
Maria Hybinette, UGA 1

CSCI: 4500/6500 Programming
Languages

Functional Programming Languages
Part 3: Evaluation and Application Cycle

Lazy Evaluation

Maria Hybinette, UGA 2

LuisGuillermo.com

Maria Hybinette, UGA 3

!  Meta circular evaluaturs
!  Evaluate & Apply
!  Lazy and Aggressive Evaluation

Maria Hybinette, UGA 4

Back to the Basics: Steps in
Inventing a Language

!  Design the grammar
» What strings are in the language?
» Use BNF to describe all the strings in the language

!  Make up the evaluation rules
» Describe what everything the grammar can produce

means
!  Build an evaluator

» A procedure that evaluates expressions in the
language

–  The evaluator:
!  determines the meaning of expressions in the programming

language, is just another program.

Maria Hybinette, UGA 5

Programming an Evaluator

!  If a language is just a program, what language
should we program the language (evaluator)
in?

Maria Hybinette, UGA 6

Definition: A Metacircular Evaluator

!  An evaluator that is written in the same
language that it evaluates is said to be
metacircular

!  One more requirement: The language
interpreted does not need additional definitions
of semantics other than that is defined for the
evaluator (sounds circular).

»  Example:
–  The C compiler is written is C but is not meta circular

because the compiler specifies extremely detailed and
precise semantics for each and every construct that it
interprets.

Sounds like recursion: It's circular recursion. There is no
termination condition. It's a chicken-and-the-egg kind of thing.
(There's actually a hidden termination condition: the
bootstrapping process.)

Maria Hybinette, UGA 7

Evaluation Basics

To evaluate a combination:
!  Evaluate each element (all the

subexpressions) of the combination
!  Apply the procedure to the value of the left-

most subexpression (the operator) to the
arguments that are the values of the other
subexpressions (the operands)

Observation: This is recursive

*

+

* 4 6

+ 3 5 7 2

Evaluation rule is applied on 4
combinations:!
(* (+ 2 (* 4 6))!
 (+ 3 5 7))!

24!

15!26!

390!
values of the
operands
percolate upward

Maria Hybinette, UGA 8

Example: Procedural Building
Blocks

(define (square x) (* x x))!
»  (square (+ 2 5)) ! 49!

(define (sum-of-squares x y) !; use square for!
(+ (square x) (square y)) !; x2 + y2!
»  (sum-of-squares 3 4) ! 25!

(define (f a)!
 (sum-of-squares (+ a 1) (* a 2)))!

»  (f 5) ! 136 !

!  square - is a compound procedure which is given the name square which is
represents the operation of multiplying something by itself.

!  Evaluating the definition creates the compound procedure and associates it
with the name square (lookup)

!  Application: To apply a compound procedure to arguments, evaluate the body
of the procedure with each formal parameter replaced by the ‘real’ arguments.
(substitution model -- an assignment model <-variable<-env)

Maria Hybinette, UGA 9

Environmental Model of
Evaluation

1.  To evaluate a combination (compound expression)
•  evaluate all the subexpressions and then
•  apply the value of the operator subexpression (first

expression) to the values of the operand subexpressions
(other expressions).

2.  To apply a procedure to a list of arguments,
•  evaluate the body of the procedure in a new environment

(by a frame) that binds the formal parameters of the
procedure to the arguments to which the procedure is
applied to.

!""#$%

&'(#%
procedure,
arguments expression,

environment

Maria Hybinette, UGA 10

Core of the Evaluator

!  Basic cycle in which
»  expressions to be evaluated in environments are
»  reduced to procedures to be applied to arguments,

!  Which in turn are reduced to new expressions
»  to be evaluated in new environments, and so on,
»  until we get down to

–  symbols, whose values are looked up in the environment
–  primitive procedures, which are applied directly.

!""#$%

&'(#%
procedure,
arguments expression,

environment

Maria Hybinette, UGA 11

The evaluator - metacircularity
(eval expression environment)

!  Evaluates the the expression relative to the environment
»  Examples: environments (returns a specifies for the environment)

–  scheme-report-environment version
–  null-environment version

!  Primitives:
»  self-evaluating expressions, such as numbers, eval returns the

expression itself
»  variables, looks up variables in the environment

!  Some special forms (lambda, if, define etc). eval provide direct
implementation:

»  Example: quoted: returns expression that was quoted
!  Others lists:

»  eval calls itself recursively on each element and then calls apply,
passing as argument the value of the first element (which must be a
function) and a list of the remaining elements. Finally, eval returns what
apply returned

Maria Hybinette, UGA 12

Eval

(define (eval exp env)!
 (cond ((self-evaluating? exp) exp)!
 ((variable? exp) (lookup-variable-value exp env))!
 ((quoted? exp) (text-of-quotation exp))!
 ((assignment? exp) (eval-assignment exp env))!
 ((definition? exp) (eval-definition exp env))!
 ((if? exp) (eval-if exp env))!
 ((lambda? exp)!
 (make-procedure (lambda-parameters exp)!
 (lambda-body exp)!
 env))!
 ((begin? exp) !
 (eval-sequence (begin-actions exp) env))!
 ((cond? exp) (eval (cond->if exp) env))!
 ((application? exp)!
 (apply (eval (operator exp) env)!
 (list-of-values (operands exp) env)))!
 (else!
 (error "Unknown expression type - EVAL" exp)))

Maria Hybinette, UGA 13

Eval: Example

(eval ‘(* 7 3) (scheme-report-environment 5)) !
! !=> 21!

(eval (cons '* (list 7 3)) (scheme-report-environment 5)) !
! !=> 21!

Current Scheme doesn’t recognize ‘scheme-report-environment’

Maria Hybinette, UGA 14

apply

!  apply applies its first argument (a function) and applies it to its
second argument (a list)

(apply max '(3 7 2 9)) => 9

!  Primitive function, apply invokes the actual function.
!  Non-primitive function (f),

»  Retrieves the referencing environment in which the
function’s lambda expression was originally evaluated and
adds the names of the function’s parameters (the list) (call
this resulting environment (e))

»  Retrieves the list of expressions that make up the body of f.
»  Passes the body’s expression together with e one at a time

to eval. Finally, apply returns what the eval of the last
expression in the body of f returned.

Maria Hybinette, UGA 15

Apply

(define (apply procedure arguments)!
 (cond ((primitive-procedure? procedure)!
 (apply-primitive-procedure procedure arguments))!
 ((compound-procedure? procedure)!
 (eval-sequence!
 (procedure-body procedure)!
 (extend-environment!
 (procedure-parameters procedure)!
 arguments!
 (procedure-environment procedure))))!
 (else!
 (error!
 "Unknown procedure type - APPLY" procedure))))!

Maria Hybinette, UGA 16

Example: Evaluating (cadr p)

!  (define cadr (lambda (x) (car (cdr x))))
!  Stored Internally as three element list C: (E (x) (car (cdr (x))))

–  surrounding referencing environment (global)
–  list of parameters (x)
–  list of body expressions (one element: (car (cdr x)))

!  Suppose: p is defined to be a list: (define p ‘(a b))
»  (cadr p) => b

!  Evaluating (cadr p) scheme interpreter executes:
»  (eval ‘(cadr p) (scheme-report-environment 5))

–  Note: assumes p is defined in scheme-report-environment 5
1.  Evaluate the car of it’s car of the first argument,

»  cadr via a recursive call returns function c to which cadr is bound,
represented internally as a three element list C.

2.  Eval calls itself recursively on ‘p’ returning (a, b)
3.  Execute (apply c ‘(a b)) and return results

Maria Hybinette, UGA 17

Example: Evaluating (cadr p)

!  (define cadr (lambda (x) (car (cdr x))))
!  Suppose: p is defined to be a list: (define p ‘(a b))
!  Evaluating (cadr p) scheme interpreter executes:

1.  (eval ‘(cadr p) (scheme-report-environment 5))
–  Note: assumes p is defined in scheme-report-environment 5

2.  Evaluate the car of it’s car of the first argument,
»  cadr via a recursive call returns function c to which cadr is bound,

represented internally as a three element list C.
3.  Eval calls itself recursively on ‘p’ returning (a, b)
4.  Execute (apply c ‘(a b)) and return results
5.  Apply then notice the internal list representation cadr, C.

 (E (x) (car (cdr (x)))) and then apply would execute:
6.  (eval ‘(car (cdr (x))) (cons (cons ‘x ‘(a b)) E)) and return the

results

Maria Hybinette, UGA 18

Summary of Scheme

!  The core of a Scheme evaluator is eval and
apply, procedures that are defined in terms
of each other.

»  The eval procedure takes an expression and an
environment and evaluates to the value of the
expression in the environment;

»  The apply procedure takes a procedure and its
operands and evaluates to the value of applying the
procedure to its operands.

!""#$%

&'(#%

Maria Hybinette, UGA 19

Evaluation Order

!  Scheme uses applicative order evaluation (as
most imperative languages, sometimes called
eager or aggressive evaluation)

»  Evaluate function arguments before passing them
to functions

Maria Hybinette, UGA 20

Example

!  (define double (lambda (x) (+ x x)))
!  Eager evaluation of (double (* 3 4))

!  (double 12)
!  (+ 12 12)
!  24

Maria Hybinette, UGA 21

Evaluation Order

!  Scheme uses applicative order evaluation (as
most imperative languages, sometimes called
eager or aggressive evaluation)

»  Evaluate function arguments before passing them
to functions

!  We can change the evaluator to evaluate
applications “lazily” instead, by only
evaluating the value of an operand when it is
needed (also called normal order evaluation,
call by need).

» Miranda & Haskell evaluates lazily by default, call-
by-name in imperative languages is a form of lazy
evaluation.

Maria Hybinette, UGA 22

Lazy Evaluation

!  Don’t evaluate expressions until their value is
really needed.

» We might save work this way!
» We might change the meaning of some

expressions, since the order of evaluation matters

Maria Hybinette, UGA 23

Check: Is being Lazy any Good?

!  (define double (lambda (x) (+ x x)))
!  Eager evaluation of (double (* 3 4))

!  (double 12)
!  (+ 12 12)
!  24

•  Lazy evaluation (double (* 3 4)) – delays computations
!  (+ (* 3 4) (* 3 4))
!  (+ 12 (* 3 4))
!  (+ 12 12)
!  24

!  QED (Quod Erat Demonstrandum): Proof that lazy is
bad!
!  Causes us to evaluate (* 3 4) twice!

Maria Hybinette, UGA 24

Is lazy ever good!

(define switch (lambda (x a b c)
(cond

((< x 0) a)
((= x 0) b)
((> x 0) c))))

Eager evaluation of (switch -1 (+ 1 2) (+2 3) (+ 3 4))

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))
!  (switch -1 3 (+ 2 3) (+ 3 4))
!  (switch -1 3 5 (+ 3 4))
!  (switch -1 3 5 7)
!  (cond

 ((< -1 0) 3)
 ((= -1 0) 5)
 ((> -1 0) 7))
 (cond (#t 3)

 ((= -1 0) 5)
 ((> -1 0) 7))
!  3

Maria Hybinette, UGA 25

Is lazy ever good!

(define switch (lambda (x a b c)
(cond

((< x 0) a)
((= x 0) b)
((> x 0) c))))

Lazy evaluation of (switch -1 (+ 1 2) (+2 3) (+ 3 4))

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))
!  (cond

 ((< -1 0) (+ 1 2))
 ((= -1 0) (+ 2 3))
 ((> -1 0) (+ 3 4)))
!  ((#t (+ 1 2))

 ((= -1 0) (+ 2 3))
 ((> -1 0) (+ 3 4)))
!  (+ 1 2)
!  3

Lazy evaluation avoids evaluating both (+2 3) and (+ 3 4)

Maria Hybinette, UGA 26

 lazy is good!

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))
!  (switch -1 3 (+ 2 3) (+ 3 4))
!  (switch -1 3 5 (+ 3 4))
!  (switch -1 3 5 7)
!  (cond

 ((< -1 0) 3)
 ((= -1 0) 5)
 ((> -1 0) 7))
!  (cond (#t 3)

 ((= -1 0) 5)
 ((> -1 0) 7))
!  3

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))
!  (cond

 ((< -1 0) (+ 1 2))
 ((= -1 0) (+ 2 3))
 ((> -1 0) (+ 3 4)))
!  ((#t (+ 1 2))

 ((= -1 0) (+ 2 3))
 ((> -1 0) (+ 3 4)))
!  (+ 1 2)
!  3

Maria Hybinette, UGA 27

Check Scheme

!  Secret is out: Scheme does use lazy
evaluation for cond

»  and special forms (aka macros)

!  Functions use eager evaluation for functions
defined with lambda

Maria Hybinette, UGA 28

Evaluation Order

!  We can also change the evaluator to evaluate
applications “lazily” instead, by only
evaluating the value of an operand when it is
needed (also called normal order evaluation,
call by need).

»  In Scheme these can be done with the operator
“delay”.

Maria Hybinette, UGA 29

Evaluation Order?

!  First Review: What does Scheme return
below?
 (define (try a a-expression)!

 !(if (= a 0) 1 a-expression)) !
!(define y 4)!
!(define x 0)!

!
! (try y (/ 1 y)) ; inverse!

 (try x (/ 1 x)) !
!

!

Maria Hybinette, UGA 30

; try with 2 arguments!
(define (try a a-expression) ; (try a (a-expression)) => evaluates!
 (if (= a 0) 1 a-expression)) ; inner expression first : problem if a = 0 even with if test.!
!
(define y 4) ; (try y (/ 1 y))!
(define x 0) ; (try x (/ 1 x))!
!
!
; impact evaluation order by using lazy evaluation 'delay' in scheme!
(define (delay-inverse x) (delay (/ 1 x))) ; (try x (delay-inverse 0))!
(define (aggressive-inverse x) (/ 1 x)) ; (try x (aggressive-inverse 0))!
!
!
(define double (lambda (x) (+ x x)))!

Maria Hybinette, UGA 31

!  Lazy by default :
» Miranda & Haskell

!  Lazy by demand:
»  Scheme - using delay
» Ocaml – lazy

!  The LAZY Advantage:
»  http://en.wikipedia.org/wiki/Lazy_evaluation

Maria Hybinette, UGA 32

Evaluation of Argument
Summary

!  Applicative Order (“eager evaluation”)
»  Evaluate all subexpressions before apply
»  The standard Scheme rule, Java

!  Normal Order (“lazy evaluation”)
»  Evaluate arguments just before the value is needed
» Algol60 (sort of), Haskell, Miranda

“Normal” Scheme order is not “Normal Order”!

Maria Hybinette, UGA 33

Strict and Non-Strict Languages

! A strict language requires all
arguments to be well-defined, so
applicative (eager) order can be used

! A non-strict language does not require
all arguments to be well-defined; it
requires normal-order (lazy) evaluation

Maria Hybinette, UGA 34

Comparing Functional and
Imperative Languages

!  Imperative Languages:
»  Efficient execution
»  Complex semantics
»  Complex syntax
»  Concurrency is programmer designed

!  Functional Languages:
»  Simple semantics
»  Simple syntax
»  Inefficient execution
»  Programs can automatically be made concurrent

Maria Hybinette, UGA 35

Functional Programming in
Perspective (pros)

!  Advantages of functional languages
»  lack of side effects makes programs easier to

understand
»  lack of explicit evaluation order (in some

languages) offers possibility of parallel evaluation
(e.g. MultiLisp)

»  lack of side effects and explicit evaluation order
simplifies some things for a compiler (provided you
don't blow it in other ways)

»  programs are often surprisingly short
»  language can be extremely small and yet powerful

Maria Hybinette, UGA 36

Functional Programming in
Perspective (cons)

!  Advantages of functional languages
»  difficult (but not impossible!) to implement efficiently on

von Neumann machines
–  lots of copying of data through parameters
–  (apparent) need to create a whole new array in order to

change one element
–  heavy use of pointers (space/time and locality problem)
–  frequent procedure calls
–  heavy space use for recursion
–  requires garbage collection
–  requires a different mode of thinking by the programmer
–  difficult to integrate I/O into purely functional model

