

!! Small

!! Extensive use of static scoping

!! Functions as first-class entities

!! Simple syntax (and small size) make it ideal

for educational applications

Maria Hybinette, UGA 20

COMMON LISP

!! An effort to combine features of several

dialects of LISP into a single language

!! Large, complex

Maria Hybinette, UGA 21

The First Step Toward Sophistication:
ALGOL 60

!! Environment of development

»! FORTRAN had (barely) arrived for IBM 70x

»!Many other languages were being developed, all for

specific machines

»!No portable language; all were machine-

dependent

»!No universal language for communicating

algorithms

!! ALGOL 60 was the result of efforts to design

a universal language

Maria Hybinette, UGA 22

Early Design Process

!! ACM and GAMM met for four days for design

(May 27 to June 1, 1958)

!! Goals of the language

»!Close to mathematical notation

»!Good for describing algorithms

»!Must be translatable to machine code

Maria Hybinette, UGA 23

ALGOL 58

!! Concept of type was formalized

!! Names could be any length

!! Arrays could have any number of subscripts

!! Parameters were separated by mode (in & out)

!! Subscripts were placed in brackets

!! Compound statements (begin ... end)

!! Semicolon as a statement separator

!! Assignment operator was :=

!! if had an else-if clause

!! No I/O - “would make it machine dependent”

Maria Hybinette, UGA 24

ALGOL 58 Implementation

!! Not meant to be implemented, but variations

of it were (MAD, JOVIAL)

!! Although IBM was initially enthusiastic, all

support was dropped by mid 1959

Maria Hybinette, UGA 25

ALGOL 60 Overview

!! Modified ALGOL 58 at 6-day meeting in Paris

!! New features

»!Block structure (local scope)

»! Two parameter passing methods

»! Subprogram recursion

»! Stack-dynamic arrays

»! Still no I/O and no string handling

Maria Hybinette, UGA 26

ALGOL 60 Evaluation

!! Successes

»! It was the standard way to publish algorithms for
over 20 years

»!All subsequent imperative languages are based on

it

»! First machine-independent language

»! First language whose syntax was formally defined

(BNF)

Maria Hybinette, UGA 27

ALGOL 60 Evaluation
(continued)

!! Failure

»!Never widely used, especially in U.S.

»!Reasons

–! Lack of I/O and the character set made programs

non-portable

–! Too flexible--hard to implement

–! Entrenchment of Fortran

–! Formal syntax description

–! Lack of support from IBM

Maria Hybinette, UGA 28

Computerizing Business Records: COBOL

!! Environment of development

»!UNIVAC was beginning to use FLOW-MATIC

»!USAF was beginning to use AIMACO

»! IBM was developing COMTRAN

Maria Hybinette, UGA 29

COBOL Historical Background

!! Based on FLOW-MATIC

!! FLOW-MATIC features

»!Names up to 12 characters, with embedded

hyphens

»! English names for arithmetic operators (no

arithmetic expressions)

»!Data and code were completely separate

»! Verbs were first word in every statement

Maria Hybinette, UGA 30

COBOL Design Process

!! First Design Meeting (Pentagon) - May 1959

!! Design goals

»! Must look like simple English

»! Must be easy to use, even if that means it will be less
powerful

»! Must broaden the base of computer users

»! Must not be biased by current compiler problems

!! Design committee members were all from computer

manufacturers and DoD branches

!! Design Problems: arithmetic expressions?

subscripts? Fights among manufacturers

Maria Hybinette, UGA 31

COBOL Evaluation

!! Contributions

»! First macro facility in a high-level language

»!Hierarchical data structures (records)

»!Nested selection statements

»! Long names (up to 30 characters), with hyphens

»! Separate data division

Maria Hybinette, UGA 32

COBOL: DoD Influence

!! First language required by DoD

»!would have failed without DoD

!! Still the most widely used business

applications language

Maria Hybinette, UGA 33

The Beginning of Timesharing: BASIC

!! Designed by Kemeny & Kurtz at Dartmouth

!! Design Goals:

»! Easy to learn and use for non-science students

»!Must be “pleasant and friendly”

»! Fast turnaround for homework

»! Free and private access

»!User time is more important than computer time

!! Current popular dialect: Visual BASIC

!! First widely used language with time sharing

Maria Hybinette, UGA 34

Everything for Everybody: PL/I

!! Designed by IBM and SHARE

!! Computing situation in 1964 (IBM's point of view)

»! Scientific computing

–! IBM 1620 and 7090 computers

–! FORTRAN

–! SHARE user group

»!Business computing

–! IBM 1401, 7080 computers

–! COBOL

–! GUIDE user group

Maria Hybinette, UGA 35

PL/I: Background

!! By 1963

»! Scientific users began to need more elaborate I/O, like
COBOL had; business users began to need floating
point and arrays

»! It looked like many shops would begin to need two kinds
of computers, languages, and support staff--too costly

!! The obvious solution

»! Build a new computer to do both kinds of applications

»! Design a new language to do both kinds of applications

Maria Hybinette, UGA 36

PL/I: Design Process

!! Designed in five months by the 3 X 3

Committee

»! Three members from IBM, three members from

SHARE

!! Initial concept

»!An extension of Fortran IV

!! Initially called NPL (New Programming

Language)

!! Name changed to PL/I in 1965

Maria Hybinette, UGA 37

PL/I: Evaluation

!! PL/I contributions

»! First unit-level concurrency

»! First exception handling

»! Switch-selectable recursion

»! First pointer data type

»! First array cross sections

!! Concerns

»! Many new features were poorly designed

»! Too large and too complex

Maria Hybinette, UGA 38

Two Early Dynamic Languages: APL and
SNOBOL

!! Characterized by dynamic typing and

dynamic storage allocation

!! Variables are untyped

»!A variable acquires a type when it is assigned a

value

!! Storage is allocated to a variable when it is

assigned a value

Maria Hybinette, UGA 39

APL: A Programming Language

!! Designed as a hardware description language

at IBM by Ken Iverson around 1960

»!Highly expressive (many operators, for both

scalars and arrays of various dimensions)

»! Programs are very difficult to read

!! Still in use; minimal changes

Maria Hybinette, UGA 40

SNOBOL

!! Designed as a string manipulation language

at Bell Labs by Farber, Griswold, and
Polensky

!! Powerful operators for string pattern

matching

!! Slower than alternative languages (and thus

no longer used for writing editors)

!! Stilled used for certain text processing tasks

Maria Hybinette, UGA 41

The Beginning of Data Abstraction:
SIMULA 67

!! Designed primarily for system simulation in

Norway by Nygaard and Dahl

!! Based on ALGOL 60 and SIMULA I

!! Primary Contributions

»!Co-routines - a kind of subprogram

»! Implemented in a structure called a class

»!Classes are the basis for data abstraction

»!Classes are structures that include both local data and

functionality

Maria Hybinette, UGA 42

Orthogonal Design: ALGOL 68

!! From the continued development of ALGOL

60 but not a superset of that language

!! Source of several new ideas (even though the

language itself never achieved widespread

use)

!! Design is based on the concept of

orthogonality

»!A few principle concepts, few combining

mechanisms

Maria Hybinette, UGA 43

ALGOL 68 Evaluation

!! Contributions

»!User-defined data structures

»!Reference types

»!Dynamic arrays (called flex arrays)

!! Comments

»! Less usage than ALGOL 60

»!Had strong influence on subsequent languages,
especially Pascal, C, and Ada

Maria Hybinette, UGA 44

Early Descendants of ALGOLs

!! ALGOL languages impacted all imperative

languages

»! Pascal

»!C

»!Modula/Modula 2

»!Ada

»!Oberon

»!C++/Java

»! Perl (to some extent)

Maria Hybinette, UGA 45

Pascal - 1971

!! Developed by Wirth (a member of the ALGOL

68 committee)

!! Designed for teaching structured

programming

!! Small, simple, nothing really new

!! Largest impact on teaching programming

»! From mid-1970s until the late 1990s, it was the

most widely used language for teaching

programming

Maria Hybinette, UGA 46

C - 1972

!! Designed for systems programming (at Bell

Labs by Dennis Richie)

!! Evolved primarily from BCLP, B, but also

ALGOL 68

!! Powerful set of operators, but poor type

checking

!! Initially spread through UNIX

!! Many areas of application

Maria Hybinette, UGA 47

Perl

!! Related to ALGOL only through C

!! A scripting language

»! A script (file) contains instructions to be executed

»! Other examples: sh, awk, tcl/tk

!! Developed by Larry Wall

!! Perl variables are statically typed and implicitly
declared

»! Three distinctive namespaces, denoted by the first
character of a variable’s name

!! Powerful but somewhat dangerous

!! Widely used as a general purpose language

Maria Hybinette, UGA 48

Programming Based on Logic: Prolog

!! Developed, by Comerauer and Roussel

(University of Aix-Marseille), with help from
Kowalski (University of Edinburgh)

!! Based on formal logic

!! Non-procedural

!! Can be summarized as being an intelligent

database system that uses an inferencing

process to infer the truth of given queries

!! Highly inefficient, small application areas

Maria Hybinette, UGA 49

History’s Largest Design Effort: Ada

!! Huge design effort, involving hundreds of people,

much money, and about eight years

»! Strawman requirements (April 1975)

»!Woodman requirements (August 1975)

»! Tinman requirements (1976)

»! Ironman equipments (1977)

»! Steelman requirements (1978)

!! Named Ada after Augusta Ada Byron, known as

being the first programmer

Maria Hybinette, UGA 50

Ada Evaluation

!! Contributions

»! Packages - support for data abstraction

»! Exception handling - elaborate

»! Generic program units

»! Concurrency - through the tasking model

!! Comments

»! Competitive design

»! Included all that was then known about software

engineering and language design

»! First compilers were very difficult; the first really usable

compiler came nearly five years after the language

design was completed

Maria Hybinette, UGA 51

Ada 95

!! Ada 95 (began in 1988)

»! Support for OOP through type derivation

»!Better control mechanisms for shared data

»!New concurrency features

»!More flexible libraries

!! Popularity suffered because the DoD no

longer requires its use but also because of
popularity of C++

Maria Hybinette, UGA 52

Object-Oriented Programming: Smalltalk

!! Developed at Xerox PARC, initially by Alan

Kay, later by Adele Goldberg

!! First full implementation of an object-oriented

language (data abstraction, inheritance, and

dynamic type binding)

!! Pioneered the graphical user interface design

!! Promoted OOP

Maria Hybinette, UGA 53

Combining Imperative and Object-
Oriented Programming: C++

!! Developed at Bell Labs by Stroustrup in 1980

!! Evolved from C and SIMULA 67

!! Facilities for object-oriented programming, taken partially from
SIMULA 67

!! Provides exception handling

!! A large and complex language, in part because it supports
both procedural and OO programming

!! Rapidly grew in popularity, along with OOP

!! ANSI standard approved in November 1997

!! Microsoft’s version (released with .NET in 2002): Managed C++

»! delegates, interfaces, no multiple inheritance

Maria Hybinette, UGA 54

Related OOP Languages

!! Eiffel (designed by Bertrand Meyer - 1992)

»!Not directly derived from any other language

»! Smaller and simpler than C++, but still has most of

the power

»! Lacked popularity of C++ because many C++

enthusiasts were already C programmers

!! Delphi (Borland)

»! Pascal plus features to support OOP

»!More elegant and safer than C++

Maria Hybinette, UGA 55

An Imperative-Based Object-Oriented
Language: Java

!! Developed at Sun in the early 1990s

»! C and C++ were not satisfactory for embedded electronic
devices

!! Based on C++

»! Significantly simplified (does not include struct, union,
enum, pointer arithmetic, and half of the assignment
coercions of C++)

»! Supports only OOP

»! Has references, but not pointers

»! Includes support for applets and a form of concurrency

Maria Hybinette, UGA 56

Java Evaluation

!! Eliminated unsafe features of C++

!! Concurrency features

!! Libraries for applets, GUIs, database access

!! Portable: Java Virtual Machine concept, JIT

compilers

!! Widely used for WWW pages

!! Use for other areas increased faster than any

other language

!! Most recent version, 5.0, released in 2004

Maria Hybinette, UGA 57

Scripting Languages for the Web

!! JavaScript

»! A joint venture of Netscape and Sun Microsystems

»! Used in Web programming (client side) to create dynamic HTML
documents

»! Related to Java only through similar syntax

!! PHP

»! PHP: Hypertext Preprocessor

»! Used for Web applications (server side); produces HTML code
as output

!! Python

»! An OO interpreted scripting language

»! Type checked but dynamically typed

»! Supports CGI and form processing

Maria Hybinette, UGA 58

A C-Based Language for the New
Millennium: C#

!! Part of the .NET development platform

!! Based on C++ , Java, and Delphi

!! Provides a language for component-based software

development

!! All .NET languages (C#, Visual BASIC.NET, Managed

C++, J#.NET, and Jscript.NET) use Common Type

System (CTS), which provides a common class

library

!! Likely to become widely used

Maria Hybinette, UGA 59

Markup/Programming Hybrid Languages

!! XSLT

»! eXtensible Markup Language (XML): a metamarkup

language

»! eXtensible Stylesheet Language Transformation (XSTL)

transforms XML documents for display

»! Programming constructs (e.g., looping)

!! JSP

»! Java Server Pages: a collection of technologies to

support dynamic Web documents

»! servlet: a Java program that resides on a Web server;

servlet’s output is displayed by the browser

Maria Hybinette, UGA 60

99 Bottles of Beer in 877 different
programming languages (1994)

#include <stdio.h> /* C version */!

int main(void)!
{ !
int b;!

for(b = 99; b >= 0; b--) {!
 switch (b) {!
 case 0:!
 printf("No more bottles of beer on the wall, no more bottles of beer.\n");

!printf("Go to the store and buy some more, 99 bottles of beer on the wall.\n");!
!break;!

 case 1:!
!printf("1 bottle of beer on the wall, 1 bottle of beer.\n");!
!printf("Take one down and pass it around, no more bottles of beer on the wall

\n");!
!break;!

 default:!
!printf("%d bottles of beer on the wall, %d bottles of beer.\n", b, b); !
!printf("Take one down and pass it around, %d %s of beer on the wall.\n"!
!,b - 1 ,((b - 1) > 1)? "bottles" : "bottle");!
!break;!
!}!

} !
return 0;!
}!

10 REM BASIC Version of 99 Bottles of beer!
20 FOR X=100 TO 1 STEP -1!
30 PRINT X;"Bottle(s) of beer on the wall,";X;"bottle(s) of beer"!
40 PRINT "Take one down and pass it around,"!
50 PRINT X-1;"bottle(s) of beer on the wall"!
60 NEXT!

Maria Hybinette, UGA 61

99 Bottles of Beer in 877 different
programming languages (1994)

;;; Tim Goodwin (tim@pipex.net) Scheme!
(define bottles !
 (lambda (n) !
 (cond ((= n 0) (display "No more bottles")) !
 ((= n 1) (display "One bottle")) !
 (else (display n) (display " bottles"))) !
 (display " of beer")))!

(define beer !
 (lambda (n) !
 (if (> n 0) !
 (begin !
 (bottles n) (display " on the wall") (newline) !
 (bottles n) (newline) !
 (display "Take one down, pass it around") (newline) !
 (bottles (- n 1)) (display " on the wall") (newline) !
 (newline) !
 (beer (- n 1))))))!
(beer 99)!

Maria Hybinette, UGA 62

99 Bottles of Beer in 877 different
programming languages (1994)

#!/usr/local/bin/python!

python version of 99 bottles of beer, compact edition!

by Fredrik Lundh (fredrik_lundh@ivab.se)!

def bottle(n):!

 try:!

 return { 0: "no more bottles",!

 1: "1 bottle"} [n] + " of beer"!

 except KeyError: return "%d bottles of beer" % n!

for i in range(99, 0, -1):!

 b1, b0 = bottle(i), bottle(i-1)!

 print "%(b1)s on the wall, %(b1)s,\n"\!

! "take one down, pass it around,\n"\!

! "%(b0)s on the wall." % locals()!

#!/usr/bin/awk -f!
awk version of 99 bottles of beer!
by Whitey (whitey@netcom.com) - 06/05/95!

BEGIN { !
 for(i = 99; i > 0; i--) {!
 print s = bottle(i), "on the wall,", s ","!
 print "take one down, pass it around,"!
 print bottle(i - 1), "on the wall."!
 }!
}!

function bottle(n) {!
 return sprintf("%s bottle%s of beer", n ? n : "no
more", n - 1 ? "s" : "")!
}!

Maria Hybinette, UGA 63

99 Bottles of Beer in 877 different
programming languages (1994)

% 99 bottles of beer. Prolog!

% Remko Troncon <spike@kotnet.org>!

bottles :-!

 bottles(99).!

bottles(1) :- !

 write('1 bottle of beer on the wall, 1 bottle of beer,'), nl,!

 write('Take one down, and pass it around,'), nl,!

 write('Now they are alle gone.'), nl.!

bottles(X) :-!

 X > 1,!

 write(X), write(' bottles of beer on the wall,'), nl,!

 write(X), write(' bottles of beer,'), nl,!

 write('Take one down and pass it around,'), nl,!

 NX is X - 1,!

 write(NX), write(' bottles of beer on the wall.'), nl, nl,!

 bottles(NX).!

"Programmer: patrick m. ryan - Smalltalk!

 pryan@access.digex.net"http://www.access.digex.net/~pryan!

99 to: 1 by: -1 do: [:i |!

 i print. ' bottles of beer on the wall, ' print.!

 i print. ' bottles of beer. ' print.!

 'take one down, pass it around, ' print.!

 (i-1) print. ' bottles of beer on the wall, ' print.!

]!

