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CSCI: 4500/6500 Programming 
Languages 

Conclusion of Lex and YACC and the 
Theory behind them (today– focus on 

YACC) 
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YACC Background 

!  Review: Recall grammars for YACC are a 
variant of BNF 

» Can be used to express context free languages 
X -> p 

»  X is non terminal, p is a string of non-terminals and/
or terminals) 

» Context free because X can be replaced by p 
regardless of the context that X is in. 
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Some YACC Theory in this 
Context 

!   YACC - reduces an ‘expression’ to a single 
non-terminal (the start symbol) 

!  Is a bottom up  or ‘shift-reduce’ parser  (LR – 
Parses Left to right, right-most). 

»  (L) Reads the string from left to right (like 
westerners) and (R) produces the right-most 
derivations. 
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Example: ‘Generating’ a String 
(not parsing a string – yet) 

!  Example: Grammar that multiply and adds 
numbers: 

»  E ! E + E  (rule 1) 
»  E ! E * E  (rule 2) 
»  E ! id   (rule 3) 

!  id is returned by lex (returns terminals) and 
only appears on right hand side. 

»  x + y * z is generated by: 
E !    E *  E      (rule 2) 
 ! E *  z   (rule 3) 
 ! E + E * z   (rule 1) 
 ! E + y * z  (rule 3) 
 ! x + y * z  (rule 3) 

To Parse the Language we need to go in 
reverse of generating the grammar 
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Now – How YACC Parses. 

E ! E + E  (rule 1) 
E ! E * E   (rule 2) 
E !id   (rule 3) 
!  To parse the expression we go in reverse, reduce an expression to a single non 

terminal, We do this by shift-reduce parsing and use a stack for storing the  terms 
  1) . x + y * z !shift (terms on stack are on the left of dot)!
  2) x . + y * z !reduce (rule 3)!
  3) E . + y * z !shift!
  4) E + . y * z !shift!
  5) E + y. * z ! !reduce (rule 3)!
  6) E + E. * z ! !shift!
  7) E + E * . z !shift!
  8) E + E * z . !reduce (rule 3) emit multiply!
  9) E + E * E . !reduce (rule 2) emit add!
 10) E + E . ! !reduce (rule 1)!
 11) E . ! !Accept!

!  When we have a match on the stack to one of right hand side of 
productions replace the match with the left hand side of token 
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A Conflict at Step 6 (Ambiguity) 
E ! E + E  (rule 1) 
E ! E * E   (rule 2) 
E !id  

  (rule 3) 

!  To parse the expression we go in reverse, reduce an expression to a single non 
terminal, We do this by shift-reduce parsing and use a stack for storing terms 

  1) . x + y * z !shift (stack on left of dot)!
  2) x . + y * z !reduce (rule 3)!
  3) E . + y * z !shift!
  4) E + . y * z !shift!
  5) E + y. * z ! !reduce (rule 3)!
  6) E + E. * z ! !shift  (here it is choice – reduce ‘E+E’ or shift)!
  7) E + E * . z !shift!
  8) E + E * z . !reduce (rule 3) emit multiply!
  9) E + E * E . !reduce (rule 2) emit add!
 10) E + E . ! !reduce (rule 1)!
 11) E . ! !Accept!

!  “shift reduce” conflict at step 6 ambiguous grammar 
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Ambiguity means the parser can’t decide what 
to do: 

!  Shift-Reduce Conflict:  
» Can’t decide whether to shift or reduce a handle to a 

non-terminal 

!  Reduce-Reduce Conflict: 
» Can’t decide whether to reduce to on or more non-

terminal. 
E  ! T 
E  ! id 
T  !   id 
»  Either reduces to E or to T 

Ambiguity 
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Ambiguity 

!  This choice means we can’t construct a 
unique parse tree for any string.  

!  But what if we could direct the parser to 
always prefer one choice over the other. 

»  Then 
–  The parse tree would always be unique 
–  The grammar might even be smaller 

» How to resolve? 
–  Rewriting the grammar  OR 
–  Indicate which operator has precedence (YACC 

enables this with the precedence definition) 
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Ambiguity: What Does YACC Do? 

!  Conflict Resolution Defaults: 
»  For shift-reduce conflicts YACC will always shift. 
»  For reduce-reduce conflict YACC selects the first 

rule. 

Maria Hybinette, UGA 10 

!  Reflecting where we are!  and what we have 
done so far! 

!  Jflap 
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Big Picture: Compilation Process  

Code Generator 

Scanner 

Lexical 
Analyzer 

Parser 

Syntax 
Analyzer 

Computer 

Lexical units, token stream 

Parse tree 

Machine/Assembly Language 

Source program  a = b + c * d 

id1 = id2 + id3 * id4 

= 

* 

+ id1 

id4 
id2 

id3 

load  id3 
mul  id4 
add  id2 
store  id1 
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Syntax: Regular Expressions  
(Tokens)  & Context Free Grammars 

!  Tokens: Described by regular expressions 
»  First phase of compilation process converts strings/lexemes of 

the programming language to tokens (a representation of the 
lexeme in the computer) 

–  Example: letter ( letter | digit ) * 
»  Can be generated from just three rules/operations: 

–  Concatenation 
–  Repetition (arbitrary number of times - Kleene closure) 
–  Alternation (Choice from a finite set) 

!  Context Free Language 
» Generated from 4 operations: 

–  Concatenation 
–  Repetition (arbitrary number of times - Kleene closure) 
–  Alternation (Choice from a finite set) 
–  Recursion 
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Definition of Languages 

!  Recognizers  
» Reads input string and accepts or rejects if the 

string is in the language 
»  Example: Parsers -- the syntax analyzer of a 

compiler (yacc- yet another compiler compiler) 

!  Generators 
» Generate sentences of a language  
»  Example: Grammars are language generators 
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Parse Trees 

!  Grammars describes ‘hierarchical syntactic 
structures’ so these can be “represented” by parse 
trees (e.g., a parser generates parse trees). 

!  Idea:  
»  To build a parse tree, put the start symbol at the root 
»  Add children to every non-terminal, following any one of 

the productions for that non-terminal in the grammar 
»  Done when all the leaves are tokens 
»  Read off leaves from left to right—that is the string 

derived by the tree 
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Example 

!  Generated String:  slope * x + intercept 
 

   <expr>   ==>  <expr>  <op> <expr>	
	 	==>  <expr>  <op> id	
	 	==>  <expr>   +   id	
	 	==>  <expr>  <op> <expr> + id	
	 	==>  <expr>  <op>   id   + id	
	 	==>  <expr>    *    id   + id	
	 	==>    id      *    id   + id	
              (slope)      (x)      (intercept)	

Grammar: 

<expr> ::= id | <number> | <expr> <op> <expr> | ( <expr> ) 
<op> ::= + | - | * | / 
 

Derivation and Sentenial form 
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Example 

<expr>  ==> <expr>  <op> <expr>	
	 	==>  <expr>  <op>  id	
	 	==>  <expr>   +    id	
	 	==>  <expr>  <op> <expr> + id	
	 	==>  <expr>  <op>   id   + id	
	 	==>  <expr>    *    id   + id	
	 	==>    id      *    id   + id	

<expr> 

<expr> <expr> 

<expr> <expr> <op> 

<op> 

id(intercept) id(x) id(slope) * + 

<expr>  ==> <expr>  <op> <expr>	
	 	==>  <expr>   *  <expr>	
	 	==>    id     *  <expr>	
	 	==>    id     *  <expr> <op> 
<expr>	
	 	==>    id     *  <expr>  +   
<expr>	
	 	==>    id     *   id     +    id	
	 		

Grammar: 

<expr> ::= id | <number> | <expr> <op> <expr> | ( <expr> ) 
<op> ::= + | - | * | / 
 

<expr> 

<expr> <expr> 

<expr> <expr> <op> 

<op> 

id id id + * 
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Ambiguity 

!  The fact that some strings are the yield of 
more than one parse tree tells us that the 
grammar is ambiguous. 

!  Compiler often base the semantic on a 
phrase’s parse tree 

» More than one tree - cannot determine the meaning 
–  Unless there are some additional non-grammatical 

information  

!  Can include it in the grammar to facilitate the 
compiler to evaluate from the parse tree 

!  Precedence and associatively can be defined 
outside the grammar. 
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Unambiguous Expression 
Grammar 

!  If we use the parse tree to indicate precedence 
levels of operators we cannot have ambiguity  

<expr> ::= <expr> <op> <expr> | const 
<op> ::=  / | - 

<expr> 

<expr> <term> 

<term> const / 

- 

const const 

<term> 

<expr> ::= <expr> - <term> | <term> 
<term> ::=  <term> / const | const  

Hint: Higher precedence 
operators are lower in 
tree, here “/” has 
higher precedence than 
“-” 

Lower  = so division has higher 
precedence 
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Associativity 

!  Operator associativity can also be indicated by a grammar 
!  Left Associative:  9+5+2 is equivalent to (9 + 5) + 2 

<expr> -> <expr> + <expr> |  const  (ambiguous) 
<expr> -> <expr> + const  |  const  (unambiguous) 

<expr> 

const <expr> 

<expr> const + 

+ 

const 

Note first addition is 
lower 

Lower  = so this + has higher precedence 
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2 Major Classes of Parsers 

!  LL - Left to right, left-most (discovers left most 
derivations – top down). Predictive parser. 

» Works down the tree: left-right, predicting expanding nodes 
and tracking left most derivations. 

!  LR – (YACC) Left to right, right-most (discovers right 
most derivations). Bottom up parsers (e.g., Yacc - 
our focus). 

» Notice a left is an ID next is a “,” and then another ID. So it 
shifts until it can ‘reduce’. Which doesn’t happen until it 
sees a ‘;’. 

!  HW: See textbook (p. 63) for example on how these 
differ. <id-list> ::= id <id-list-tail> 

<id-list-tail> ::= , id <id-list-tail> 

<id-list-tail> ::= ; 

 
A,B,C; 
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!  Programming languages require precise 
definitions (i.e., no ambiguity) 

»  Language form (Syntax) 
»  Language meaning (Semantics) 

!  Consequently, PLs are specified using formal 
notation: 

»  Formal syntax 
–  Tokens 
–  Grammar 

»  Formal semantics  
–  Static Semantics - Attribute Grammars (Compile Time) 
–  Dynamic Semantics (Run Time)  
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Static vs. Dynamic properties 

!  Static properties 
»  any property that may be determined through analysis of 

program text 
–  e.g., for some languages, the type of a program may be 

determined entirely through analysis of program source 
!  e.g., ML, Java, & Pascal have “static type inference” 

!  Dynamic properties 
»  any property that may only be discovered through 

execution of the program 
–  e.g., “the final result of program p is 42” – may not be 

discovered without some form of execution 
!  Compilation involves forms of “static analysis” 

»  e.g., type checking, the definition and use of variables, 
information of data and control flow and much more. 
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Why Attribute Grammar? 

!  Semantic Analyzer:  Analyses the “meaning” 
to Syntax. 

!  Enables type compatibility checks (e.g., float 
= int OK, int = float not OK) would require too 
many rules  

!  Enables Checking Declaring all variables 
before they are referenced can’t be specified 
in BNF 

Who?: Donald Knuth (father of the analysis of 
computer algorithms) designed Attribute 
Grammars to describe both syntax & static 
semantics (compile time) 
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What is an Attribute Grammar? 

!  Attribute Grammar = Context Free Grammar  
plus (+):  

» Attributes (values assigned to grammar symbols) 
» Attribute computation functions (how to compute 

attribute values) 
»  Predicate functions (static semantic rules) 
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How ? 

!  Embellishes (decorates) the Context Free 
Grammar (Syntax) Tree, the parse tree: 

» Annotates a simplified version (Abstract Syntax 
Tree) of the Syntax Tree (Concrete Syntax Tree). 

–  Add values and semantics rules to grammar 
productions 

–  Variable declared before they are declared 
–  Type checking. 

1.    During Parsing Create Tree 
2.    Simplify Tree –and create Abstract Syntax Tree (AST) 
3.    Annotate the AST 
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Abstract Syntax Tree (AST) - 
Review 

!  Derivation = sequence of 
applied productions 

»  S " E+S " 1+S " 1+E "1+2 

!  Parse tree = graph 
representation of a 
derivation 

»  Doesn’t capture the order of 
applying the productions 

!  AST discards unnecessary 
information from the parse 
tree 

+ 

+ 5 

1 + 

2 + 

3 4 

S 

E + S 

(  S  ) E 

E  +  S 5 

E  +  S 1 

2 E 

(  S  ) 

E  +  S 

E 3 4 
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Simple Example: Abstract 
Syntax Tree 

:= 

Id + 

* Id 

Const Id 

For “Y := 3 * X + I”  

* such a tree could be produced by a compiler’s “front end” 
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ASTs with “Attributes” 

:= 

Id + 

* Id 

Const Id 

Attribute grammars are CFGs with extra information 
  (a.k.a., “attributes”) stored at the nodes 

* red data are “initial attributes” in the lingo. 

:= 

Id(Y) + 

* Id(I) 

Const(3) Id(X) 



Maria Hybinette, UGA 31 

Attribute Grammars and Static 
Type checking 

Assume: we know Y, I, and X are variables of type float 
Question: is the following a legal program? 

:= 

Id(Y) + 

* Id(I) 

Const(3) Id(X) 
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Attribute grammars and static 
checking 

Assume: we know Y, I, and X are variables of type float 
Question: is the following a legal program? 

:= 

Id(Y) + 

* Id(I) 

Const(3) Id(X) 

Answer: it depends on the language 
   definition  
•  ML, Java, etc: no implicit coercion 
•  C, Basic, Scheme would allow 
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Attribute grammars and static 
checking 

First Case (Java, ML): it’s illegal 

:= 

Id(Y) + 

* Id(I) 

Const(3) Id(X) 

integer float 

float 

float 

:= 

Id(Y) + 

* Id(I) 

Const(3) Id(X) 

integer float 

no attribute 
can be 

calculated for 
this node! 
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Attribute grammars and static 
checking 

Second Case (C, Scheme): implicitly coerce the constant so 
that it makes sense; calculate the types of the intermediate 
  expressions 

:= 

Id(Y) + 

* Id(I) 

Const(3) Id(X) 

integer float 

float 

float 

:= 

Id(Y) + 

* Id(I) 

Const(3.0) Id(X) 

float float 

float float 
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Attribute grammars and static 
checking 

:= 

Id(Y) + 

* Id(I) 

Const(3.0) Id(X) 

float float 

float float “synthesized attributes” 

“initial attributes” 
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Attribute Flow  
Example (Text Book p. 169) 

!  The figure shows the 
result of annotating the 
parse tree for (1+3)*2 

!  Each symbols has at most one 
attribute shown in the 
corresponding box 

»  Numerical value in this 
example 

»  Operator symbols have no 
value 

!  Arrows represent the 
attribute flow 
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Copy Rules & Semantics Functions 
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Attribute Flow 
Synthetic and Inherited Attributes 

!  In the previous example, semantic 
information is pass up the parse tree 

» We call this type of attributes are called synthetic 
attributes 

» Attribute grammar with synthetic attributes only are 
said to be S-attributed 

!  Semantic information can also be passed 
down the parse tree 

» Using inherited attributes 
» Attribute grammar with inherited attributes only are 

said to be non-S-attributed 
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HW: Reading 

!  Chapters 1,2 
» Derivations of Parse Trees 
» Difference between Top DOWN and Bottom UP 

Parsing 

!  Sections: 4.1-4.4  
»  Semantic Analysis 

–  Dynamic, Static Checks 
–  Attribute Grammar 
–  Evaluating Attribute 

!  Synthesized 
!  Inherited 
!  Attribute Flow 


