
Maria Hybinette, UGA 1 

CSCI: 4500/6500 Programming 
Languages 

Functional Programming Languages 
Part 1: Introduction 

Thanks again to Profs David Evan’s, University Virginia and Prof. Sebesta, author of our other book 

Maria Hybinette, UGA 2 

Overview Language Perspectives 

!  Imperative: Mode of computation - a variable 
(state) 
»  Von Neumann Machines 

–  modify variables in memory 
»  Turing machines - imperative - changes values in 

cells (variables) on tape  
!  Functional: Mode of computation - a function  

»  Lambda calculus 
»  apply a function (a program) to transform its 

input (parameters) to output (result) 
!  Relational: Mode of computation - constraints 

»  programmer writes set of axioms that allow the 
computer to discover a constructive proof for a 
particular set of inputs 

Memory 

Processor Input Output 

Program (a function) Input Output 

Maria Hybinette, UGA 3 

Functional Programming 

!  Do everything by using functions and 
evaluate them 

» Great advantages: 
–  no side effects 
–  no mutable state 

!  Based on “mathematical functions” 
» Historically from Church’s model of computation 

called the lambda calculus ( ! - calculus) 
–  Study of function application and recursion  

!  Example Languages: LISP, Scheme, FP, ML, 
Miranda and Haskell  

Maria Hybinette, UGA 4 

Functional programming: Focus 
on Functions 

!  An object is first class (no restriction on use) when: 
»  can be created during execution (run time) 
»  stored in data structures or in variables 
»  can be used as parameters or inputs to other functions 
»  can be returned 

!  Higher order functions (operates on other functions) 
either or both: 

»  Input: can take other functions as arguments 
» Output: and/or return function as results 

!  Higher order functions are building blocks of functional 
languages. 

Maria Hybinette, UGA 5 

History: LISP first functional 
‘programming’ language 

!  LISt Processing Language (McCarthy (MIT) 1959) 
»  Processes data in lists 

!  Two objects (originally) or data types: 
»  Atoms (number of a symbol) and 
»  Lists (sequence of elements) 
»  S-expression (atoms and pair) = atom a symbol (upper case), pair 

was parenthesized. 
»  M-expressions (meta variables (lower case) and argument list) 

!  Lists are delimiting their items in parenthesis. 
»  Simple list: (A  B  C)   // 3 elements 
»  Complex list: (foo (bar 1) 2)  // 3 elements 

ILP – Simon & Newell’d assembly 
language –first functional based PL  

Maria Hybinette, UGA 6 

History: LISP first functional 
‘programming’ language 

!  Lists are delimiting their items in parenthesis. 
»  Simple list: (A  B  C)    // 3 elements 
»  Complex list (list of lists): (foo (bar 1) 2)  // 3 elements 

!  Both functions and data are represented in the same form, 
e.g.: 

»  (A B C) as data is a simple list of 3 atoms:  A, B and C 
»  (A B C) as a function is interpreted as the function named “A” 

applied to  two parameters, B and C, e.g.,  (+ 4 5) 
–  Cambridge Polish (parenthesized prefix notation)  

!  Polish Notation :: Prefix notation : + 3 4  
!  Cambridge Notation(add parenthesis) :: (+3 4) 
!  Reverse Polish Notation :: 3 4 + 

»  3 6 /    -> / 3 6  -> 0.5 
»  6 3 /    -> / 6 3  ->  2 



Maria Hybinette, UGA 7 

LISP (implementation) 

!  List forms parenthesized 
collection of  sub lists 
and/or atoms: 

!  Stored as a linked list 
each node has two 
pointers 
»  First pointer to a 

representation of the 
element (e.g., symbol or 
number) or another 
sublist 

»  Second pointer next 
element of list 

!  Example: 
»  (A B C D) 
»  (A (B C) D ( E ( F G ) )) 

A D C B 

D 

B C 

A 

E 

F G 

Maria Hybinette, UGA 8 

Variants of LISP 

!  Pure (original Lisp) 
»  purely functional  

–  no imperative features (e.g., NO assignment statement) 
»  dynamically scoped (as all early versions of LISP) more on 

this next slide. 
!  All other Lisp’s have some imperative features (e.g., 

data is contained in a variable, assignment statement) 
!  COMMON Lisp (statically scoped) 

»  brought all LISPs under a common umbrella 
–  HUGE, and very complicated, provides dynamic scope as an 

option 
!  Scheme a mid-1970s dialect of LISP designed to be 

cleaner, more modern and simpler version than dialects 
of Lisps 

»  Statically scoped and tail recursive 

Maria Hybinette, UGA 9 

Scope: A Preview (what is the 
value of a) 

!  Static scoping (what we 
are used to)  

»  Variables refers to its 
nearest enclosed binding  

»  Lexiographic -- Compile 
time 

!  Dynamic scoping:  
»  Refers to the closest 

active binding  
»  Binding name-object 

depends on the flow of 
control  at run time and 
the order subroutines are 
called,  

a: integer    // global 
 
procedure first() 
  { 
  a = 1       // global or local? 
  } 
procedure second() 
  { 
  a: integer // local 
  first() 
  } 
a = 2    
if read_integer() > 0 
  second()   // 2 for dynamic 
else 
  first()    // 1 for dynamic 
print(“%d\n”, a) 

Static:  always prints 1 : a is global scope 
 of a is closest enclosed a, so  
 for “first”’s a refers to global a 

Dynamic: prints 1 or 2: if we go to second  
 first, first’s a refers to second’s  
 local a (closest active binding and 

does not change the global a) Maria Hybinette, UGA 10 

Introduction to Scheme 

!  Mid-1970s dialect to Lisp, designed to be cleaner, 
more modern and simpler than contemporary 
dialects of LIPS 

!  Uses static scoping (lexical binding determined 
by reading program text) and is ‘tail recursive’. 

!  Functions are first class entities 
» Can be values of expressions and elements of a list 
» Can be assigned variables and passed as parameters 

!  Have some imperative features (but will not focus 
on these). 

Maria Hybinette, UGA 11 

Scheme 

!  Is a collection of function definitions and lots 
of parenthesis. 

»  primitive functions (a form of an expression)  
–  +, - * 
–  ( + 3 4 ) 
–  ( ( + 3 4 ) ) -> error 

!  Calls + with 3 and 4 as parameters, then call 7 as a 0 
parameter function = a run time error 

» A simple expression could just be value 
–  5 
–  5 is evaluated to be “5” 

Maria Hybinette, UGA 12 

How do we create more complex 
functions? 

!  Lambda (λ) expressions – creates functions  
»  ( lambda ( parameters ) expression )  
»  ( lambda (x) ( * x  x ) ) 

–  is a nameless function that returns the square of its 
parameters (nameless don’t need to use it again). 

–  can be applied like normally containing a list that 
contains the actual parameters 



Maria Hybinette, UGA 13 

How do we create more complex 
functions? 

!  Lambda (λ) expressions – creates functions  
»  ( lambda ( parameters ) expression )  
»  ( lambda (x) ( * x  x ) ) 

–  is a nameless function that returns the square of its 
parameters (nameless don’t need to use it again). 

–  can be applied like normally containing a list that 
contains the actual parameters 

» How to use: Read, evaluates (applies the function to 
its parameters) and prints the results 

»  ( ( lambda ( x ) ( * x x ) ) 7 ). Here x is called a bound 
variables and does not change after being bound to 
a parameter (we can bind a name to a lambda 
expression too, by using define ) 

!  ( ( lambda ( a b ) ( if (< a b ) a b ) )  5 6 ) 
!  ( ( lambda ( a b ) ( if (< a b ) a b ) )  6 5 ) 

Maria Hybinette, UGA 14 

Give an expression a name: 
“define” 

!  Binds  name to a value 
»  ( define symbol expression) 
»  ( define pi 3.14159) 

!  Binds a name to a Lambda (!) 
»  expression is abbreviated (no word “lambda” is needed) 
»  takes two lists as parameters 

–  prototype of function 
!  function name followed by formal parameters 

–  one or more expressions to which name is to be bound 
»  ( define ( function_name parameters ) expression {expression} ) 
»  Example:  

–  ( define (square number) ( * number number ) ) 
–  ( square 5 )  

!  displays 25 

Maria Hybinette, UGA 15 

**Currying 

!  Transforms a multiple argument function so that it can be called 
as a chain of functions each with a single argument. 

»  Example: Allows languages to reduce the function  (+ 1 4) [plus-one] to a 
simpler function with  one argument. Pre apply the +1 to the function and wait 
for the “4” 

–  ++, -- (plus one with a single argument – “1” is removed as an argument. 
»  ( define curried-plus ( lambda ( a ) ( lambda ( b ) ( + a b ) ) )) 

–  ( ( curried-plus 1 ) 4 )  ;  chain here – one argument at a time. 
–  ( define plus-1 ( curried-plus 1 ) ) 
–  ( plus-1 4 )  

»  Idea: If you “fix” some arguments you get reduce the function 
arguments to only use the remaining arguments. Another Example: 

–  yx and fix y = 2 then you get the function of one variable 2x. 
!  What is it really?  An incomplete application of arguments to a 

function 

turmeric coriander garlic chile pepper 

Haskell Curry: 
Combinatory Logic 
(precursor of lambda 
calculus). Combinator – 
higher order function 

Maria Hybinette, UGA 16 

Examples: Currying 

!  ( define curried-plus ( lambda (a)  (lambda (b) (+ a b ) ) ) ) 

!  ( curried-plus 3 )  : adds 3 to an argument b (not given yet) 
»  ((curried-plus 3 ) 4 ) => 7 

!  (define plus-three (curried-plus 3) )  
»  (plus-three 4)  => 7, (plus-three 5) => 8 

!  General purpose “function” (any operation) that curries its (binary) 
arguments: 
»  (define curry (  lambda ( f ) ( lambda (a ) (lambda (b) ( f a b ))))) 
»  f can be defined as addition ‘+’ separately 

–  (define curried-plus (curry + ) )  -> ((curried-plus 3 ) 4 ) 
-> 7 

–  (define curried-mult (curry * ) )  ->  ((curried-mult 3) 4) 
-> 12 

Maria Hybinette, UGA 17 

Currying 

!  Rewriting a function with multiple parameters as a 
composition of functions of one parameter 

»  plus = f(a, b) =  a + b  f(3, 2) = 5 (not curried)  
»  curried_plus = [ f(b) => f(a) = a + b ] 

–  takes a single argument b and returns a function that takes 
a single argument ‘b’ and returns the results a + b 

–  plus_one = curried_plus(1), and now  
!  plus_one(5) returns 6 and plus_one(2) returns 3 

Maria Hybinette, UGA 18 

Essential Scheme 

Expression ::= PrimitiveExpression 
ApplicationExpression ::= ( Expression MoreExpressions ) 

MoreExpressions ::= Expression MoreExpressions 

MoreExpressions ::= 

Expression := ApplicationExpressions 

Expression := Name 

PrimitiveExpression := Number 

PrimitiveExpression ::= + | - | * | / | < | > | = 

PrimitiveExpression := … (many other ) 

 

  
Grammar is simple, just 
follow the replacement 
rules.  What does it all 
mean? 



Maria Hybinette, UGA 19 

Scheme: Functional programming  

In General – 2 things (Evaluate and Apply): 
!  Evaluate the functions or the expressions then 
!  Apply the value of the first expression (a function) to 

the values of all the other expressions 
 
Examples: 
!  ( + 655 58), (* 5 7 8), (-24 (* 4 3 )) 
 

  
  

What is going on, really? 

Maria Hybinette, UGA 20 

Evaluation: Expressions and Value 

!  Expression has a value (almost always) 
!  When an expression with a value is evaluated 

its value is produced 
!  How do we evaluate: 

»  primitives 
»  names 
»  applications (expression) 

Maria Hybinette, UGA 21 

Evaluating: Primitives 

!  Primitives are self evaluating 
»   2 
2 
»  #t 
#t 
»  + 
#<primitive:+> 
 

Maria Hybinette, UGA 22 

Evaluating: Names 

!  Evaluates to the value associated with the 
name. 
>(define two 2) 
>two 

2 

Maria Hybinette, UGA 23 

Evaluating Applications 

Evaluate: 
  all the sub expressions of the combination 

!  Apply the value of the first sub expression to the 
values of all the other sub expressions 

»  (expression expression expression) 

Maria Hybinette, UGA 24 

Avoiding Evaluation 

!  Anything inside parenthesis are function calls 
(and therefore are evaluated) unless quoted: 
» QUOTE - takes one parameter; returns the parameter 

without evaluation, abbreviated ‘ 
»  e.g., '(A B) is equivalent to (QUOTE (A B))  

!  ‘(a) returns a (it makes scheme think it is not 
something of value). 

!  ‘(a b c) returns (a b c) 



Maria Hybinette, UGA 25 

Dealing with Lists 

!  LISt Processing Language 

!  Lets talk about how to make lists" 

Maria Hybinette, UGA 26 

CONS: CONStructs a pair 

!  (cons 1 2) 
»  (1 . 2 )  

!  Creates a dotted pair, 
consisting of two atoms 

!  A list 
‘( 1 . (2. nil)) -> (1 2) 

!  CONS builds a list from two 
parameters, the first is either 
an atom or a list, the second 
is usually a list. 

»  (cons ‘1 ‘()) -> 1  
»  (cons '1  (cons '2 '())) 

 

1 2 

1 

2 NULL 

Maria Hybinette, UGA 27 

Splitting a Pair (car and cdr) 

!  (car (cons 1 2 )) -> 1 

!  (cdr (cons 1 2)) -> 2 

car extracts the first part of a pair 
cdr extracts second part of a pair 

1 2 

Maria Hybinette, UGA 28 

Why “car” and “cdr”?  

!  Original (1950s) LISP on IBM 704 
»  stored cons pairs in memory registers 
»  car = “contents of the address part of register” 
»  cdr = “contents of the decrement part of the 

register (“could-er”) 

!  Think of them as the first and the rest (or 
head of list and tail of list) 

»  (define first car) 
»  (define rest cdr) 

Maria Hybinette, UGA 29 

More examples 

!  car  takes a list parameter; returns the first 
element of that list 

         e.g., (car '(A B C)) yields A 
                 (car '((A B) C D)) yields (A B) 
!  cdr  takes a list parameter; returns the list 

after removing its first element 
         e.g., (cdr '(A B C)) yields (B C) 
                 (cdr '((A B) C D)) yields (C D) 

         (cdr ‘A) is an error 

Maria Hybinette, UGA 30 

Defining Threesomes 

A triple is a pair where one of the pairs is a pair 
 
(define (triple a b c )   (cons a ( cons b c ))) 
(define (triple-first  t)  (car t)) 
(define (triple-second t)  (car (cdr t ))) 
(define (triple-third t)  (cdr (cdr t))) 



Maria Hybinette, UGA 31 

Lists 

!  List := (cons element list) 

!  A list is a pair where the second part is a list, 
»  ugh, how do we stop" this only allows infinitely long lists" 

!  A list is either  
»  a pair where the second pair is a list (cons Element List) 
»  or, empty (null) 

Maria Hybinette, UGA 32 

Characteristics of “Pure” 
Functional Languages 

!  No side effects (e.g. no access to global 
variables) 

!  No assignment statements  
!  Often no variables 
!  Small concise framework 
!  Simple uniform syntax 
!  Recursive (that is how we get things done) 
!  Interpreted 

Maria Hybinette, UGA 33 

Next Time 

!  Tutorial on Scheme 


