
Maria Hybinette, UGA 1

CSCI: 4500/6500 Programming
Languages

Natural and Programming Languages

Syntactic Structures

Contributors: Portions of this lecture thanks to: Prof David Evans, U Virginia and Prof Spencer Rugaber,

GTech Maria Hybinette, UGA 2

Review Last Time: Programming
Language History

!! 50s, 60s: Exciting Time

»! Invention of: assemblers, compilers, interpreters, first high-
level languages, structured programming, abstraction, formal
syntax, object-oriented programming, LISP, program
verification

!! 70s, 80s, 90s: Boring Time

»! Refinement of earlier ideas, better implementations, making
theory more practical

»! A few new/refined ideas: functional languages, data
abstraction, concurrent languages, data flow, type theory, etc.

!! 00+s: Party Time

»! A New Environment: Internet, large scale distributed
computing, the grid, Java, C#, Maria at UGA

!! Alan Kay: “The best way to predict the future is to invent it.”

Maria Hybinette, UGA 3

This Week: Programming
Language Implementation

!! This week and next we

will talk about the first
two phases of

compilation, namely:

»!Scanning and

»!Parsing.

!! Today the basic
concepts next week
we talk about parse
trees & discuss
practicalities

Code Generator

Intermediate

Code Generator

Semantic

Analyzer

Scanner

Lexical

Analyzer

Parser

Syntax

Analyzer

Computer

Symbol

Table

Lexical units, token stream

Parse tree

Abstract syntax tree or

 other intermediate form

Machine Language

Optimizer

(optional)

Source program

Maria Hybinette, UGA 4

Formal System & Language

Formal System:

!! Set of symbols:

»! the primitives

!! Set of rules for manipulating symbols

»!Rules of production

What is a Language (theoretically)?:

!! Formal System + (mapping of sequence of

symbols and their meaning)

Maria Hybinette, UGA 5

Linguist’s Language

!! Description of pairs (S, M)

»! S is the “sound”, or any kind of surface forms, and

»!M is the meaning.

!! Language specifies properties of sound and

meaning and how they relate (Aristotle
characterize language as a system than links

sound and meaning)

!! Aristotle: 384-322 B.C. Greek

philosopher, father of deductive logic,

Meta physics, “Physics”, teacher of

Alexander the Great.

Maria Hybinette, UGA 6

What are languages made of?

!! Primitives

»! The smallest units of meaning, or the simplest
‘surface forms’ (pronunciation).

!! Means of Combination (all languages have

these)

»! Like Rules of Production for Formal Systems

»!Creates ‘new’ surface forms from the ones you have

!! Means of Abstraction (all powerful languages

have these)

»!Ways to use simple surface forms to represent more

complicated ones

Maria Hybinette, UGA 7

What is longest word in the
English language?

!! Supercalifragilisticexpialidocious

»! Popularized by Mary Poppins

»! Oxford English Dictionary, 34 letters

»! Nonsense word meaning fantastic

!! Pneumonoultramicroscopicsilicovolcanoconiosis

»! 'a lung disease caused by the inhalation of very fine silica
dust’, 45 letters (miner’s lungs).

»! 207,000+ mitochondrial DNA

!! Floccinaucinihilipilification

»! The estimation of something as worthless (usage dated
since 1741) -- four ‘worthless’ words with a verb ending.

»! 27 letters, longest non-technical word according first
edition of Oxford English Dictionary (floccus - I don’t care, I
don’t make wool, naucum - little value, nihilum - nothing,
pilus - a hair, a bit or whit, something small and
insignificant, facio, facere, feci, factus make or do!

Maria Hybinette, UGA 8

Creating longer words

!! Floccinaucinihilipilification (previous slide)

»!The estimation of something as worthless, the act of
estimating something as useless

!! Anti-floccinaucinihilipilification

»!The estimation of something as not worthless

!! Antifloccinaucinihilipilification-or

»!The one who does the act of not rendering useless

!!Anti- antifloccinaucinihilipilification

Maria Hybinette, UGA 9

Natural Languages

!! Are there any recursive languages?

»!No, we would run out of things to say

!! So, we only need to start with a few building

blocks and from there we can create infinite
things

MU! MUU MU!

Maria Hybinette, UGA 10

What are languages made of?

!! Primitives

»! The smallest units of meaning, the “simplest” surface

forms. Lexemes lowest level of meaning.

!! Means of Combination (all languages have these)

»! Creates new surface forms from the ones you have

»! Sentences and works on word parts too!

!! Means of Abstraction (all powerful languages have

these)

»! Ways to use simple surface forms to represent more

complicated ones

»! Example: pronouns: “I in English; or Phom, Dichan is the

polite way of saying I in Thai depending on gender (Dichan
for females).

Maria Hybinette, UGA 11

Primitives/Tokens

!! Tokens: Described by regular expressions

»! First phase of compilation process converts strings/lexemes of the
programming language to tokens (a representation of the lexeme
in the computer)

–! Example: letter (letter | digit)*!

»! Can be generated from just three rules/operations:

–! Concatenation

–! Repetition (arbitrary number of times - Kleene closure)

–! Alternation (Choice from a finite set)

»! Corresponds to type-3 grammars in Chomsky hierarchy and is the
most restrictive A -> a, A-> aB or A -> Ba

!! Many utilities exist that use regular expressions

»! grep (global regular expression print)

–! grep ^root /etc/passwd!

»! Lex/flex, turn a regular expression of tokens into a scanner, so
they are generators (next week)

Maria Hybinette, UGA 12

Means of Combination

!! Allow us to say infinitely many things with a

finite set of primitives

!! We can create sentences using primitives

»!But really, in English “words” are really not the

‘primitives’ since we can create longer words

!! How can we describe “means of

combinations” in the syntax of a language?

»!Computer Scientists:

–! Backus-Normal-Form -> Backus-Naur-Form (BNF)

Maria Hybinette, UGA 13

BNF Example

Sentence ::= Noun-Phrase Verb-Phrase

Noun-Phrase ::= Maria | Microsoft

Verb-Phrase := Rocks | Jumps

!! What are the terminals?

»!Maria, Microsoft, Rocks, Jumps

!! How many different things can we

express with this language?

»! 4

»!… but only 1 is true

Maria Hybinette, UGA 14

BNF Example

Sentence ::= Noun-Phrase Verb-Phrase Noun-Phrase

Noun-Phrase ::= Noun | Adjective Noun-Phrase

Noun := Maria | Microsoft | Home | Feet

Adjective := Yellow | Smelly

Verb-Phrase := Skips | Runs | Rocks

!! Now we can express infinitely many things with this
little language…

Maria Hybinette, UGA 15

Definition of Languages

!! Recognizers

»!Reads input string and accepts or rejects if the
string is in the language

»! Example: Parsers -- the syntax analyzer of a

compiler (yacc- yet another compiler compiler)

!! Generators

»!Generate sentences of a language

»! Example: Grammars are language generators

Maria Hybinette, UGA 16

BNF and Context Free Grammars

!! Context Free Grammars

»!Developed by Noam Chomsky in the 1950s

»!Define a class of languages called context-free

languages (type 2)

!! Backus Naur Form (BNF)

»!A meta-language used to describe another

language

»! Equivalent to context-free grammars

Maria Hybinette, UGA 17

BNF Basics

A BNF grammar consists of four parts:

!! Tokens: tokens of the language, the terminals

!! Non-terminal symbols: BNF abstractions in <>

brackets

!! A start symbol

!! Grammar: The set of productions or rules

Maria Hybinette, UGA 18

BNF details

!! The tokens are the smallest units of syntax

»! Strings of one or more characters of program text

»! They are atomic: not treated as being composed from
smaller parts

!! The non-terminal symbols stand for larger pieces of

syntax

»! They are strings enclosed in angle brackets, as in <NP>

»! They are not strings that occur literally in program text

»! The grammar says how they can be expanded into

strings of tokens

!! The start symbol is the particular non-terminal that

forms the root of any parse tree for the grammar

Maria Hybinette, UGA 19

BNF Productions (Grammar)

!! The productions are the tree-building rules

!! Each one has a left-hand side, the
separator ::=, and a right-hand side

»! The left-hand side is a single non-terminal

»! The right-hand side is a sequence of one or more
things, each of which can be either a token or a non-
terminal

!! A production gives one possible way of
building a parse tree: it permits the non-
terminal symbol on the left-hand side to have
the things on the right-hand side, in order, as
its children in a parse tree

Maria Hybinette, UGA 20

Alternatives

!! The BNF grammar can give the left-hand side,

the separator ::=, and then a list of possible
right-hand sides separated by the special

symbol |

Maria Hybinette, UGA 21

Example

<exp> ::= <exp> + <exp> | <exp> * <exp> | (<exp>)

 | a | b | c

!! Equivalent to six productions:

<exp> ::= <exp> + <exp>

<exp> ::= <exp> * <exp>

<exp> ::= (<exp>)

<exp> ::= a

<exp> ::= b

<exp> ::= c

Maria Hybinette, UGA 22

Extensions to BNF - EBNF

!! BNF is sufficient to describe context free

languages

!! Various extensions and modifications have been

made to ease the expression of programming

language grammars

»! The extensions can be bee describe in the original BNF

»!Collectively these are called EBNF extended BNF

Maria Hybinette, UGA 23

Example EBNF extensions

!! Remove brackets for non-terminal

!! Replace ::= with !

!! Replace vertical bars with spaces

!! + for one or more occurrences

»! EBNF: A ! X (Y)+

»!BNF: A := XB

–! B := Y | YB

!! * for zero or more occurrences

Maria Hybinette, UGA 24

Parse Trees

!! Grammars describes ‘hierarchical syntactic structures’

so these can be represented by parse trees (e.g., a

parser generates parse trees).

!! Idea:

»! To build a parse tree, put the start symbol at the root

»! Add children to every non-terminal, following any one of

the productions for that non-terminal in the grammar

»! Done when all the leaves are tokens

»! Read off leaves from left to right—that is the string

derived by the tree

<expr> ::= <expr> + <term> | <term>

<term> ::= <term> * <factor> | <factor>

<factor> ::= '(' <expr ')' | <num>

<num> ::= 0 | 1 | 2 | 3 | 4 |

 5 | 6 | 7 | 8 | 9

<term-list> ::= <term> | <term> <comma-list>

<comma-list> ::= <comma-term> | <comma-term> <comma-list>

<comma-term> ::= ‘,’ <term>

<term> ::= a | b | c | d | e | f

Maria Hybinette, UGA 27

Abstract Syntax Tree

!! An abstract syntax tree (AST) describes the
elements of a program stripped down to the
essentials.

»!Remove unnecessary components

»! Some symbols are there not to be interpreted, e.g.
punctuations with really no meaning

–! Example: “,” are there only to tell parser how to build
tree

»!Convert tree from a narrow tree to flat tree

»!Remove non-essential intermediate non-terminals

Maria Hybinette, UGA 28

Remove Commas

Maria Hybinette, UGA 29

Remove Commas

Maria Hybinette, UGA 30

Remove intermediate non-
terminals

Maria Hybinette, UGA 31

Remove intermediate non-
terminals

Maria Hybinette, UGA 32

Remove intermediate non-
terminals

Maria Hybinette, UGA 33

Remove intermediate non-
terminals

Maria Hybinette, UGA 34

Ambiguity in Grammars

!! Some grammars have more than 1 parse tree

for a given string

!! Example: <expr> ::= <expr> <op> <expr> | const

<op> ::= / | -

Maria Hybinette, UGA 35

Ambiguity

!! Compiler often base the semantic on a

phrase’s parse tree

»!More than one cannot determine the meaning

»!Unless there are some additional non-grammatical

information

!! Precedence and associatively can be defined

outside the grammar.

!! Can include it in the grammar to facilitate the

compiler to evaluate from the parse tree

Maria Hybinette, UGA 36

Unambiguous Expression
Grammar

!! If we use the parse tree to indicate precedence

levels of operators we cannot have ambiguity

<expr> ::= <expr> <op> <expr> | const

<op> ::= / | -
<expr> ::= <expr> - <term> | <term>

<term> ::= <term> / const | const

Hint: Higher

precedence
operators are

lower in tree,

here “/” has
higher precedence

than “-”

Maria Hybinette, UGA 37

Associativity

!! Operator associativity can also be indicated by a grammar

!! Left Associative: 9+5+2 is equivalent to (9 +5) + 2

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

Note first

addition is
lower

Maria Hybinette, UGA 38

!! Project 1 will be posted later tonight - two

parts due 1 week and 2 weeks from today

!! No floccipoccinihilipilification please!

