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CSCI: 4500/6500 Programming 
Languages 

Prolog & Logic Programming 
 

Thanks to: William W. Clocksin, Oxford University, UK.,Jason Eisner, John Hopkins University, James Lu & Jerud Mead, Bucknell University. 
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Prolog Download  
Binaries and Source 

!  SWI-prolog (swipl  5.10.4-6.0.2 depending on 
platform) website: 

»   http://www.swi-prolog.org/!
» Mac OS X on Intel & PPC (Tiger, Leopard (46.3 MB), 

Snow Leopard and Lion binaries available) 
»  Linux RPMs. 
» Windows NT, XP, Vista7, 2000, 64 Bit,  
»  Source Install 

!  XQuartz (X11) 2.5.0 for help & development 
tools. 
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Great Prolog Tutorials 

!  JR Fisher’s original tutorial : 
http://www.csupomona.edu/~jrfisher/www/
prolog_tutorial/contents.html 

!  Roman Barták’s interactive tutorial: 
http://ktiml.mff.cuni.cz/~bartak/prolog/ 

!  Mike Rosner’s crash course: 
http://www.cs.um.edu.mt/~mros/prologcc/ 

!  James Lu and Jerud Mead’s tutorial: 
http://www.cse.ucsc.edu/classes/cmps112/
Spring03/languages/prolog/PrologIntro.pdf 

!  James Power’s tutorial: 
http://www.cs.nuim.ie/~jpower/Courses/
PROLOG/ (2012 not available  – BUT let 
me know if you find it –it is a good 
one) 
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What is Prolog? 

!  Alain Colmeraeur & Philippe Roussel, 
1971-1973 

» With help from theorem proving folks such as Robert 
Kowalski 

» Colmerauer & Roussel wrote 20 years later: 
 
  “Prolog is so simple that one has the sense that 

sooner or later someone had to discover it … that 
period of our lives remains one of the happiest in 
our memories. 
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What is Prolog? 

!  A declarative or logic programming language 
»  specifies the results (describes what the results look 

like)  
–  in contrast to a “procedure” on how to produce the 

results. 

!  Based on first order predicate calculus  
»  consists of propositions that may or may not be true 

!  Prolog uses logical variables 
» Not the same as variables in other languages 
» Used as ‘holes’ in data structures that are gradually 

filled in as the computation processes (will see 
examples) 
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Lets look at a sample session… 

{saffron:ingrid:817} ls -l second.pl 
-rw-r--r--   1 ingrid  ingrid  43 Apr 10 12:06 second.pl 
{saffron:ingrid:818}  

{saffron:ingrid:815} swipl 

Welcome to SWI-Prolog (Multi-threaded, Version 5.6.9) 
Copyright (c) 1990-2006 University of Amsterdam. 

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software, 
and you are welcome to redistribute it under certain conditions. 

Please visit http://www.swi-prolog.org for details. 

 
For help, use ?- help(Topic). or ?- apropos(Word). 

 
?- [’second']. 

% first compiled 0.00 sec, 596 bytes 

 

repeat commands by traversing the command line 
history 

CTRL-p  

 moves up in command history 

CTRL-n 

 next command 

<-  -> 

 edit command line history 
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Look at a sample of code… 

 

elephant(kyle).    % this is a comment 

elephant(kate).       

panda(chi_chi). 
panda(ming_ming). 

 

dangerous(X) :- big_teeth(X). 

dangerous(X) :- venomous(X). 

 

guess(X,tiger) :- striped(X),big_teeth(X),isaCat(X). 

guess(X,koala) :- arboreal(X),sleepy(X). 

guess(X,zebra) :- striped(X),isaHorse(X). 

second.pl 

Facts 

Rules 
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Prolog Programs are 
“Declarative” 

I declare that the leaves are green and elephants 
are mammals. 

!  Clauses are statements about what is true 
about the problem (as statements and 
questions). 

»  instead of instructions on how to accomplish the 
solution. 

!  Prolog finds answers to queries by parsing 
through “the database” of possible solutions. 
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Anatomy of Prolog 

Declarative Component: “the program” (“the 
Database”): 

» Consists of facts and rules 
» Defines the relations on sets of values 

Imperative Component : “the execution engine”, 
the “Prolog Solver”: 

»  extracts the sets of data values implicit in the facts and 
rules of the program  

» Unification - matching query and “head” of rules (later) 
» Resolution - replaces the head with the body of the rule 

and then applies substitution to form a new query(ies). 
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Prolog as constraints programming 

!  Constraints between variables: 
Example: Person and Food. 

!  Facts: 
»  An identifier (name) of the constraint 

the followed by n-tuple of constants. 
–  Identifier (eats) names the relation 
–  the fact states that the tuple is in the 

relation 
»  Predicate:  the relation identifier in 

combination with its parameters 

eats(maria,olives). 
eats(emmy,pear). 
eats(eric,fish). 
eats(isaac,chips). 
eats(robert,fish). 
eats(robert,chips). 
 

Person Food 
maria olives 

emmy pear 

eric fish 

isaac chips 

robert fish 

sean chips 

(Person, Food) 
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Syntax of Terms 

Constant Variable Compound Term 

Atom Number 
0 
1 
57 
1.618 
2.04e-27 
-13.6 

eats(maria, spaghetti) 
book(dickens, Z, cricket) 
f(x) 
[1, 3, g(a), 7, 9] 
-(+(15, 17), t) 
15 + 17 - t 

X 
Food 
Poppins 
_257 
_ 

Names an individual Names an individual 
that has parts 

Term 

Stands for an individual 
unable to be named when 
 program is written 
Capital or _ prefix 

flexible 
spaghetti 
super 
califragilistic 
expialidocious 
+ 
=/= 
’12Q&A’ 

UPPERCASE & _ DENOTES VARIABLES 

!  Everything in prolog is built from terms: 
»  Prolog programs 
»  Data manipulated by Prolog programs 
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constant versus Variables  

!  Variables start with a capital letter, A, B,… 
Z or underscore _ : 
» Food, Person, Person2, _A123 

!  Constant “atoms” start with a, b, !z or 
appear in single quotes: 
» maria, olives, isaac, ’CSCI4500’ 
» Other kinds of constants besides atoms: 

–  Integers -7, real numbers 3.14159, the 
empty list [] 

!  Note: Atom is not a variable; it is not bound to 
anything, never equal to anything else 

eats(adam, sushi). 
eats(eric,chips). 
eats(eric,pears). 
eats(isaac,fish). 
eats(isaac,fish). 
east(ibti,chips). 
east(ibti, sushi). 
eats(jordan,fish). 
eats(jordan,olives). 
eats(jonathan,olives). 
eats(jonathan,chips). 
eats(maria, sushi). 
eats(robert,chips). 
eats(robert,olives). 
eats(sean, sushi). 
eats(sean,chips). 
eats(young,olives). 
eats(young,pears). 
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constant versus Variables 

!  Nothing stops you from putting constants 
into constraints: 

% what Food does eric eat?  
eats( eric, Food ).  
% 2 answers: chips & pear 
% use  ‘;’ for next answer… 
 
% what Person eats fish?   
eats( Person, fish ). 
% 2 answers: ?  & …?... 
 
% who’ll share what with robert? ** more later 
eats(robert, Food), eats(Person, Food).  
Try it! 

eats(adam, sushi). 
eats(eric,chips). 
eats(eric,pears). 
eats(isaac,fish). 
eats(isaac,fish). 
east(ibti,chips). 
east(ibti, sushi). 
eats(jordan,fish). 
eats(jordan,olives). 
eats(jonathan,olives). 
eats(jonathan,chips). 
eats(maria, sushi). 
eats(robert,chips). 
eats(robert,olives). 
eats(sean, sushi). 
eats(sean,chips). 
eats(young,olives). 
eats(young,pears). 
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`Familiar’ Compound Terms 

!  The parents of Spot and Fido and Rover 

!  Can depict the term as a tree 

parents(spot, fido, rover) 

Functor(and atom) of arity 3. components (any terms) 

parents 

rover spot fido 
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Compound Terms 

!  An atom followed by a ( parenthesized ), 
comma-separated list of one or more terms:  
x(y,z), +(1,2), .(1,[]),  
parent(adam,abel), x(Y,x(Y,Z)) 

!  A compound term can look like an SML, 
Scheme function call: f(x,y) 

» Again, this is misleading 

!  Better to think of them as structured data 
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Summary Terms 

!  All Prolog programs and data are built from 
such terms 

!  Later, we will see that, for instance, +(1,2) is 
usually written as 1+2 

!  But these are not new kinds of terms, just 
abbreviations 

<term>   ::= <constant> | <variable> | <compound-term> 
<constant>   ::= <integer> | <real number> | <atom> 
<compound-term> ::= <atom> ( <termlist> ) 
<termlist>   ::= <term> | <term> , <termlist> 
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The Prolog Program (Database) 

!  A Prolog language system 
maintains a collection of facts 
and rules of inference 

!  It is like an internal database  
!  A Prolog program is just a set 

of data for this database 
!  The simplest kind of thing in 

the database is a fact: a term 
followed by a period 

eats(adam, sushi). 
eats(eric,chips). 
eats(eric,pears). 
eats(isaac,fish). 
eats(isaac,fish). 
east(ibti,chips). 
east(ibti, sushi). 
eats(jordan,fish). 
eats(jordan,olives). 
eats(jonathan,olives). 
eats(jonathan,chips). 
eats(maria, sushi). 
eats(robert,chips). 
eats(robert,olives). 
eats(sean, sushi). 
eats(sean,chips). 
eats(young,olives). 
eats(young,pears). 
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SWI-Prolog 

!  Prompting for a query with ?- 
!  Normally interactive: get query, print result, 

repeat 

{atlas:maria:141} swipl 
Welcome to SWI-Prolog (Multi-threaded, Version 5.2.3) 
Copyright (c) 1990-2003 University of Amsterdam. 
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software, 
and you are welcome to redistribute it under certain conditions. 
Please visit http://www.swi-prolog.org for details. 
 
For help, use ?- help(Topic). or ?- apropos(Word). 
 
?-  
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The consult Predicate 

!  Predefined predicate to read a program from a file 
into the database 

»  Example: File eats.pl defines the “eats” constraints, or 
lists of facts. 

?- consult(eats). 
% eats compiled 0.00 sec, 0 bytes 
 
true. 
?- [eats]. 

% eats compiled 0.00 sec, 0 bytes 

true. 

eats(adam, sushi). 
eats(eric,chips). 
eats(eric,pears). 
eats(isaac,fish). 
eats(isaac,fish). 
eats(ibti,chips). 
east(ibti, sushi). 
eats(jordan,fish). 
eats(jordan,olives). 
eats(jonathan,olives). 
eats(jonathan,chips). 
eats(maria, sushi). 
eats(robert,chips). 
eats(robert,olives). 
eats(sean, sushi). 
eats(sean,chips). 
eats(young,olives). 
eats(young,pears). 
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Simple Queries 

!  A query asks the language to 
prove something 

!  The answer will be True or False 
!  Some queries, like consult are 

executed only for their side 
effects. 

!  Example Query program:  
» Does kyle eat fish (type query)? 

?- eats(adam,sushi). 

true. 
?- eats(jordan,vegetables). 

false. 

Here constraints  
acts as a procedure 

or function 

eats(adam, sushi). 
eats(eric,chips). 
eats(eric,pears). 
eats(isaac,fish). 
eats(isaac,fish). 
east(ibti,chips). 
east(ibti, sushi). 
eats(jordan,fish). 
eats(jordan,olives). 
eats(jonathan,olives). 
eats(jonathan,chips). 
eats(maria, sushi). 
eats(robert,chips). 
eats(robert,olives). 
eats(sean, sushi). 
eats(sean,chips). 
eats(young,olives). 
eats(young,pears). 
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Simple Queries: the Period ‘.’ 

!  Queries can take multiple lines 
!  If you forget the final period, 

Prolog prompts for more inputs 
with |. 

?- eats(ibti,vegetables) 

No period 

eats(adam, sushi). 
eats(eric,chips). 
eats(eric,pears). 
eats(isaac,fish). 
eats(isaac,fish). 
east(ibti,chips). 
east(ibti, sushi). 
eats(jordan,fish). 
eats(jordan,olives). 
eats(jonathan,olives). 
eats(jonathan,chips). 
eats(maria, sushi). 
eats(robert,chips). 
eats(robert,olives). 
eats(sean, sushi). 
eats(sean,chips). 
eats(young,olives). 
eats(young,pears). 
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Simple Queries: the Period ‘.’ 

!  Queries can take multiple lines 
!  If you forget the final period, 

Prolog prompts for more inputs 
with |. 

?- eats(ibti,vegetables) 

|   
 

curser 

Prolog prompt 

eats(adam, sushi). 
eats(eric,chips). 
eats(eric,pears). 
eats(isaac,fish). 
eats(isaac,fish). 
east(ibti,chips). 
east(ibti, sushi). 
eats(jordan,fish). 
eats(jordan,olives). 
eats(jonathan,olives). 
eats(jonathan,chips). 
eats(maria, sushi). 
eats(robert,chips). 
eats(robert,olives). 
eats(sean, sushi). 
eats(sean,chips). 
eats(young,olives). 
eats(young,pears). 
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Simple Queries: the Period ‘.’ 

!  Queries can take multiple lines 
!  If you forget the final period, 

Prolog prompts for more inputs 
with |. 

?- eats(ibti,vegetables) 

|   .   
 

false. 

eats(adam, sushi). 
eats(eric,chips). 
eats(eric,pears). 
eats(isaac,fish). 
eats(isaac,fish). 
east(ibti,chips). 
east(ibti, sushi). 
eats(jordan,fish). 
eats(jordan,olives). 
eats(jonathan,olives). 
eats(jonathan,chips). 
eats(maria, sushi). 
eats(robert,chips). 
eats(robert,olives). 
eats(sean, sushi). 
eats(sean,chips). 
eats(young,olives). 
eats(young,pears). 
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Queries With Variables 

!  Any term can appear as a query, including a term 
with variables 

!  The Prolog system shows the bindings necessary 
to prove the query 

?- eats(michael,X). 
 
X = fish  
 
true. 
?- 

Here, it waits for 
input.  We hit 
Enter (or ;) to 
make it proceed. 
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Multiple Solutions 

!  There might be more than one 
way to prove the query 

!  By typing ; rather than Enter, you 
ask the Prolog system to find 
more solutions 

»  Example: What does kyle eat? 
 

?- eats(isaac,X). 

X = fish ; 
X = chips ; 

No 

“;” (no return) Asks: anymore values that satisfy the query? 

eats(adam, sushi). 
eats(eric,chips). 
eats(eric,pears). 
eats(isaac,fish). 
eats(isaac,fish). 
east(ibti,chips). 
east(ibti, sushi). 
eats(jordan,fish). 
eats(jordan,olives). 
eats(jonathan,olives). 
eats(jonathan,chips). 
eats(maria, sushi). 
eats(robert,chips). 
eats(robert,olives). 
eats(sean, sushi). 
eats(sean,chips). 
eats(young,olives). 
eats(young,pears). 
 

Maria Hybinette, UGA 
26 

Flexibility 

!  Normally, variables can appear in 
any or all positions in a query: 
» eats(X,olives)  
» eats(corey,X) 
» eats(X,Y) 
» eats(X,X) 

–  (guesses)? 

eats(adam, sushi). 
eats(eric,chips). 
eats(eric,pears). 
eats(isaac,fish). 
eats(isaac,fish). 
east(ibti,chips). 
east(ibti, sushi). 
eats(jordan,fish). 
eats(jordan,olives). 
eats(jonathan,olives). 
eats(jonathan,chips). 
eats(maria, sushi). 
eats(robert,chips). 
eats(robert,olives). 
eats(sean, sushi). 
eats(sean,chips). 
eats(young,olives). 
eats(young,pears). 
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Conjunctions 

!  A conjunctive query has a list of query terms separated by 
commas  
»  think of commas as “AND’s” 

!  The Prolog system tries prove them all (using a single set of 
bindings) 

!  Example: Query folks that eat common foods with eric 

% who’ll share what with eric? 

?- eats(eric, Food), eats(Person, Food). 
Food = chips 
Person = eric; 
 
Food = chips 
Person = isaac; 

eats(adam, sushi). 
eats(eric,chips). 
eats(eric,pears). 
eats(isaac,fish). 
eats(isaac,fish). 
east(ibti,chips). 
east(ibti, sushi). 
eats(jordan,fish). 
eats(jordan,olives). 
eats(jonathan,olives). 
eats(jonathan,chips). 
eats(maria, sushi). 
eats(robert,chips). 
eats(robert,olives). 
eats(sean, sushi). 
eats(sean,chips). 
eats(young,olives). 
eats(young,pears). 
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More General Queries 

!  Query folks that eat common foods: 
»  conjoin two constraints with a common 

food. 
»  conjoined with a comma (read as 
“and’). 

?- eats(Person1,Food),eats(Person2,Food). 

Person1 = adam 
Food = sushi 

Person2 = adam; 
 

Person1 = adam 

Food = sushi 
Person2 = maria; 

eats(adam, sushi). 
eats(eric,chips). 
eats(eric,pears). 
eats(isaac,fish). 
eats(isaac,fish). 
east(ibti,chips). 
east(ibti, sushi). 
eats(jordan,fish). 
eats(jordan,olives). 
eats(jonathan,olives). 
eats(jonathan,chips). 
eats(maria, sushi). 
eats(robert,chips). 
eats(robert,olives). 
eats(sean, sushi). 
eats(sean,chips). 
eats(young,olives). 
eats(young,pears). 
 

Both Adam and Maria like sushi 
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More Examples: Conjunctions 

% 

% 1) Who is a child of Sven?  

%  Assume ‘Child’ 

% 2) Who is a child of Child? 
%  Assume ‘GrandChild’ 

?- parent(sven,Child), 
|    parent(Child, GrandChild). 
 
Child = ingrid, 
GrandChild = maria ; 
 
Child = ingrid, 
GrandChild = knut ; 
 
No 
?-  

parent(maria,gunnar). 
parent(maria,tucker). 
parent(maria,emmy). 
parent(ingrid,maria). 
parent(ingrid,knut). 
parent(emy,ingrid). 
parent(sven,ingrid). 
parent(sven,emil). 

Sven, Emy 

Emil Ingrid 

Maria Knut 

Gunnar Tucker Emmy 

Who are Sven’s grandchildren? 

mariafamily.pl!
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More Examples: Conjunctions 

% Great grandchildren of Emy? 

% 1) Who is a child of Emy     

% 2) Who is a child of ? 

% 3) Who is a child of ?  

parent(maria,gunnar). 
parent(maria,tucker). 
parent(maria,emmy). 
parent(ingrid,maria). 
parent(ingrid,knut). 
parent(emy,ingrid). 
parent(sven,ingrid). 
parent(sven,emil). 

Sven, Emy 

Emil Ingrid 

Maria Knut 

Gunnar Tucker Emmy 

Great grandchildren of Emy? 
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More Examples: Conjunctions 

% Great grandchildren of Emy? 

?- parent(emy,Child), 
|    parent(Child,Grandchild), 
|    parent(Grandchild,GreatGrandchild). 

 
Child = ingrid 
Grandchild = maria 
GreatGrandchild = gunnar ; 
 
Child = ingrid 
Grandchild = maria 
GreatGrandchild = tucker ; 
 
Child = ingrid 
Grandchild = maria 
GreatGrandchild = emmy ; 
 
No 
?-  

 

parent(maria,gunnar). 
parent(maria,tucker). 
parent(maria,emmy). 
parent(ingrid,maria). 
parent(ingrid,knut). 
parent(emy,ingrid). 
parent(sven,ingrid). 
parent(sven,emil). 

Sven, Emy 

Emil Ingrid 

Maria Knut 

Gunnar Tucker Emmy 

Great grandchildren of Emy? 
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Motivation: Need Rules 

!  Long query for great grandchildren of Emy? 
» Nicer to query directly: 

 greatgrandparent(emy, GreatGrandchild) 
» While not adding separate facts of that form to the 

database? 
–  this relation should follow from the parent relation 

already defined. 

% Great grandchildren of Emy? 

?- parent(emy,Child), 
|    parent(Child,Grandchild), 
|    parent(Grandchild,GreatGrandchild). 

parents.pl!
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A Rule 

!  A rule says how to prove something: to prove 
the head, prove its conditions 

!  To prove greatgrandparent(GGP,GGC), find 
some GP and P for which you can prove 
parent(GGP,GP), then parent(GP,P) and 
then finally parent(P,GGC) 

greatgrandparent(GGP,GGC) :-  
  parent(GGP,GP),  
  parent(GP,P), 
  parent(P,GGC). 

head 
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A Rule 

!  A rule says how to prove something: to prove 
the head, prove the conditions 

!  To prove greatgrandparent(GGP,GGC), find 
some GP and P for which you can prove 
parent(GGP,GP), then parent(GP,P) and 
then finally parent(P,GGC) 

greatgrandparent(GGP,GGC) :-  
  parent(GGP,GP),  
  parent(GP,P), 
  parent(P,GGC). 

head 
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A Rule 

!  A rule says how to prove something: to prove 
the head, prove the conditions 

!  To prove greatgrandparent(GGP,GGC), find 
some GP and P for which you can prove 
parent(GGP,GP), then parent(GP,P) and 
then finally parent(P,GGC) 

greatgrandparent(GGP,GGC) :-  
  parent(GGP,GP),  
  parent(GP,P), 
  parent(P,GGC). 

conditions (body) 

head 
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Facts and Rules 

Head :- Body.  % This is a rule. 

Head.    % This is a fact. 

“if” body is true 
“provided that” 
“turnstile” 
– it’s supposed to look like “!” 

Head is the consequence. 
 Head can be concluded if the body is true 



Maria Hybinette, UGA 
37 

 Facts and Rules 

bioparents(X,Y) :- male(X),female(Y). 

Body (pre-conditions) Head 

Goals 

!  Note that left side of the rule looks just like a fact, 
except that the parameters are variables 

!  Read: 
»  The pair “parents(X,Y)” satisfies the predicate “parents” if there is a 

node X and Y such that X satisfies the predicate “X” and “Y” satisfies 
the predicate Y. 
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Clauses 

!  A program consists of a list of clauses 
!  A clause is either a fact or a rule, and ends 

with a period 

parent(maria,gunnar). 
parent(maria,tucker). 
parent(maria,emmy). 
parent(ingrid,maria). 
parent(ingrid,knut). 
parent(emy,ingrid). 
parent(sven,ingrid). 
parent(sven,emil). 
greatgrandparent(GGP,,GGC) :-  

 parent(GGP,GP), 
 parent(GP,P), 
 parent(P,GGC). 
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Example: Clauses: Facts and 
Rules 

tedge(Node1,Node2) :-  

  edge(Node1,SomeNode), 

    edge(SomeNode,Node2). 

!  Example:  A directed graph of five 
nodes: 

!  Define the edges of the graph, as 
facts? 

!  Define a rule called “tedge” which 
defines the property of a “path of 
length two” between two edges? 

 

edge(a,b). 
edge(a,e). 
edge(b,d). 
edge(b,c). 
edge(c,a). 
edge(e,b). 

e 

a 

c 

b d 

The pair (Node1,Node2) satisfies the predicate tedge if there is a 
node SomeNode such that the pairs (Node1,SomeNode) and 
(SomeNode,Node2) both satisfies the predicate edge. Maria Hybinette, UGA 
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Interpretation of Clauses 

!  Form of Clause: 
» H :- G1,G2, …, Gn. 

!  Declarative Reading: 
»  “That H is provable follows from goals G1,G2, …,Gn 

being provable”  

!  Procedural Reading: 
»  “To execute procedure H, the procedures called by the 

goals G1,G2, …, Gn are executed first”  
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Example 3: Another Rule 

!  “Person1 and Person2 are compatible if there 
exists some Food that they both eat.” 

!  “One way to satisfy the head of this rule is to 
satisfy the body 

Compatible(Person1, Person2) :- eats(Person1,Food), 

  eats(Person2,Food).   

eats(steve,olives). 
eats(sol,pear). 
eats(sol,fish). 
eats(george,chips). 
eats(cole,fish). 
eats(cole,chips). 
eats(alex,olives). 
eats(corey,olives). 
eats(george,olives). 
eats(jason,olives). 
eats(dong,olives). 
eats(david,olives). 
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Rules using ‘other’ Rules 

!  Same relation, defined indirectly 
!  Note that both clauses use a variable P 
!  The scope of the definition of a variable is the 

clause that contains it 

grandparent(GP,GC) :- 
  parent(GP,P), parent(P,GC). 
 
greatgrandparent(GGP,GGC) :-  
  grandparent(GGP,P), parent(P,GGC). 

Prolog allows recursion SQL 
doesn’t!



Maria Hybinette, UGA 
43 

Recursive Rules 

!  X is an ancestor of Y if: 
» Base case: X is a parent of Y 
» Recursive case: there is some Z such that Z is a 

parent of Y, and X is an ancestor of Z 
!  Prolog tries rules in the order given, so put 

base-case rules and facts first 

ancestor(X,Y) :- parent(X,Y). 
ancestor(X,Y) :- 
    parent(Z,Y), 
    ancestor(X,Z). 
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Recursion Example 2 

!  Who’s married to their boss? 
»  boss(X,Y), married(X,Y).  

!  Who’s married to their boss’s boss? 
»  boss(X,Y), boss(Y,Z), married(X,Z). 

!  Who’s married to their boss’s boss’s boss? 
»  Okay, this is getting silly.  Let’s do the general case. 

!  Who’s married to someone above them? 
»  above(X,X). 
»  above(X,Y) :- boss(X,Underling), above(Underling,Y). 
»  above(X,Y), married(X,Y). 

Base case: For simplicity, it says that X is “above” herself. If you don’t 
like that, replace base case with above(X,Y) :- boss(X,Y). 

x!

Y!

Z!
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Example: Graph Example 

!  Embellish  graph program to include “path”s of 
any positive length. 

!  Thinking Recursively: 
»  If there is an edge then there is a path (base) 
»  If there is an edge to an intermediate node from 

which there is a path to the final node. 

»  Two rules with the same head, reflects logical “or” 
»  Predicate of head of second rule, is also in the body 

of that rule. 
»  These rules together illustrate recursion in Prolog! 

edge(a,b).   edge(b,c). 
edge(a,e).   edge(c,a). 
edge(b,d).   edge(e,b). 
tedge(N1,N2)   :- edge(N1,SomeN),edge(SomeN,N2). 
path(N1,N2)   :- edge(N1,N2). 
path(N1,N2)   :- edge(N1,SomeN),path(SomeN,N2). 

e

a

c

b d

path(N1,N2)    :- edge(N1,N2). 
path(N1,N2)    :- edge(N1,SomeN),path(SomeN,N2) 
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Core Syntax of Prolog 

!  You have seen the complete core syntax 
!  There is not much more syntax for Prolog 

than this: it is a very simple language 
!  Syntactically, that is! 

<clause>  ::=  <fact> | <rule> 
<fact>  ::=  <term> . 
<rule>  ::=  <term> :- <termlist> . 
<termlist>  ::=  <term> | <term> , 
<termlist> 
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How does Prolog Compute? 

!  Deduce useful implicit knowledge from the “program” or data 
base. 

!  Computations in Prolog is facilitated by the query, a 
conjunction of atoms. 

!  New example (more complicated) program: 

edge(a,b)  edge(b,c) 
edge(a,e).   edge(c,a). 
edge(b,d).   edge(e,b). 
tedge(N1,N2)   :- edge(N1,SomeN),edge(SomeN,N2). 
path(N1,N2)   :- edge(N1,N2). 
path(N1,N2)   :- edge(N1,SomeN),path(SomeN,N2) 

1!

2!

e

a

c

b d

!  edge(a,b). 

 

edge(a,b).   edge(b,c). 
edge(a,e).   edge(c,a). 
edge(b,d).   edge(e,b). 
tedge(N1,N2)   :- edge(N1,SomeN),edge(SomeN,N2). 
path(N1,N2)   :- edge(N1,N2). 
path(N1,N2)   :- edge(N1,SomeN),path(SomeN,N2) 

 
1 
3 
5 
7 
8 
9 

 
2 
4 
6 
 
 



!  edge(a,b). 
»  Iterates in order through the program’s “edge” clauses. 
» Ground Query only value identifiers as parameters 

to the predicate. 
»  First one to match is edge(a,b).   

so Prolog returns with true (so yes). 

 

edge(a,b).   edge(b,c) 
edge(a,e).   edge(c,a). 
edge(b,d).   edge(e,b). 
tedge(N1,N2)   :- edge(N1,SomeN),edge(SomeN,N2). 
path(N1,N2)   :- edge(N1,N2). 
path(N1,N2)   :- edge(N1,SomeN),path(SomeN,N2) 

 
1 
3 
5 
6 
7 
8 

 
2 
4 
6 
 
 

!  edge(a,b). 

!  path(a,b). 

edge(a,b).   edge(b,c) 
edge(a,e).   edge(c,a). 
edge(b,d).   edge(e,b). 
tedge(N1,N2)   :- edge(N1,SomeN),edge(SomeN,N2). 
path(N1,N2)   :- edge(N1,N2). 
path(N1,N2)   :- edge(N1,SomeN),path(SomeN,N2) 

 
1 
3 
5 
6 
7 
8 

 
2 
4 
6 
 
 

!  edge(a,b). 

!  path(a,b). 
»  another ground query 
»  No rule that exactly match the query. 
»  Know, the head is true if the body is true 
»  If variable’s N1 and N2 are replaced by a and b, then body 

of 8 is true  
–  edge(a,b) is a fact! 
–  and the head with the same substitution must be true 

»  Prolog conclude that the query is true 

edge(a,b).   edge(b,c) 
edge(a,e).   edge(c,a). 
edge(b,d).   edge(e,b). 
tedge(N1,N2)   :- edge(N1,SomeN),edge(SomeN,N2). 
path(N1,N2)   :- edge(N1,N2). 
path(N1,N2)   :- edge(N1,SomeN),path(SomeN,N2) 

 
1 
3 
5 
7 
8 
9 

 
2 
4 
6 
 
 

!  edge(a,b). 

!  path(a,b). 

!  tedge(a,X). 

edge(a,b).   edge(b,c) 
edge(a,e).   edge(c,a). 
edge(b,d).   edge(e,b). 
tedge(N1,N2)   :- edge(N1,SomeN),edge(SomeN,N2). 
path(N1,N2)   :- edge(N1,N2). 
path(N1,N2)   :- edge(N1,SomeN),path(SomeN,N2) 

 
1 
3 
5 
7 
8 
9 

 
2 
4 
6 
 
 

!  edge(a,b). 
!  path(a,b). 

!  tedge(a,X). 
»  non-Ground Query: variable parameters 
»  Scan rules, finds that constraint ‘7’ defines tedge, focus on 7 
»  Substitutes N1 = a, X = N2 
»  Is edge(a, N2) true? True if body is true, evaluates body: 

»  edge(a,SomeN), edge(SomeN,N2)? 
»  edge(a,SomeN)? two facts fit, take the first one edge(a,b) 

»  if we substitute SomeN = b [first query is satisfied] 
»   after substitution evaluate 2nd atom, i.e. edge(b,N2)?  
»  Similarly as above substitute: N2 = d 
»  Following the substitution it finds that X = d satisfies the 

original query 

edge(a,b).   edge(b,c) 
edge(a,e).   edge(c,a). 
edge(b,d).   edge(e,b). 
tedge(N1,N2)   :- edge(N1,SomeN),edge(SomeN,N2). 
path(N1,N2)   :- edge(N1,N2). 
path(N1,N2)   :- edge(N1,SomeN),path(SomeN,N2) 

 
1 
3 
5 
7 
8 
9 

 
2 
4 
6 
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How Does Prolog Compute?  

!  Unification (pattern matching, eval). 
!  Resolution (apply, one at a time). 
!  Backtracking 
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Unification  

!  Pattern-matching using Prolog terms 
!  Two terms unify if there is some way of 

binding their variables that make them 
identical. 

» Usually the two terms 
–  one from the query (or another goal) and  
–  the other being a fact or a head of a rule 

»  Example: 
–  parent(adam,Child) and parent(adam,seth) 
–  Do these unify? 
–  Yes! they unify by binding the variable Child to the 

atom seth. 
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Resolution 

!  The hardwired inference step 
!  A clause is represented as a list of terms (a 

list of one term, if it is a fact) 
!  Resolution step applies one clause, once, to 

make progress on a list of goal terms 
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Resolution 

!  When an atom from the query has unified with 
the head of of a rule (or a fact),  

!  Resolution replaces the atom with the body of 
the rule (or nothing, if a fact) and 

!  then applies the substitution to the new 
query. 
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tedge(a,X). 

!  Unify: 
»  tedge(a,X) and tedge(N1,N2). 
»  giving the substitution 

–  N1 =a, X = N2 

!  Resolution:  
»  replaces tedge(a,X) with body edge(N1,SomeN), edge(SomeN,N2) 

and apply the substitution above to get the new query. 
!  edge(a,SomeN),edge(SomeN,N2) 

!  Select first atom, edge(a,SomeN) 
!  Unify: 

»  edge(a,SomeN) with edge(a,b), 
»  giving the substitution 

–  SomeN = b 

!  Resolution: replace edge(a,SomeN) ! 

edge(a,b)  edge(b,c) 
edge(a,e).   edge(c,a). 
edge(b,d).   edge(e,b). 
tedge(N1,N2)   :- edge(N1,SomeN),edge(SomeN,N2). 
path(N1,N2)   :- edge(N1,N2). 
path(N1,N2)   :- edge(N1,SomeN),path(SomeN,N2) 

 1 
3 
5 
6 
7 
8 
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tedge(a,X). 

!  Resolution: replace edge(a,SomeN) by nothing (since we unified 
with a fact) and apply the substitution above to get the new 
query: 

»  edge(b,N2) 
!  There is only one atom in the query. 
!  Unify 

»  edge(b,N2), and edge(b,d). 
!  giving the substitution 

»  N2 = d 
!  Resolution: replace edge(b,N2) by nothing (since we unified 

with a fact). Since the resulting query is empty we are done! 

edge(a,b).   edge(b,c) 
edge(a,e).   edge(c,a). 
edge(b,d).   edge(e,b). 
tedge(N1,N2)   :- edge(N1,SomeN),edge(SomeN,N2). 
path(N1,N2)   :- edge(N1,N2). 
path(N1,N2)   :- edge(N1,SomeN),path(SomeN,N2) 

 
1 
3 
5 
6 
7 
8 

 
2 
4 
6 
 
 

Maria Hybinette, UGA 
60 

____Backtracking 

!  There are other solutions, we could redo the 
computation above and get substitution  

»  X=b or X = c or X =d 

!  When Prolog reduces a query to the empty 
query,  

»  it backtracks to the most recent unification to 
determine whether there is another fact or rule with 
which the unification can succeed.   

» Backtracking continues until all possible answers 
are determined. 
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Recursive Queries 

above(X,X). 
above(X,Y) :- boss(X,Underling), above(Underling,Y). 

!  above(c,h).     % should return True 
»  matches above(X,X)?  no 
»  matches above(X,Y)with X=c and Y=h  
»  boss(c,Underling), 

–  matches boss(c,f) with Underling=f 
»  above(f,h). 

–  matches above(X,X)? no 
–  matches above(X,Y) with X=f, Y=h 

!  boss(f,Underling), 
»  matches boss(f,g) with Underling=g 

!  above(g,h) 
»  ! ultimately fails because g has no underlings!  

a 

b c 

d e 

g h 

f 

boss(a,b).  boss(a,c). 
boss(b,d).  boss(c,f). 
boss(b,e).  boss(f,g). 
boss(f,h).  

Maria Hybinette, UGA 
62 

Recursive Queries 

above(X,X). 
above(X,Y) :- boss(X,Underling), above(Underling,Y). 

!  above(c,h).     % should return True 
»  matches above(X,X)?  no 
»  matches above(X,Y)with X=c and Y=h  
»  boss(c,Underling), 

–  matches boss(c,f) with Underling=f 
»  above(f,h). 

–  matches above(X,X)? no 
–  matches above(X,Y) with X=f, Y=h 

!  boss(f,Underling), 
»  matches boss(f,g) with Underling=g 

!  above(g,h) 
»  ! ultimately fails because g has no underlings!  

a 

b c 

d e 

g h 

f 

boss(a,b).  boss(a,c). 
boss(b,d).  boss(c,f). 
boss(b,e).   …  

boss(a,b).  boss(a,c). 
boss(b,d).  boss(c,f). 
boss(b,e).  boss(f,g). 
boss(f,h).  
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Recursive Queries 

above(X,X). 
above(X,Y) :- boss(X,Underling), above(Underling,Y). 

!  above(c,h).     % should return True 
»  matches above(X,X)?  no 
»  matches above(X,Y)with X=c and Y=h  
»  boss(c,Underling), 

–  matches boss(c,f) with Underling=f 
»  above(f,h). 

–  matches above(X,X)? no 
–  matches above(X,Y) with X=f, Y=h 

!  boss(f,Underling), 
»  matches boss(f,Underling) with Underling=h 

!  above(h,h) 
»  matches above(X,X) with X=h !  

a 

b c 

d e 

g h 

f 

boss(a,b).  boss(a,c). 
boss(b,d).  boss(c,f). 
boss(b,e).   …  

boss(a,b).  boss(a,c). 
boss(b,d).  boss(c,f). 
boss(b,e).  boss(f,g). 
boss(f,h).  
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Review: Basic Elements of Prolog 

!  Variable: any string of letters, digits, and 
underscores beginning with an Uppercase 
letter 

!  Instantiation: binding of a variable to a value 
»  Lasts only as long as it takes to satisfy one 

complete goal 
»  allows unification to succeed 

!  Predicates: represents atomic proposition 
  functor(parameter list) 
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Review Prolog  

!  Prolog program: Set of propositions 
»  Facts  
»  Rules: consequence ! antecedent (if antecedent is true 

then the consequence is true). 
–  edge(A,B) :- edge(A,X),edge(X,B). 

!  Running a program: A Prolog query (sometimes called 
goals): A proposition of which truth is to be 
determined. 

»  Idea: Prove truthfulness (or “cannot determine” (not 
falsehood) ) by trying to find a chain of inference rules 
and facts (inference process) 

!  Resolution: Process that allows inferred propositions to be 
computed from given propositions 

»  Unification merges compatible statements. Binding 
process. 
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Inference Process 

!  Backward Chaining, Top-down resolution: 
»  Start with goal (query), see if a sequence of 

propositions leads to set of facts in the database 
(Prolog) 

–  Looks for something in the database that unify the 
current goal,  

!  finds a fact, great it succeeds! 
!  If it finds a rule, it attempts to satisfy the terms in the 

body of the rule (these are now subgoals). 

!  Forward Chaining, Bottom-up resolution: 
» Begin with program of facts and rules in the 

database and attempt to find a sequence that leads 
to goal (query). 
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Backward Chaining 

!  When goal has more than one sub-goal, can 
use either 

» Depth-first search:  find a complete proof for the first 
sub-goal before working on others (Prolog) 

–  Push the current goal onto a stack,  
–  make the first term in the body the current goal, and 
–  prove this new goal by looking at beginning of 

database again. 
–  If it proves this new goal of a body successfully, go to 

the next goal in the body. If it gets all the way through 
the body, the goal is satisfied and it backs up a level 
and proceeds. 

» Breadth-first search: work on all sub-goals in parallel 
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Backtracking 

!  If a sub-goal fails: 
»  reconsider previous subgoal to find an alternative 

solution 

!  Begin search where previous search left off 
!  Can take lots of time and space because may 

find all possible proofs to every sub-goal 
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Compound Terms 

!  Basic blocks: variables, constants and 
variables 

!  Compound terms: Seen it already -- it is the 
functor( parameter list ) structure 
( e.g.,  eats( cole,fish ) )   

»  Variables cannot be used for the functor 
» However the “parameter list” can be any kind of 

term (it can be another functor). 
»  book( title(lord_of_the_rings), author(tolkien) ) 

»  Uh uh what about unification now! (matching of goals and 
heads). 
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Unification Rules 

!  Two terms unify: 
»  if substitution can be made for any variables in the 

terms so that terms are made identical.  
»  If no such substitution exists, the terms do not 

unify. 
!  The unification algorithm proceeds by recursively 

descent of the two terms. 
» Constants unify if they are identical 
»  Variables unify with any term, including other 

variables 
» Compound terms unify if their functors and 

components unify 
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Unification Compound Terms 

!  Compound terms unify if their functors and components 
unify (how do terms become equal?) 
»  f(X, a(b,c)) and f(d, a(Z, c)) do unify. 

These terms are made equal if d is substituted for X, and b is 
substituted for Z. 

»  d is substituted for X (X is instantiated to d, X/d)  
»  b is substituted for Z (Z is instantiated to b, Z/b) 

Z c 

a d 

f 

b c 

a X 

f 
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Example 2 

!  The terms f(X, a(b,c)) and f(Z, a(Z, c))  unify 

!  Z co-refers within the term. Here, X/b, Z/b. 

Z c 

a Z 

f 

b c 

a X 

f 

» Earlier :f(X, a(b,c)) and f(d, a(Z, c)) did unify! 
!
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What about? 

!  f(c, a(b,c)) and f(Z, a(Z, c)) ? 

!  No matter how hard you try, these terms cannot be made identical 
by substituting terms for variables. 

Z c 

a Z 

f 

b c 

a c 

f 
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Unify? 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

!   g(Z,f(A,17,B),A+B,17) and  
!   g(C, f(D, D, E), C, E)? 
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Unify? 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

!   First write in the co-referring variables. 
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Unify? 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

!  Recursive descent:  We go top-down, left-to-right 
»   but the order does not matter as long as it is systematic 

and complete. 

Z/C, C/Z!
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Unify? 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

!  recursive descent We go top-down, left-to-right, but the 
order does not matter as long as it is systematic and 
complete. 

Z/C, C/Z, A/D, D/A!
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Unify? 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

!  recursive descent We go top-down, left-to-right, but the 
order does not matter as long as it is systematic and 
complete. 

Z/C, C/Z, A/17, D/17!
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Unify? 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

!  recursive descent We go top-down, left-to-right, but the 
order does not matter as long as it is systematic and 
complete. 

Z/C, C/Z, A/17, D/17, B/E, E/B!
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Unify? 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

!  recursive descent We go top-down, left-to-right, but the 
order does not matter as long as it is systematic and 
complete. Z/C, C/Z, A/17, D/17, B/E, E/B!
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Unify? 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

!  recursive descent We go top-down, left-to-right, but the 
order does not matter as long as it is systematic and 
complete. Z/C, C/Z, A/17, D/17, B/E, E/B!

Z/A+B, C/A+B, A/17, D/17, B/E, E/B!
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Unify? 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

!  recursive descent We go top-down, left-to-right, but the 
order does not matter as long as it is systematic and 
complete. Z/C, C/Z, A/17, D/17, B/E, E/B!

Z/17+B, C/17+B, A/17, D/17, B/E, E/B!
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Unify? 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

!  recursive descent We go top-down, left-to-right, but the 
order does not matter as long as it is systematic and 
complete. 

Z/17+B, C/17+B, A/17, D/17, B/E, E/B!
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Unify? 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

!  recursive descent We go top-down, left-to-right, but the 
order does not matter as long as it is systematic and 
complete. 
Z/17+17, C/17+17, A/17, D/17, B/17, E/17!



Maria Hybinette, UGA 
85 

Can also use “substitution 
method” 
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Exercise – Alternative Method 

Z/C 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

Make 1st tree look like 2nd!
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Exercise – Alternative Method 

Z/C 

A B 

+ f 

g 

C 17 

A B 17 

C f 

g 

C E 

D E D 
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Exercise – Alternative Method 

A/D, Z/C 

A B 

+ f 

g 

C 17 

A B 17 

C f 

g 

C E 

D E D 
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Exercise – Alternative Method 

D/17, A/D, Z/C 

D B 

+ f 

g 

C 17 

D B 17 

C f 

g 

C E 

D E D 
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Exercise – Alternative Method 

D/17, A/17, Z/C 

17 B 

+ f 

g 

C 17 

17 B 17 

C f 

g 

C E 

17 E 17 
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Exercise – Alternative Method 

B/E, D/17, A/17, Z/C 

17 B 

+ f 

g 

C 17 

17 B 17 

C f 

g 

C E 

17 E 17 
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Exercise – Alternative Method 

B/E, D/17, A/17, Z/C 

17 E 

+ f 

g 

C 17 

17 E 17 

C f 

g 

C E 

17 E 17 
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Exercise – Alternative Method 

C/17+E, B/E, D/17, A/17, Z/C 

17 E 

+ f 

g 

C 17 

17 E 17 

C f 

g 

C E 

17 E 17 
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Exercise – Alternative Method 

C/17+E, B/E, D/17, A/17, Z/17+E 

17 E 

+ f 

g 

+ 
17 

17 E 17 

+ f 

g 

+ E 

17 E 17 

17 E 
17 E 

E 17 
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Exercise – Alternative Method 

E/17, C/17+E, B/E, D/17, A/17, Z/C 

17 E 

+ f 

g 

+ 
17 

17 E 17 

+ f 

g 

+ E 

17 E 17 

17 E 
17 E 

E 17 
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Exercise – Alternative Method 

E/17, C/17+17, B/17, D/17, A/17, Z/C 

17 17 

+ f 

g 

+ 
17 

17 17 17 

+ f 

g 

+ 17 

17 17 17 

17 17 
17 17 

17 17 
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Operators 

!  Prolog has some predefined operators (and 
the ability to define new ones) 

!  An operator is just a predicate for which a 
special abbreviated syntax is supported 

»  Example:  +( 2, 3) can also be written as 2 + 3 
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The Predicate ‘=‘ 

!  The goal =(X,Y) succeeds if and only if X 
and Y can be unified: 
 
 
 

!  Since = is an operator, it can be and usually is 
written like this: 

?- =(parent(maria,gunnar),parent(maria,X)). 
 
X = gunnar  
 
Yes 

?- parent(maria,gunnar)=parent(maria,X). 
 
X = gunnar  
 
Yes 
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The Predicate ‘=‘ 

!  Note: The goal =(X,Y) succeeds if and only if 
X and Y can be unified. Consider =(5, +(3, 2)) 
 

?- (2+3) = 5. 

No. 
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Arithmetic Operators 

!  Predicates +, -, * and / are operators too, 
with the usual precedence and associativity 

?- X = +(1,*(2,3)). 
 
X = 1+2*3  
 
Yes 
?- X = 1+2*3. 
 
X = 1+2*3  
 
Yes 

Prolog lets you use operator 
notation, and prints it out that 
way, but the underlying term 
is still +(1,*(2,3)) 

Maria Hybinette, UGA 
101 

Not Evaluated 

!  The term is still +(1,*(2,3)) 
!  It is not evaluated 
!  There is a way to make Prolog evaluate such terms! 

?- +(X,Y) = 1+2*3. 
 
X = 1 
Y = 2*3  
 
Yes 
?- 7 = 1+2*3. 
 
No 
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Arithmetic (‘is’ gets the value) 
!  is operator: 
!  is(X, 3 + 4)  

»  X is 3 + 4. 
!  Unifies it’s first argument with the arithmetic value of its 

second argument. 
!  Infix OK too: takes an arithmetic expression as right operand 

and variable as left operand 
!  Variables in the expression (on right) must all be instantiated. 

»  is(A, B / 10 + C) 
»  A is B / 10 + C    
»  In above, B and C needs to have been instantiated. 

!  Variable on the left cannot be previously instantiated. 
»  In above A cannot be instantiated (what happens if A is not a 

variable?) 
!  Left hand side cannot be an expression since it is not 

evaluated -- it may be a value (and then unification is 
possible) 

=(X, 3+4 ) % can X be unified?!
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Unification impossible Example 

!  Sum is Sum + Number 
!  If Sum is not instantiated, the reference to its 

right is undefined  and the clause fails 
!  If Sum is instantiated, the clause fails because 

the left operand cannot have a current 
instantiation when it is evaluated. 
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Arithmetic Evaluation is/2 

!  Unifies the first argument with the value of it’s second 
argument.  

»  In contrast to (=) unification predicate, which just unifies  
terms without evaluating them 

!  Note: left may not be a “variable” then it may unify with 
the value on the right. 

?- X is 3 + 4.!
X = 7!
!
?- X = 3 + 4.!
X = 3 + 4!
!
?- 10 is 5 * 2. % !
yes % b/c 10 is a “value”!
!
?- 10 = 5 * 2.!
no!

?- is(X,1+2)!
X=3!
?- X is 1+2 !% infix OK.!
X=3 ! !!
?- 1+2 is 4-1. % first argument!
no ! !% already instantiated!
?- X is Y. !% second argument Y!
<error>! !% must be instantiated!
?- Y is 1+2, X is Y.!
X = 3 ! !% Y instantiated !
Y = 3 ! !% before it is needed!
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Trace 

!  Built-in structure that displays instantiations 
at each step 

!  Tracing model of execution - four events: 
» Call (beginning of attempt to satisfy goal) 
»  Exit (when a goal has been satisfied) 
» Redo (when backtrack occurs) 
»  Fail (when goal fails) 
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Example Arithmetic 

speed(ford,100). 
speed(chevy,105). 
speed(dodge,95). 
speed(volvo,80). 
time(ford,20). 
time(chevy,21). 
time(dodge,24). 
time(volvo,24). 
distance(X,Y) :-  speed(X,Speed), 
     time(X,Time),  
     Y is Speed * Time. 

distance(chevy, Chevy_Distance). % Query 

Maria Hybinette, UGA 
107 

Example Arithmetic 

speed(ford,100). 
speed(chevy,105). 
speed(dodge,95). 
speed(volvo,80). 
time(ford,20). 
time(chevy,21). 
time(dodge,24). 
time(volvo,24). 
distance(X,Y) :-  speed(X,Speed), 
     time(X,Time),  
     Y is Speed * Time. 

distance(chevy, Chevy_Distance). % Query 

trace.  
distance(chevy, Chevy_Distance). 
(1)   1 Call: distance(chevy, _0)? 
(2)   2 Call: speed(chevy, _5)? 
(2) 2 Exit: speed(chevy, 105) 
(3) 2 Call: time(chevy, _6)? 
(3) 2 Exit: time(chevy, 21) 
(4) 2 Call: _0 is 105*21? 
(2) 2 Exit: 2205 is 105 * 21 
(1)   1 Exit: distance(chevy, 2205) 

(2)    
Chevy_Distance = 2205 
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List Structures 

!  Other basic data structure (besides atomic 
propositions we have already seen): list 

!  List is a sequence of any number of elements 
!  List is a functor of arity 2,its first component 

is the head and the second is the tail. 
!  Elements can be atoms, atomic propositions, 

or other terms (including other lists) 
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Same as in Scheme  

nil 

(a, nil) 

(a, .(b, nil) 

(a, .(b, .(c, .(d, .(e. nil))))) 
(a,b)  (note this is a pair, not a proper list) 
(a, X) (this might be a list, or might not!) 
(a, .(b, nil)), .(c, nil)) 
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List Notation .( )  or [] 

!  The lists is written using square brackets []. 
!  These are just abbreviations for the underlying term 

using the . Predicate 
!  List of length 0 is nil, denoted []. 

?- X = .(1,.(2,.(3,[]))). 
 
X = [1, 2, 3]  
 
Yes 
?- .(X,Y) = [1,2,3]. % head and the rest 
 
X = 1 
Y = [2, 3]  
 
Yes 
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List Notation and the Tail 

!  [X | Y]!
» X is bound to first element in list, the head. 
»  Y is bound to the remaining elements, called the tail. 

!  Useful in patterns: [1,2|X] unifies with any list that starts 
with 1,2 and binds X to the tail 

List Notation Term denoted 
[1|X] .(1,X) 

[1,2|X] .(1,.(2,X)) 

[1,2|[3,4]] same as [1,2,3,4] 

?- [1,2|X] = [1,2,3,4,5]. 
 
X = [3, 4, 5]  
 
Yes 
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[apple, prune, grape, kumquat] 
[]   % (empty list) 
[X | Y]  % (head X and tail Y)!
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The append Predicate 

!  Predefined append(X,Y,Z) succeeds if and 
only if Z is the result of appending the list Y 
onto the end of the list X 

?- append([1,2],[3,4],Z). 
 
Z = [1, 2, 3, 4]  
 
Yes 
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!  append can be used with any pattern of 
instantiation (that is, with variables in any 
positions) 

?- append(X,[3,4],[1,2,3,4]). 
 
X = [1, 2]  
 
Yes 
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?- append(X,Y,[1,2,3]). 
 
X = [] 
Y = [1, 2, 3] ; 
 
X = [1] 
Y = [2, 3] ; 
 
X = [1, 2] 
Y = [3] ; 
 
X = [1, 2, 3] 
Y = [] ; 
 
No 
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Implementing append() 

!  Suppose we want to join  
»  [a, b, c] with [d, e].  
»  [a, b, c] has the recursive structure 

–  [a | [b, c] ].  
»  Then the rule says (if body is true then head is the 

consequence) 
–  IF [b,c] appends with [d, e] to   

form [b, c, d, e] 
–  THEN [a|[b, c]] appends with [d,e] to 

 form [a|[b, c, d, e]]  
» i.e. [a, b, c]  [a, b, c, d, e] 

append([], List, List). 
append([Head | List_1], List_2, [Head | List_3])  

 :-  append (List_1, List_2, List_3). 
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Implementing append() 

!  If you know that a particular List1 will 
append with a List2 to produce a List3,  

»  then you know how it will go for a case which is 
one step more complex.  

–  a list which is one element longer (the Head). i.e. if 
you add a Head to List1, then the result of the 
append will be that Head on the front of List3. 

append([], List, List). 
append([Head | List1], List2, [Head | List3])  

 :-  append (List1, List2, List3). 
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Implementing append() 

?- append([a,b,c],[d],X). 

append( [a, b, c], ....) 

IF append([b, c], ....)  

IF append([c], ....)  
 IF append([], ....) 

  

  append(...., [d]) 

append(.... , [c,d]) 

append(.... , [ b, c , d]) 

append(.... , [ a, b , c ,d ]) 

append([], List, List). 
append([Head | List1], List2, [Head | List3])  

 :-  append (List1, List2, List3). 

Maria Hybinette, UGA 
119 

Implementing append() 

?- append([a,b,c],[d],X). 
append( [a, b, c], ....) 

IF append([b, c], ....)  
IF append([c], ....)  

 IF append([], ....) 

  
  append(...., [d]) 

append(.... , [c,d]) 

append(.... , [ b, c , d]) 

append(.... , [ a, b , c ,d ]) 

append([], List, List). 
append([Head | List1], List2, [Head | List3])  

 :-  append (List1, List2, List3). 

append( [ a | [b,c]], [d], [a| NT1]) 
     IF append([b,c], [d], NT1)  X=[a| NT1] 

append( [ b|[c]], [d], [b| NT2]) 
     IF append([c], [d], NT2)  NT1=[b| NT2] 

append( [ c|[]], [d], [c| NT3]) 
     IF append([], [d], NT3)   NT2=[c|NT3] 

NT2 = [c | NT3] = [c|[d]} = [c,d] 
NT1 = [b| NT2] = [b|[c,d]] = [b,c,d] 
X   = [a|NT1] = [a|[b,c,d]] = [a,b,c,d] 

append([],[d],[d])             NT3 = [d] 
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Implementing append() 

!  Two first parameters are the lists that are appended, the 
third parameters is the resulting list 

!  First proposition: when the empty list is appended to any 
other list 

»   the other list is the result. 
!  Second proposition: 

»   left hand side: first element of the new list (i.e. the result) is the 
same as the first element of the first given list (both are named 
Head). 

»  right hand side: the tail of the first given list (List_1) has the 
second given list (List_2)  appended to form the tail of the 
resulting list (List 2 is the tail). 

append([], List, List). 
append([Head | List_1], List_2, [Head | List_3])  

 :-  append (List_1, List_2, List_3). 



trace. 
append([bob,jo], [jake, darcie], Family). 
 
(1) 1 Call: append([bob, jo], [jake, darcie], _10)? 
(2) 2 Call: append([jo], [jake, darcie], _18)? 
(3) 3 Call: append([],[jake,darcie],_25)? 
(3) 3 Exit: append([],[jake,darcie],[jake,darcie])) 
(2) 2 Exit: append([jo],[jake,darcie],[jo,jake,darcie]) 
(1) 1 Exit: append([bob,jo],[jake,darcie,

[bob,joe,jake,darcie]) 
Family = [bob, jo, jake, darcie] 
 

append([], List, List). 
append([Head | List_1], List_2, [Head | List_3])  

 :-  append (List_1, List_2, List_3). 

Maria Hybinette, UGA 
122 

Other Predefined List Predicates 

!  All flexible, like append 
!  Queries can contain variables anywhere 

Predicate Description 

member(X,Y) Provable if the list Y contains the element 
X. 

select(X,Y,Z) 
Provable if the list Y contains the element 
X, and Z is the same as Y but with one 
instance of X removed. 

nth0(X,Y,Z) Provable if X is an integer, Y is a list, and Z 
is the Xth element of Y, counting from 0. 

length(X,Y) Provable if X is a list of length Y. 
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Using select 

?- select(2,[1,2,3],Z). 
 
Z = [1, 3] ; 
 
No 
?- select(2,Y,[1,3]). 
 
Y = [2, 1, 3] ; 
 
Y = [1, 2, 3] ; 
 
Y = [1, 3, 2] ; 
 
No 
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!  Predefined reverse(X,Y) unifies Y with the 
reverse of the list X 

?- reverse([1,2,3,4],Y). 
 
Y = [4, 3, 2, 1] ; 
 
No 
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!  Definition of reverse function: 
 

reverse([], []). 
reverse([Head | Tail], X) :-  

 reverse(Tail, Y), 
 append(Result, [Head], X). 
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[ r e v e r s e ( [ 1 , 2 ] , X ) ]   

[ r e v e r s e ( [ 2 ] , Y ) ,   

    a p p e n d ( Y , [ 1 ] , X ) ]   

  [ r e v e r s e ( [ ] , X ) ,   

    a p p e n d ( X , [ 2 ] , X ) ,   

            a p p e n d ( X , [ 1 ] , X ) ]   

  [ a p p e n d ( [ ] , [ 2 ] , [ ] ) ,   

        a p p e n d ( [ ] , [ 1 ] , [ ] ) ]   

solve 

solve 

solve 

nothing 

nothing 

nothing solve 

nothing 

reverse([],[]). 
reverse([Head|Tail],X) :- 
  reverse(Tail,Y), 
  append(Y,[Head],X). 

This step is wrong: we 
substituted X for Y, 
but there is already a 
different X elsewhere 
in the goal list. 

Y => TailReverse!



Maria Hybinette, UGA 
127 

[ r e v e r s e ( [ 1 , 2 ] , X ) ]   

  

    

  

    

solve 

solve 

solve 

nothing 

nothing 

nothing solve 

reverse([],[]). 
reverse([Head|Tail],X) :- 
  reverse(Tail,Y), 
  append(Y,[Head],X). 

This step is wrong: we 
substituted X for Y, 
but there is already a 
different X elsewhere 
in the goal list. 

append(Y1,[1],X1)]!
[ reverse([2],Y)!

append(X2,[1],X1)]!
append(Y2,[2],X2)]!

[ reverse([],Y2)!

[append([],[2],X2),!
  append(X2,[1],X1)]!

[append([2],[1],X1)]!

solve  
[]! Maria Hybinette, UGA 
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Deficiencies of Prolog 

!  Resolution order control 
!  The closed-world assumption 
!  The negation problem 
!  Intrinsic limitations 
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Advantages: 

!  Prolog programs based on logic, so likely to 
be more logically organized and written 

!  Processing is naturally parallel, so Prolog 
interpreters can take advantage of multi-
processor machines 

!  Programs are concise, so development time 
is decreased – good for prototyping 
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SWI-Prolog 

?- set_prolog_flag(history, 50). 
 

Yes 
27 ?- h.     % shows history of commands 

    2   eats(Person1,Food1). 

    3   eats(Person1,Food),eats(Person2,Food). 
    4   eats(corey,fish). 

?- !!.    % Repeats last query 

 


