
Maria Hybinette, UGA

1

CSCI: 4500/6500 Programming
Languages

SED & AWK

Maria Hybinette, UGA 2

sed: Stream Oriented, Non-
Interactive, Text Editor

!  Line-oriented tool for pattern matching and
replacement (stream editor)

»  Looks for patterns one line at a time, like grep
»  “Change” lines of the file (but acts as a filter)

–  Filter, i.e., does not modify input file
»  There is an interactive editor ed that accepts the

same commands
» UNIX philosophy – edit a stream, a stream flowing

through a pipe

!  Sed is not really a programming language
(but AWK is)

Maria Hybinette, UGA 3

!  Basic Syntax
!  [address(es)]s/pattern/replacement/[flags]

Maria Hybinette, UGA 4

Sed Architecture

Input

Output

Input Line

Script file
Address Action
Address Action
Address Action

Maria Hybinette, UGA 5

 Awful Syntax

! sed [-n] [-e] [‘command’] [file…]
! sed [-n] [-f scriptfile] [file…]

» -n – supress output of input lines
» -f scriptfile - next argument is a filename

containing editing commands
» -e command - the next argument is an editing

command rather than a filename, useful if
multiple commands are specified

– s the ultimate substitution command :
!  sed s/day/night/ < old > new!
!  sed s/day/night/ old > new!

Maria Hybinette, UGA 6

Command! (function)

! sed [-n] [-e] [‘command’] [file…]
! Command Details:

!  s – substitution
–  [address(es)]s/pattern/replacement/[flags]
–  sed s/day/night/
–  flags – example ‘g’ for global, ‘n’ which

occurrence of pattern should be replaced
» d – delete
» And more: y-transform, p-print

Maria Hybinette, UGA 7

More Warm-up Examples

!  s/Tom/Dick/2
»  Substitutes Dick for the second occurrence of Tom

in the pattern space

!  s/wood/plastic/p
»  Substitutes plastic for the first occurrence of wood

and outputs (prints) pattern space

Maria Hybinette, UGA 8

Constraining matches by
addressing

!  Commands can be constrained to accept only
single line addresses or ranges of address (or
a pattern).

Maria Hybinette, UGA 9

! Diving In Example:
»  echo “The UNIX operating system” | sed 's/.NI./wonderful &/’

!  Ouch!
»  Special replacement/patterns – characters
» & - replaced by the entire string matched in the regular

expression for pattern

Maria Hybinette, UGA 10

Another Example

!  sed [-n] [-e] [‘command’] [file…]
!  Escape : \
!  . On character

{saffron} cat first.txt
first:second
one:two
{saffron} sed 's/\(.*\):\(.*\)/\2:\1/' test1

Maria Hybinette, UGA 11

Another Example

!  sed [-n] [-e] [‘command’] [file…]
!  Escape,
!  Marking patterns (up to 9): “\(“, \)”

{saffron} cat test1.txt
first:second
one:two
{saffron} sed 's/\(.*\):\(.*\)/\2:\1/' test1
second:first
two:one

Maria Hybinette, UGA 12

Address Example

!  Address:
»  delete lines 1-10: sed -e '1,10d‘

{h70-33-107-14:ingrid:919} sed -e ‘5,14d' afile.txt
1
2
3
4
{h70-33-107-14:ingrid:920}

Maria Hybinette, UGA 13

More examples

!  Convert unix to dos characters.
» sed -e 's/$/\r/' myunix.txt > mydos.txt

!  Transform with y (by character position)
!  echo “maria hybinette” | sed -e ’y/aie/xyz/’

!  s/Tom/Dick/2
»  Substitutes Dick for the second occurrence of Tom in the

pattern space

!  s/wood/plastic/p
»  Substitutes plastic for the first occurrence of wood and

outputs (prints) pattern space

Maria Hybinette, UGA 14

Append, Insert, and Change

Syntax for these commands is a little
strange because they must be specified
on multiple lines

!  append [address]a\
 text
!  insert [address]i\
 text
! change [address(es)]c\
 text
! append/insert for single lines only, not

range

Maria Hybinette, UGA 15

Change Examples

!  Remove mail headers,
ie; the address specifies
a range of lines
beginning with a line
that begins with From
until the first blank line.

»  The first example
replaces all lines with a
single occurrence of
<Mail Header Removed>.

»  The second example
replaces each line with
<Mail Header Removed>

/^From: /,/^$/c\
 <Mail Headers Removed>

/^From: /,/^$/{

s/^From //p
c\
<Mail Header Removed>
}

Maria Hybinette, UGA 16

Sed Advantages

!  Regular expressions
!  Fast
!  Concise

Maria Hybinette, UGA 17

Sed Drawbacks

!  Hard to remember text from one line to
another

!  Not possible to go backward in the file
!  No way to do forward references

like /..../+1
!  No facilities to manipulate numbers
!  Cumbersome syntax

Maria Hybinette, UGA

18

Awk

Programmable Filters

Maria Hybinette, UGA 19

Aho Weinberger Kernighan

Why is it called AWK?

Maria Hybinette, UGA 20

Awk Introduction

! A general purpose programmable filter that
handles text (strings) as easily as numbers

» This makes awk one of the most powerful of the
Unix utilities

! awk processes fields while sed only processes
lines

! nawk (new awk) is the new standard for awk
» Designed to facilitate large awk programs
» gawk is a free nawk clone from GNU

Maria Hybinette, UGA 21

Awk Input

! awk gets its input from
» files
» redirection and pipes
» directly from standard input

Maria Hybinette, UGA 22

AWK Highlights

! A programming language for handling
common data manipulation tasks with only
a few lines of code

! awk is a pattern-action language, like sed
! Looks like C but automatically handles

input, field splitting, initialization, and
memory management

» Built-in string and number data types
» No variable type declarations

! awk is a great prototyping language
» Start with a few lines and keep adding until it

does what you want

Maria Hybinette, UGA 23

Awk Features over Sed

!  Convenient numeric processing
!  Variables and control flow in the actions
!  Convenient way of accessing fields within

lines
!  Flexible printing
!  Built-in arithmetic and string functions
!  C-like syntax

Maria Hybinette, UGA 24

BEGIN {action}

pattern
{action}

pattern
{action}

 .

 .

 .

pattern
{ action}

END {action}

Structure of an AWK Program

! An optional BEGIN
segment

–  For processing to execute
prior to reading input

! pattern - action pairs
–  Processing for input data
–  For each pattern matched,

the corresponding action is
taken

! An optional END segment
–  Processing after end of input

data

Maria Hybinette, UGA 25

Review: What is AWK?

!  Programming language used for manipulating
data and generating pretty reports.

»  Job control too.

Maria Hybinette, UGA 26

Running an AWK Program

! There are several ways to run an Awk
program

» awk 'program' input_file(s)
–  program and input files are provided as

command-line arguments

» awk 'program'
–  program is a command-line argument; input is

taken from standard input (yes, awk is a filter!)

» awk -f program_file input_files
–  program is read from a file

Maria Hybinette, UGA 27

Patterns and Actions

!  Search a set of files for patterns.
!  Perform specified actions upon lines or fields

that contain instances of patterns.
!  Does not alter input files.
!  Process one input line at a time
!  So for this is similar to sed (except fields)

Maria Hybinette, UGA 28

Pattern-Action Structure

! Every program statement has to have a
pattern or an action or both

» Default pattern is to match all lines
» Default action is to print current record

! Patterns are simply listed;
»  actions are enclosed in { }

! awk scans a sequence of input lines, or
records, one by one, searching for lines that
match the pattern

» Meaning of match depends on the pattern

Maria Hybinette, UGA 29

Patterns

! A selector that determines whether action
is to be executed

! pattern can be:
» the special token BEGIN or END
» regular expression (enclosed with //)
» relational or string match expression
» ! negates the match
» arbitrary combination of the above using && ||

– /NYU/ matches if the string “NYU” is in the record
– x > 0 matches if the condition is true
– /NYU/ && (name == "UNIX Tools")

Maria Hybinette, UGA 30

BEGIN and END patterns

!  BEGIN and END provide a way to gain control
before and after processing, for initialization
and wrap-up.

» BEGIN: actions are performed before the first input
line is read.

»  END: actions are done after the last input line has
been processed.

Maria Hybinette, UGA 31

Actions

! Action
»  list of one or more C like statements
»  arithmetic and string expressions and
»  assignments and multiple output streams.

! action is performed on every line that
matches pattern.

» If pattern is not provided, action is performed on every input
line

»  If action is not provided, all matching lines are sent to
standard output.

Maria Hybinette, UGA 32

An Example

ls | awk '
BEGIN { print "List of html files:" }
/\.html$/ { print }
END { print "There you go!" }
'

List of html files:
index.html
as1.html
as2.html
There you go!

Maria Hybinette, UGA 33

Awk examples

!  Add up first column, print sum and average
!  {s += $1 }
!  END {print “sum is”, s, “average is”, s/NR}
!  awk -f awkprogram awkfile

Maria Hybinette, UGA 34

Tutorials

!  SED
»  http://www.grymoire.com/Unix/Sed.html

–  Great reference card available
»  http://sed.sourceforge.net/grabbag/tutorials/

!  AWK

