
Maria Hybinette, UGA

1

CSCI: 4500/6500 Programming
Languages

Scripting Languages
Chapter 13

Maria Hybinette, UGA 2

What is Scripting?

!  Yes! The name comes from written script
such as screenplay, where dialog is repeated
verbatim for every performance

Maria Hybinette, UGA 3

Origin of Scripting Languages

!  Scripting languages originated as job control
languages

»  1960s: IBM System 360 had the Job Control Language
(JCL)

»  Scripts used to control other programs
–  Launch compilation, execution
–  Check return codes

!  Scripting languages evolved in the UNIX world
»  Shell programming: AWK, Tcl/Tk, Perl
»  Scripts used to combine component (“programming in

the large”)
–  Gluing applications [Ousterhout 97]

Glue that puts components together

Maria Hybinette, UGA 4

Higher-level Programming

!  Scripting languages provide an even higher-
level of abstraction than languages we have
seen previously

»  The main goal is programming productivity
–  Performance is a secondary consideration

» Modern SL provide primitive operations with greater
functionality

!  Scripting languages are usually interpreted
»  Interpretation increases speed of development

–  Immediate feedback
» Compilation to an intermediate format is common

(e.g., Perl).

Maria Hybinette, UGA 5

Contemporary Scripting Languages

!  Unix shells: sh, ksh, bash
»  job control

!  Perl
»  Slashdot, bioinformatics, financial data processing, CGI

!  Python
»  System administration at Google

!  Ruby
»  Various blogs, data processing applications

!  PHP
»  Yahoo web site

!  JavaScript
»  Google maps

Maria Hybinette, UGA 6

What is Scripting Language Again?

!  Favor rapid development over efficiency of
execution

» Code can be developed 5-10 times faster in a
scripting language but will run slower at a 10th/20th
of the speed of a systems language such as C, C++
[Ousterhout]

!  Coordinates multiple programs
»  Strong at communicating with program

components written in other languages
!  Hard to put a finger on -- difficult to define

exactly what makes language a scripting
language

Maria Hybinette, UGA 7

Common Characteristics

!  Batch and interactive use
!  Economy of expression (readability?)
!  Weakly typed

»  meaning is inferred (no declaration required)
»  => less error checking at compile time

–  run time checking is less efficient (strict run type checking by
Python, Ruby, Scheme).

»  Increases speed of development
–  more flexible
–  fewer lines of code

!  High-level model of underlying machines
!  Easy access to other programs
!  Sophisticated pattern matching and string manipulation
!  High-level data types (sets, bags, lists, dictionaries and

tuples)

Designed to support “quick programming”

We will talk
more about
types later…

Maria Hybinette, UGA 8

“Typing” and Productivity

[Ousterhout, 97]

Maria Hybinette, UGA 9

Design Philosophy

Often people, especially computer engineers, focus on the
machines. They think:
 "By doing this, the machine will run faster.
 By doing this, the machine will run more effectively.
 By doing this, the machine will something something something."

They are focusing on the machines. But in fact we need to
focus on humans, on how humans care about doing
programming or operating the application of the machines.
We are the masters. They are the slaves.

Yukihiro “Matz” Matsumoto

 Creator of Ruby

Maria Hybinette, UGA 10

Design Philosophy

Often people, especially computer engineers, focus on the
machines. They think:
 "By doing this, the machine will run faster.
 By doing this, the machine will run more effectively.
 By doing this, the machine will something something something."

They are focusing on the machines. But in fact we need to
focus on humans, on how humans care about doing
programming or operating the application of the machines.
We are the masters. They are the slaves.

Yukihiro “Matz” Matsumoto

 Creator of Ruby

Maria Hybinette, UGA 11

Application Domains

!  Shell scripts
!  Macro
!  Application specific
!  Web programming
!  Text processing
!  Extension/Embedded
!  Others

http://www.cs.uga.edu/~maria/classes/4500-
Spring-2006/4500-hw.html

We will use Ruby here, but easy (and similar) in most scripting languages

Maria Hybinette, UGA 13

Demo: Getting due dates of
homework

!  What if I don’t want to go to the web site to
see if I have CSCI 4500/6500 homework?

!  What if I don’t want to launch a heavy duty
web browser?

!  Write a script to check for me!

{saffron} check http://www.cs.uga.edu/~maria/classes/4500-Spring-2006/4500-hw.html
Hwk 6 is due on Thursday, April 13.
Hwk 1 was due on Tuesday, January 10.
Hwk 2 was due on Tuesday, January 31.
Hwk 3 was due on Wednesday, February 15.
Hwk 4 is due on Thursday, March 09.
Hwk 5 is due on Thursday, March 30.

#!/usr/bin/ruby
require 'uri'; require 'net/http'

uri= URI.parse(ARGV[0])
h=Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)
hwk = {}
if resp.message == "OK"
 data.scan(/Homework (\d*) \(due (\d*)\/(\d*)\)/)\
 {|x,y,z| hwk[x] = Time.local(2006,y,z)}
end

hwk.each{| assignment, duedate|
 if duedate < (Time.now - 60 * 60 * 24)
 puts "Hwk #{assignment} was due on #{duedate.strftime("%A, %B %d")}."
 else
 puts "Hwk #{assignment} is due on #{duedate.strftime("%A, %B %d")}."
 end
 }

#!/usr/bin/ruby
require 'uri'; require 'net/http'

uri= URI.parse(ARGV[0])
h=Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)
hwk = {}
if resp.message == "OK"
 data.scan(/Homework (\d*) \(due (\d*)\/(\d*)\)/)\
 {|x,y,z| hwk[x] = Time.local(2006,y,z)}
end

hwk.each{| assignment, duedate|
 if duedate < (Time.now - 60 * 60 * 24)
 puts "Hwk #{assignment} was due on #{duedate.strftime("%A, %B %d")}."
 else
 puts "Hwk #{assignment} is due on #{duedate.strftime("%A, %B %d")}."
 end
 }

“Shebang”

#!/usr/bin/ruby
require 'uri'; require 'net/http'

uri = URI.parse(ARGV[0])
h = Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)
hwk = {}
if resp.message == "OK"
 data.scan(/Homework (\d*) \(due (\d*)\/(\d*)\)/)\
 {|x,y,z| hwk[x] = Time.local(2006,y,z)}
end

hwk.each{| assignment, duedate|
 if duedate < (Time.now - 60 * 60 * 24)
 puts "Hwk #{assignment} was due on #{duedate.strftime("%A, %B %d")}."
 else
 puts "Hwk #{assignment} is due on #{duedate.strftime("%A, %B %d")}."
 end
 }

useful libraries

#!/usr/bin/ruby
require 'uri'; require 'net/http'

uri = URI.parse(ARGV[0])
h = Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)
hwk = {}
if resp.message == "OK"
 data.scan(/Homework (\d*) \(due (\d*)\/(\d*)\)/)\
 {|x,y,z| hwk[x] = Time.local(2006,y,z)}
end

hwk.each{| assignment, duedate|
 if duedate < (Time.now - 60 * 60 * 24)
 puts "Hwk #{assignment} was due on #{duedate.strftime("%A, %B %d")}."
 else
 puts "Hwk #{assignment} is due on #{duedate.strftime("%A, %B %d")}."
 end
 }

Powerful regular
expression
support

#!/usr/bin/ruby
require 'uri'; require 'net/http'

uri = URI.parse(ARGV[0])
h = Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)
hwk = {}
if resp.message == "OK"
 data.scan(/Homework (\d*) \(due (\d*)\/(\d*)\)/)\
 {|x,y,z| hwk[x] = Time.local(2006,y,z)}
end

hwk.each{| assignment, duedate |
 if duedate < (Time.now - 60 * 60 * 24)
 puts "Hwk #{assignment} was due on #{duedate.strftime("%A, %B %d")}."
 else
 puts "Hwk #{assignment} is due on #{duedate.strftime("%A, %B %d")}."
 end
 }

Associative
arrays:

Keys & Values

#!/usr/bin/ruby
require 'uri'; require 'net/http'

uri = URI.parse(ARGV[0])
h = Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)
hwk = {}
if resp.message == "OK"
 data.scan(/Homework (\d*) \(due (\d*)\/(\d*)\)/)\
 {|x,y,z| hwk[x] = Time.local(2006,y,z)}
end

hwk.each{| assignment, duedate|
 if duedate < (Time.now - 60 * 60 * 24)
 puts "Hwk #{assignment} was due on #{duedate.strftime("%A, %B %d")}."
 else
 puts "Hwk #{assignment} is due on #{duedate.strftime("%A, %B %d")}."
 end
 }

String processing

Maria Hybinette, UGA 20

“Shebang”

!  In Unix systems, shebang tells the OS how to evaluate an
executable text file.
»  Shebang: sharp bang or haSH bang, referring to the two

typical UNIX names of the two characters.

!  Advantages: Don’t need file extensions, program looks
built-in, and can change implementation transparently.

> ./doit args

#! interp-path
prog-text

doit:

> interp-path doit args

Maria Hybinette, UGA 21

Large Standard Library

!  Date, ParseDate
!  File
!  GetoptLong: processing command line switches
!  profile: automatic performance profiling
!  BasicSocket, IPSocket, TCPSocket, TCPServer, UDPSocket, Socket
!  Net::FTP, Net::HTTP, Net::HTTPResponse, Net::POPMail, Net::SMTP,

Net::Telnet
!  CGI: cookies, session management
!  Threads
!  Matrix

Maria Hybinette, UGA 22

Contributing users

!  Ruby Application Archive (RAA)
»  http://raa.ruby-lang.org/
»  144 library categories, 833 libraries available
»  eg: URI library, database access

!  Comprehensive Perl Archive Network (CPAN)
»  http://www.cpan.org/
»  8853 Perl modules from 4655 authors
»  “With Perl, you usually don’t have to write much

code: just find the code that somebody else has
already written to solve your problem.”

Maria Hybinette, UGA 23

Example: URI and HTTP Libraries

require 'uri'; require 'net/http'

uri = URI.parse(ARGV[0])
h = Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)

Require clauses
cause Ruby to
load named
libraries.

URI Syntax (Uniform Resource Identifier): URL & URN (both)
 http, ftp, mailto.
URL: <protocol>:// <host> [:<port>] [<path> [? <query>]]
http://user:pass@example.com:992/animal/bird?species=seagull#wings !
__/ ________/ _________/__/__________/______________/____/ !
| | | | | | | !
protocol login hosts port path query anchor/fragment!
!
URN: urn:<namespace>:<string> if the books is a file (URL: file path file://home/maria/book.pdf)!
urn:isbn:nnnn-nnn-nnn!

Street
address &
Name
(identity)

Maria Hybinette, UGA 24

Example: URI and HTTP Libraries

require 'uri'; require 'net/http'

uri = URI.parse(ARGV[0])
h = Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)

URI.parse converts
argument string
into uri object, with
host and path
component (and
more)

Maria Hybinette, UGA 25

Example: URI and HTTP Libraries

require 'uri'; require 'net/http'

uri = URI.parse(ARGV[0])
h = Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)

Net::HTTP.new
creates an http
connection object,
ready to converse with
the specified host on
the indicated port.

Maria Hybinette, UGA 26

Example: URI and HTTP Libraries

require 'uri'; require 'net/http'

uri = URI.parse(ARGV[0])
h = Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)

h.get asks to retrieve
the headers and
content of the given
path from the site
associated with h. It
returns response code
and the payload data

Maria Hybinette, UGA 27

Strings

!  Strings are just objects:

!  Strings can include expressions with # operator:

!  Plus operator concatenates strings:

!  Many more operations (more than 75!).

“simon”.length yields 5

“3 + 4 = #{3 + 4}” yields “3 + 4 = 7”

“Simon” + “Cowell” yields “Simon Cowell”

Maria Hybinette, UGA 28

Powerful regular expressions

!  Regular expressions are patterns that match
against strings, possibly creating bindings in
the process. Uses greedy matching.

!  In Ruby, regular expressions are objects
created with special literal forms:

!  Examples:
/reg-exp/ or %r{reg-exp}

/arr/ matches strings containing arr
/\s*\|\s*/ matches a | with optional white space

Maria Hybinette, UGA 29

Simple Matches

All characters except .|()[\^{+$*? match themselves

.|()[\^{+$*? Precede by \ to match directly

. Matches any character

[characters] Matches any single character in [!]
May include ranges; Initial ^ negates

\d Matches any digit

\w Matches any “word” character

\s Matches any whitespace

^ Matches the beginning of a line

$ Matches the end of a line
Maria Hybinette, UGA 30

Compound matches

(…)

re1 |
re2

re?

re{m,n}

re+

re*

Groups regular expressions and directs
interpreter to introduce bindings for
intermediate results.

Matches either re1 or re2

Matches zero or one occurrence of re.

Matches at least m and no more than n
occurrences of re.

Matches 1 or more occurrences of re.

Matches 0 or more occurrences of re.

Maria Hybinette, UGA 31

Bindings

$` Portion of string that preceded
match.

$& Portion of string that matched.

$’ Portion of string after match.

$1,
$2,…

Portion of match within i th set of
parentheses.

Matching a string against a regular expression
causes interpreter to introduce bindings:

