
Maria Hybinette, UGA

1

CSCI: 4500/6500 Programming
Languages

Control Flow
Chapter 6

Maria Hybinette, UGA 2

Big Picture: Control Flow
Ordering in Program Execution

Ordering/Flow Mechanisms:
!  Sequencing (statements executed (evaluated) in a specified

order)
–  Imperative language - very important
–  Functional - doesn’t matter as much (emphasizes evaluation of

expression, de emphasize or eliminates statements, e.g., pure fl
don’t have assignment statements)

!  Selection -- Choice among two or more
–  Deemphasized in logical languages

!  Iteration
»  Repeating structure

–  emphasized in imperative languages

!  Procedural abstraction, recursion, requires stack
!  Concurrency

»  2 or more code fragments executed at the same time
!  Non-determinacy (unspecified order)

Maria Hybinette, UGA 3

Expression Evaluation:
Classification Outline

!  Infix, Prefix or Postfix
!  Precedence & Associativity
!  Side effects
!  Statement versus Expression Oriented Languages
!  Value and Reference Model for Variables
!  Orthogonality
!  Initialization
!  Aggregates
!  Assignment

Maria Hybinette, UGA 4

Evaluation: * fix operators

!  Expression:
» Operator (built-in function) and operands

(arguments)
!  Infix, prefix, postfix operators

»  (+ 5 5) or 5 + 6
»  operators in many languages are just `syntactic sugar’1

for a function call:
–  a + b ! a.operator+(b) in C++
–  “+”(a, b) in Ada

»  Cambridge Polish prefix and function name inside
parenthesis.

»  Postfix - postscript, Forth input languages, calculators

1 Landin “adding “sugar” to a language to make it easier to read (for humans)

Maria Hybinette, UGA 5

Expression Evaluation:
Precedence & Associativity

How should this be evaluated?
!  a + b * c**d**e / f

Depends on the language, possibilities:
!  ((((a + b) * c) ** d) ** e) / f
!  a + (((b * c) ** d) ** (e / f))
!  a + ((b * (c ** (d ** e))) / f)

»  Fortran does this last option
!  or something entirely different?

Maria Hybinette, UGA 6

Precedence & Associativity

!  Precedence specify that some operators
group more tightly than others

» Richness of rules across languages varies
(overview next slide)

!  Associativity rules specify that sequences of
operators of equal precedence groups either
left or right.

»  (or up or down? for a weird language of your own
creation)

» Associatively rules are somewhat uniform across
languages but there are variations

Maria Hybinette, UGA 7

Example Precedence:!
!  if A < B and C < D then K = 5!
How would Pascal evaluate this?!
!  A < (B and C) < D [could be an error]! Maria Hybinette, UGA 8

Precedence

!  Most languages avoid this problem by
adopting the following rules.

»  arithmetic operators
»  relational operators
»  logical operators

!  Some languages give all operators equal
precedence.

»  Parentheses must be used to specify
grouping.

Higher precedence

Lower precedence

Maria Hybinette, UGA 9

Precedence: Rule of Thumb

!  C has 15 levels - too many to remember
!  Pascal has 3 levels - too few for good

semantics
!  Fortran has 8
!  Ada has 6

» Note: Ada puts and, or at same level

!  Lesson: when unsure (e.g., programmer
using many languages, better to circumvent
precedence and use parentheses!

Maria Hybinette, UGA 10

Associativity Example

!  Basic operators almost always left to right
»  9-3-2 = (9-3)-2 = 4 (left right)
»  9-3-2 = 9-(3-2) = 8 (right-left)

!  Exponential operator: **
»  right-left (as do mathematics) in Fortran

–  4**3**2 = 4**(3**2) = 262,144
»  Language syntax requires parenthesized form (Ada)

!  Assignment ‘=‘ in expressions associates:
right-left

»  a = b = a + c => a = (b = (a+c))
–  assigns (a+c) to b then assigns the same value to a

Maria Hybinette, UGA 11

Side Effects & Idempotent Functions

Side Effects – a function has a side effect if it
influences subsequent computation in any
way other than by returning a value. A side
effect occurs when a function changes the
environment in which it exists

Idempotent – an idempotent function is one that

if called again with the same parameters, will
always give the same result

Maria Hybinette, UGA 12

Referentially transparent - Expressions in a
purely functional language are referentially
transparent, their value depends only on the
referencing environment.

Imperative programming – “Programming with

side effects” (programming in terms of
statements, state).

Maria Hybinette, UGA 13

Side Effects

!  Assignment statements provide the ultimate example of
side effects

–  they change the value of a variable
–  Fundamental in the von Neumann model of computation.

!  Several languages outlaw side effects for functions (these
languages are called single assignment languages)

»  easier to prove things about programs
»  closer to Mathematical intuition
»  easier to optimize
»  (often) easier to understand

!  But side effects can be nice: consider - rand()!
–  Needs to have a side effect, or else the same random number every time it is

called.

Maria Hybinette, UGA 14

Side Effects (cont)

!  Side effects are a particular problem if they affect
state used in other parts of the expression in which
a function call appears:

!  Example:
» a - f(b) - c * d /* f(b) may affect ‘d’ */!
» What is evaluated first:!

! a – f(b) !
 c * d!

Maria Hybinette, UGA 15

Ordering within Expressions

!  Another Example:
»  f(a, g(b), c) which parameter is evaluated first?

!  Why is it important:
»  Side-effects:

–  if g(b) modifies a or c then the values passed into f will depend
on the order that parameters are evaluated

»  Code improvements:
–  a = B[i]
–  c = a * b + d * 3

!  Note: precedence or associativity does not say if we evaluated a*b
or d*3 first.

–  Evaluate: d*3 first, so the previous load (slow) of B[i] from
memory occurs in parallel of a doing something different, i.e.
computing d*3.

Maria Hybinette, UGA 16

Evaluation of Operands and Side Effects

int x = 0;!
!!
int foo() !
! !{ !
! !x += 5; !
! !return x; !
! !}!
!
!int a = foo() + x + foo();!
!
What is the value of a?

 a = 5 + x + foo()

Maria Hybinette, UGA 17

Re-ordering using mathematical
properties

!  Commutative
»  (a+b) = (b+a)

!  Associative
»  (a+b) + c = a + (b + c)

!  Distributive
»  a * (b + c) = a * b + a * c.

Maria Hybinette, UGA 18

Mathematical Identities

Example:
 a = b + c
 d = c + e + b

Re-order to:
 a = b + c
 d = b + c + e (already evaluated b+c (it is a))

Maria Hybinette, UGA 19

Mathematical Identities

!  Problem: Computer has limited precision
»  associativity (known to be dangerous)
 (a + b) + c
 works if a~=maxint and b~=minint and c<0
 a + (b + c) does not

Maria Hybinette, UGA 20

Expression vs. Statement
Orientation

!  Statements :
»  executed solely for their side effects and
»  return no useful value
» most imperative languages
»  time dependent

!  Expressions :
» may or may not have side effects
»  always produces a value and
»  functional languages (Lisp, Scheme, ML)
»  time less

!  C kinda halfway in-between (distinguishes)
»  allows expression to appear instead of statement

Maria Hybinette, UGA 21

Assignment

!  statement (or expression) executed for its side effect

!  assignment operators (+=, -=, etc)
»  handy
»  avoid redundant work (or need for optimization)

–  No need for redundant address calculations (guaranteed)

»  perform side effects exactly once (avoids pecularities)
–  A[f(i)] = A[f(i)] + 1 (f(i) may have a side effect x 2).
–  A[f(i)] += 1

Maria Hybinette, UGA 22

References and Values

!  Assignment seems straightforward
!  Semantic differences depending if languages

uses a
» A reference model
»  or value model of variables.

!  Impact on programs that use pointers (we will
see why shortly).

Maria Hybinette, UGA 23

Value Model

!  Variable is a named container for a value
!  left-hand side of expressions denote “locations” and

are referenced as l-values
!  right-hand side of expressions denote “values” and

are referred to as r-values
!  Expressions can be either an l-value or an r-value

depending on context:
» 2 + 3 = a !
» a = 2 + 3!
» (f(x)+3) -> b[c] = 2 /* l-value expression */!
» k = (f(x)+3)->b[c] !

a !4 !

Example languages who use
value model: C and C++

Maria Hybinette, UGA 24

Value Model: Example

a !

b !

c !

4 !

2 !

2 !

1. Put the value 2 in b

2. Copy value of b into c

3. Read b and c and put result in a

b = 2!
c = b!
a = b + c!

a !4 !

Maria Hybinette, UGA 25

Reference Model

!  Variable is a named reference to a value
!  Every “value” is a l-value (location)

» Only one ‘4’, variables points to the ‘4’, Above the
variable a points to ‘4’

!  To get a “value” (r-value) need to de-reference it
to obtain value that it contain (points to).

» Most languages this dereferencing is automatic, e.g.,
Clue. But in some languages you need to explicitly
dereference it (e.g., ML).

»  Indirection for accesses (however most compiler use
multiple copies of objects to speed things up).

a ! 4 !

Maria Hybinette, UGA 26

Reference Model

b = 2!
c = b!
a = b + c!

a !

b !

c !

4 !

2 !

1. Let b refer to 2

2. Let c also refer to 2

3. Pass these references to ‘+’
4. Let a refer to the result, namely 4

Maria Hybinette, UGA 27

a !

b !

c !

4 !

2 !

2 !

a !

b !

c !

4 !

2 !

b = 2!
c = b!
a = b + c!

!  Value model: any integer value can contain the value 2
!  Reference model: only one 2 (if variable on right side, need to

dereference to get actual value).

Maria Hybinette, UGA 28

Value/Variable Model
Implications

!  Reference model need to distinguish between
variables that

»  refer to the same object and variables that
»  point to different objects but that have the same
“value’’ (but happens to be equal)

!  LISP provided two notions of equality to
distinguish between the two.

Maria Hybinette, UGA 29

Value versus Reference Models

!  Value-oriented languages (container models)
» C, Pascal, Ada

!  Reference-oriented languages
» most functional languages (Lisp, Scheme, ML)
» Clu, Smalltalk

!  Algol-68 kinda halfway in-between
!  Java deliberately in-between, uses both:

»  Value model for built-in types (int, double)
» Reference model for user-defined types (objects)

!  C# and Eiffel allow programmer choose model
for user defined types.

Maria Hybinette, UGA 30

Orthogonality (review)

!  Features that can be used in any
combination (no redundancy)
»  Meaning makes sense
»  Meaning is consistent

 if (if b != 0 then a/b == c else false) then ...!
!if (if f then true else messy()) then ...!

!  Algol makes orthogonality a principal design
goal.

Maria Hybinette, UGA

31

Control Flow

(Really)

Maria Hybinette, UGA 32

Structured vs. Unstructured
Control Flow

Structured Programming – hot programming trend in the
1970’s

!  Top down design
!  Modularization of code
!  Structured types
!  Descriptive variable names
!  Extensive commenting
!  After Algol 60, most languages had: if!then!else,

while loops

Don’t need to use goto’s …

Maria Hybinette, UGA 33

Types of Control Flow

!  Sequencing -- statements executed (evaluated) in a specified
order

»  Imperative language - very important
»  Functional - doesn’t matter as much (emphasizes evaluation of

expression, de emphasize or eliminates statements, e.g.
assignment statements)

!  Selection -- Choice among two or more
–  Deemphasized in logical languages

!  Iteration -- Repeating structure
–  emphasized in imperative languages

!  Procedural abstraction
!  Recursion, requires stack
!  Concurrency executing statements at the same time
!  Non-determinacy -- unspecified order

Maria Hybinette, UGA 34

Sequencing

!  Simple idea
»  Statements executes one after another
»  Very imperative, von-Neuman
»  Controls order in which side effects occur

!  Statement blocks
»  groups multiple statement together into one statement
»  Examples:

–  {} in C, C++ and Java
–  begin/end in Algol, Pascal and Modula

!  Basic block
»  Block where the only control flow allowed is sequencing

Maria Hybinette, UGA 35

Initialization

Motivation:
!  Improves execution time: Statically allocated variables (by

compiler)
»  e.g. reduce cost of assignment statement at run time.

!  Avoid (weird) errors of evaluating variables with no initial
value

Approach:
!  Pascal has no initialization facility (assign)
!  C/C++ initializes static variables to 0 by default
!  Usage of non-initialized variables may cause a hardware

interrupt (implemented by “initializing” value to NaN)
!  Constructor: automatic initialization at run-time

Maria Hybinette, UGA

36

Selection

Maria Hybinette, UGA 37

if statements

!  if condition then statement else statement
» Nested if statements have a dangling else problem

Maria Hybinette, UGA 38

Dangling else Problem

! !if … then!
! ! !if … then!
! ! !else …!

!  or
! !if … then!

! ! !if then …!
! !else !

!  Which one does the else map to?

Maria Hybinette, UGA 39

Dangling else Problem

!  ALGOL:
»  does not allow “then if”
»  statement has to be different than another if statement

(can be another block, that contains an if)
!  Pascal:

» else associates with closest unmatched then!
!  Perl:

» Has a separate elsif keyword (in addition to else
and if)

»  “else if” will cause an error

Maria Hybinette, UGA 40

Strict vs short-circuit evaluation of
conditions

!  strict
»  Evaluate all operands before applying operators

–  Pascal
!  short-circuit

»  Skip operand evaluation when possible
»  Evaluation order important

–  if operand-evaluation has side effects (seen)
–  if programmer knows that some operands can be computed

more quickly than others
»  Examples

–  || and && in C++ and Java
!  always use short-circuit evaluation

–  then if and or else in Ada
!  language supports both strict and short-circuit, programmer decides:

use and, or for strict evaluation

Maria Hybinette, UGA 41

Short Circuiting

!  C++
p = my_list;!
while(p && p->key != val)!
! ! p = p->next;!

!  Pascal does not use short circuiting.
p := my_list;!
while(p <> nil) and (p^.key <> val) do!
! ! p := p^.next!

Ouch!

Maria Hybinette, UGA 42

“Short Circuit” Jump Code

if ((A > B) and (C > D)) or (E <> F) then

 then_clause

 else

 else_clause

!  Usually purpose of condition is to create a branch
instruction to various locations not a value to be
stored.
!  Enables efficient code generation.
!  What does the code look like?

!  First will look at non-short circuit
generated code

Maria Hybinette, UGA 43

No Short Circuiting (Pascal)

! r1 := A !-- load!
! r2 := B  
 r1 := r1 > r2  
 r2 := C  
 r3 := D  
 r2 := r2 > r3  
 r1 := r1 & r2  
 r2 := E  
 r3 := F!
! r2 := r2 <> r3  
 r1 := r1 | r2  
 if r1 = 0 goto L2!

L1: then_clause !-- label not actually used!
! goto L3!

L2: else_clause!
L3:!

if ((A > B) and (C > D)) or (E <> F) then

 then_clause

 else

 else_clause

!  root would name
r1 as the register
containing the
expression value

Maria Hybinette, UGA 44

Short Circuiting

 r1 := A!
 r2 := B!
 if r1 <= r2 goto L4!
 r1 := C!
 r2 := D!
 if r1 > r2 goto L1!
L4: r1 := E!
 r2 := F!
 if r1 = r2 goto L2!
L1: then_clause!
 goto L3!
L2: else_clause!
L3:!

if ((A > B) and (C > D)) or (E <> F) then

 then_clause

 else

 else_clause

!  Inherited attributes of the
conditions root would indicate
that control should “fall
through” to L1 if the condition
is true, or branch to L2 if false.

!  Value of ‘final’ expression
never in a register rather its
value is implicit in the control
flow.

Maria Hybinette, UGA 45

Implications

!  Short-circuiting
» Can avoid out of bound errors
» Can lead to more efficient code
» Not all code is guaranteed to be evaluated

!  Strict
» Not good when code has build in side effects

Maria Hybinette, UGA 46

Case/Switch Statements

!  Alternative to nested if!then!else blocks
 !j := … (* potentially complicated expression *)!

IF j = 1 THEN clause_A!
ELSEIF j IN 2,7 THEN clause_B!
ELSEIF j IN 3..5 THEN clause_C!
ELSEIF (j = 10) THEN clause_D!
ELSE clause_E!
END!

CASE … (* potentially complicated expression *) of!
 1: !clause_A!
 | 2, 7: !clause B!

! | 3..5: !clause C!
! | 10:!clause D!
! !ELSE !clause E!

END!

Principal motivation of case statement is to generate
efficient target code not syntactic elegance.

Maria Hybinette, UGA 47

Implementation of Case Statements

!  If!then!else !  Case (uses jump table)

Maria Hybinette, UGA 48

Case & Switch

! Switch is in C, C++, and Java
» Unique syntax
» Use break statements, otherwise statements fall

through to the next case (fallthrough is error prone)

! Case is used in most other languages
» Can have ranges and lists
»  Some languages do not have default clauses

–  Pascal

Maria Hybinette, UGA 49

Origin of Case Statements

!  Descended from the computed goto of
Fortran

goto (15, 100, 150, 200), J!
!
if J is 1, then it jumps to label 15!
if J is 4, then it jumps to label 200!
if J is not 1, 2, 3, or 4, then the
statement does ! !nothing!

Maria Hybinette, UGA

50

Iteration

Maria Hybinette, UGA 51

Iteration

!  More prevalent in imperative languages
!  Takes the form of loops

»  Iteration of loops used for their side effects
–  Modification of variables

Maria Hybinette, UGA 52

Iteration

Two (2) kinds of iterative loops:

!  enumeration controlled: Executed once for

every value in a given finite set (iterations
known before iteration begins)

!  logically-controlled: Executed until some
condition changes value

Maria Hybinette, UGA 53

Enumeration-Controlled Loop

!  Early Fortran:
 do 10 i = 1, 50, 2
 . . .
10: continue

!  Equivalent?
10: i = 1 !
! . . . !
 i = i + 2 !
 if i <= 50 goto 10 !

Maria Hybinette, UGA 54

Issue #1

!  Can the step size/bounds be:
»  Positive/negative ?
» An expression ?
» Of type Real ?

Maria Hybinette, UGA 55

Issue #2

!  Changes to loop indices or bounds
»  Prohibited to varying degrees
» Algol 68, Pascal, Ada, Fortran 77/90

–  Prohibit changes to the index within loop
–  Evaluate bound once (1) before iteration

Maria Hybinette, UGA 56

Changes to loop indices or bounds

!  A statement is said to threaten an index
variable if

» Assigns to it
»  Passes it to a subroutine
» Reads it from a file
»  Is a structure that contains a statement that

threatens it

Maria Hybinette, UGA 57

Issue #3

!  Test terminating condition before first
iteration

!  Example:
for i := first to last by step do!
 …!
end!

 !

 r1 := first
 r2 := step
 r3 := last
L1: if r1 > r3 goto L2
 …
 r1 := r1 + r2
 goto L1
L2

 r1 := first
 r2 := step
 r3 := last
L1: …
 r1 := r1 + r2
 goto L1
L2: if r1 < r3 goto L1

Maria Hybinette, UGA 58

Issue #4

!  Access to index outside loop
»  undefined

–  Fortran IV, Pascal
» most recent value

–  Fortran 77, Algol 60
»  index is a local variable of loop

–  Algol 68, Ada

Maria Hybinette, UGA 59

Issue #5

!  Jumps
» Restrictions on entering loop from outside

–  Algol 60 and Fortran 77 and most of their
descendents prevent the use of gotos to jump into a
loop.

»  “exit” or “continue” used for loop escape

Maria Hybinette, UGA 60

Summary Issues

!  step: size (pos/neg), expression, type
!  changes to indices or bounds within loop
!  test termination condition before first

iteration of loop
!  scope of control variable (access outside

loop)
»  value of index after the loop

Maria Hybinette, UGA 61

Logically Controlled Loops

while condition do statement

!  Advantages of for loop over while loop
» Compactness
» Clarity
» All code affecting flow control is localized in header

Maria Hybinette, UGA 62

Logically Controlled Loops

!  Where to test termination condition?
»  pre-test (while)
»  post-test (repeat)
»  mid-test (when)

–  one-and-a-half loops (loop with exit, mid-test)
!

loop:!
statement list!

when condition exit!
statement list!

when condition exit!
end loop!

Maria Hybinette, UGA 63

C’s for loop

!  C’s for loop
»  Logically controlled

–  Any enumeration-controlled loop can be written as a
logically-controlled loop

 for(i = first; i <= last; I += step)
 {
 }

i = first;
while(i <= last)

 {
 i += step;
 }

Maria Hybinette, UGA 64

C’s for loop

!  Places additional responsibility on the
programmer

»  Effect of overflow on testing of termination
condition

»  Index and variable in termination condition can be
changed

–  By body of loop
–  By subroutines the loop calls

Maria Hybinette, UGA 65

Combination Loops

!  Combination of enumeration and logically
controlled loops

!  Algol 60’s for loop

For_stmt -> for id := for_list do stmt
For_list -> enumerator (, enumerator)*
Enumerator -> expr
 -> expr step expr until expr
 -> expr while condition

Maria Hybinette, UGA 66

Algol 60’s for loop

!  Examples: (all equivalent)
for i := 1, 3, 7, 9 do…
for i := 1 step 2 until 10 do …
for i := 1, i + 2 while i < 10 do …

!  Problems
» Repeated evaluation of bounds
» Hard to understand

Maria Hybinette, UGA 67

Iterators: HW - Read in Textbook

!  True Iterators
!  Iterator Objects
!  Iterating with first-class functions
!  Iterating without iterators

Maria Hybinette, UGA

68

Recursion

Maria Hybinette, UGA 69

Recursive Computation

!  Decompose problem into smaller problems
by calling itself

!  Base case- when the function does not call
itself any longer; no base case, no return
value

!  Problem must always get smaller and
approach the base case

Maria Hybinette, UGA 70

Recursive Computation

!  No side effects
!  Requires no special syntax
!  Can be implemented in most programming

languages; need to permit functions to call
themselves or other functions that call them
in return.

!  Some languages don’t permit recursion:
Fortran 77

Maria Hybinette, UGA 71

Tracing a Recursive Function

(define sum (lambda(n)
 (if (= n 0)
 0
 (+ n (sum (- n 1))))))

Maria Hybinette, UGA 72

Tracing a Recursive Function

>(trace sum)
#<unspecified> >
>(sum 5)
"CALLED" sum 5
 "CALLED" sum 4
 "CALLED" sum 3
 "CALLED" sum 2
 "CALLED" sum 1
 "CALLED" sum 0
 "RETURNED" sum 0
 "RETURNED" sum 1
 "RETURNED" sum 3
 "RETURNED" sum 6
 "RETURNED" sum 10
"RETURNED" sum 15
15

Maria Hybinette, UGA 73

Embedded vs. Tail Recursion

Analogy: You’ve been asked to measure the distance between
UGA and Georgia Tech

Embedded:
1.  Check to see if you’re there yet
2.  If not, take a step, put a mark on a piece of paper to keep

count, restart the problem
3.  When you’re there, count up all the marks
Tail:
1.  Write down how many steps you’re taken so far as a

running total
2.  When you get to Georgia Tech, the answer is already there;

no counting!

Maria Hybinette, UGA 74

Recursion

!  Tail recursion: No computation follows
recursive call

/* assume a, b > 0 */

int gcd (int a, int b)

 {

 if (a == b) return a;

 else if (a > b) return gcd (a - b, b);

 else return gcd (a, b – a);

 }

Maria Hybinette, UGA 75

Which is Better?

!  Tail.
!  Additional computation never follows a

recursive call; the return value is simply
whatever the recursive call returns

!  The compiler can reuse space belonging to
the current iteration when it makes the
recursive call

!  Dynamically allocated stack space is
unnecessary

Maria Hybinette, UGA 76

!  Any logically controlled iterative algorithm can be
rewritten as a recursive algorithm and vice versa

!  Iteration: repeated modification of variables
(imperative languages)

»  Uses a repetition structure(for, while)
»  Terminates when loop continuation condition fails

!  Recursion: does not change variables (functional
languages)

»  Uses a selection structure (if, if/else, or switch/
case)

»  Terminates when a base case is recognized

Maria Hybinette, UGA 77

Tail Recursion Example

/* assume a, b > 0 */

int gcd (int a, int b)

 {

 if (a == b) return a;

 else if (a > b) return gcd (a -
b, b);

 else return gcd (a, b – a);

 }

/* assume a, b > 0 */

int gcd (int a, int b)

 {

 start:

 if (a == b) return a:

 else if (a > b)

 {

 a = a - b

 goto start;

 }

 else

 {

 b = b - a;

 goto start;

 }

 }
Maria Hybinette, UGA 78

Which is tail recursive?

(define summation (lambda (f low high)
 (if (= low high)
 (f low)

 (+ (f low) (summation f (+ low 1) high)))))

(define summation (lambda (f low high subtotal)
 (if (= low high)

 (+ subtotal (f low))

 (summation f (+ low 1) high (+ subtotal (f low))))))

Last one: Note that it passes
along an accumulator.

Maria Hybinette, UGA 79

Recursion

!  equally powerful to iteration
!  mechanical transformations back and forth
!  often more intuitive (sometimes less)
!  naïve implementation less efficient

»  no special syntax required
»  fundamental to functional languages like Scheme

Maria Hybinette, UGA 80

Expression Evaluation: Short
Circuiting

! Consider (a < b) && (b < c):
» If a >= b there is no point evaluating

whether b < c because (a < b) && (b
< c) is automatically false

! Other similar situations
 if (b != 0 && a/b == c) ...

 if (*p && p->foo) ...

 if (f || messy()) ...

