
Maria Hybinette, UGA 1

CSCI: 4500/6500 Programming
Languages

Prolog & Logic Programming

Thanks to: William W. Clocksin, Oxford University, UK.,Jason Eisner, John Hopkins University, James Lu & Jerud Mead, Bucknell University.

Maria Hybinette, UGA
2

Prolog Download
Binaries and Source

!  SWI-prolog (swipl 5.10.4-6.0.2 depending on
platform) website:

»  http://www.swi-prolog.org/!
» Mac OS X on Intel & PPC (Tiger, Leopard (46.3 MB),

Snow Leopard and Lion binaries available)
»  Linux RPMs.
» Windows NT, XP, Vista7, 2000, 64 Bit,
»  Source Install

!  XQuartz (X11) 2.5.0 for help & development
tools.

Maria Hybinette, UGA
3

Great Prolog Tutorials

!  JR Fisher’s original tutorial :
http://www.csupomona.edu/~jrfisher/www/
prolog_tutorial/contents.html

!  Roman Barták’s interactive tutorial:
http://ktiml.mff.cuni.cz/~bartak/prolog/

!  Mike Rosner’s crash course:
http://www.cs.um.edu.mt/~mros/prologcc/

!  James Lu and Jerud Mead’s tutorial:
http://www.cse.ucsc.edu/classes/cmps112/
Spring03/languages/prolog/PrologIntro.pdf

!  James Power’s tutorial:
http://www.cs.nuim.ie/~jpower/Courses/
PROLOG/ (2012 not available – BUT let
me know if you find it –it is a good
one)

Maria Hybinette, UGA
4

What is Prolog?

!  Alain Colmeraeur & Philippe Roussel,
1971-1973

» With help from theorem proving folks such as Robert
Kowalski

» Colmerauer & Roussel wrote 20 years later:

 “Prolog is so simple that one has the sense that

sooner or later someone had to discover it … that
period of our lives remains one of the happiest in
our memories.

Maria Hybinette, UGA
5

What is Prolog?

!  A declarative or logic programming language
»  specifies the results (describes what the results look

like)
–  in contrast to a “procedure” on how to produce the

results.

!  Based on first order predicate calculus
»  consists of propositions that may or may not be true

!  Prolog uses logical variables
» Not the same as variables in other languages
» Used as ‘holes’ in data structures that are gradually

filled in as the computation processes (will see
examples)

Maria Hybinette, UGA
6

Lets look at a sample session…

{saffron:ingrid:817} ls -l second.pl
-rw-r--r-- 1 ingrid ingrid 43 Apr 10 12:06 second.pl
{saffron:ingrid:818}

{saffron:ingrid:815} swipl

Welcome to SWI-Prolog (Multi-threaded, Version 5.6.9)
Copyright (c) 1990-2006 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- [’second'].

% first compiled 0.00 sec, 596 bytes

repeat commands by traversing the command line
history

CTRL-p

 moves up in command history

CTRL-n

 next command

<- ->

 edit command line history

Maria Hybinette, UGA
7

Look at a sample of code…

elephant(kyle). % this is a comment

elephant(kate).

panda(chi_chi).
panda(ming_ming).

dangerous(X) :- big_teeth(X).

dangerous(X) :- venomous(X).

guess(X,tiger) :- striped(X),big_teeth(X),isaCat(X).

guess(X,koala) :- arboreal(X),sleepy(X).

guess(X,zebra) :- striped(X),isaHorse(X).

second.pl

Facts

Rules

Maria Hybinette, UGA
8

Prolog Programs are
“Declarative”

I declare that the leaves are green and elephants
are mammals.

!  Clauses are statements about what is true
about the problem (as statements and
questions).

»  instead of instructions on how to accomplish the
solution.

!  Prolog finds answers to queries by parsing
through “the database” of possible solutions.

Maria Hybinette, UGA
9

Anatomy of Prolog

Declarative Component: “the program” (“the
Database”):

» Consists of facts and rules
» Defines the relations on sets of values

Imperative Component : “the execution engine”,
the “Prolog Solver”:

»  extracts the sets of data values implicit in the facts and
rules of the program

» Unification - matching query and “head” of rules (later)
» Resolution - replaces the head with the body of the rule

and then applies substitution to form a new query(ies).

Maria Hybinette, UGA
10

Prolog as constraints programming

!  Constraints between variables:
Example: Person and Food.

!  Facts:
»  An identifier (name) of the constraint

the followed by n-tuple of constants.
–  Identifier (eats) names the relation
–  the fact states that the tuple is in the

relation
»  Predicate: the relation identifier in

combination with its parameters

eats(maria,olives).
eats(emmy,pear).
eats(eric,fish).
eats(isaac,chips).
eats(robert,fish).
eats(robert,chips).

Person Food
maria olives

emmy pear

eric fish

isaac chips

robert fish

sean chips

(Person, Food)

Maria Hybinette, UGA
11

Syntax of Terms

Constant Variable Compound Term

Atom Number
0
1
57
1.618
2.04e-27
-13.6

eats(maria, spaghetti)
book(dickens, Z, cricket)
f(x)
[1, 3, g(a), 7, 9]
-(+(15, 17), t)
15 + 17 - t

X
Food
Poppins
_257
_

Names an individual Names an individual
that has parts

Term

Stands for an individual
unable to be named when
 program is written
Capital or _ prefix

flexible
spaghetti
super
califragilistic
expialidocious
+
=/=
’12Q&A’

UPPERCASE & _ DENOTES VARIABLES

!  Everything in prolog is built from terms:
»  Prolog programs
»  Data manipulated by Prolog programs

Maria Hybinette, UGA
12

constant versus Variables

!  Variables start with a capital letter, A, B,…
Z or underscore _ :
» Food, Person, Person2, _A123

!  Constant “atoms” start with a, b, !z or
appear in single quotes:
» maria, olives, isaac, ’CSCI4500’
» Other kinds of constants besides atoms:

–  Integers -7, real numbers 3.14159, the
empty list []

!  Note: Atom is not a variable; it is not bound to
anything, never equal to anything else

eats(adam, sushi).
eats(eric,chips).
eats(eric,pears).
eats(isaac,fish).
eats(isaac,fish).
east(ibti,chips).
east(ibti, sushi).
eats(jordan,fish).
eats(jordan,olives).
eats(jonathan,olives).
eats(jonathan,chips).
eats(maria, sushi).
eats(robert,chips).
eats(robert,olives).
eats(sean, sushi).
eats(sean,chips).
eats(young,olives).
eats(young,pears).

Maria Hybinette, UGA
13

constant versus Variables

!  Nothing stops you from putting constants
into constraints:

% what Food does eric eat?
eats(eric, Food).
% 2 answers: chips & pear
% use ‘;’ for next answer…

% what Person eats fish?
eats(Person, fish).
% 2 answers: ? & …?...

% who’ll share what with robert? ** more later
eats(robert, Food), eats(Person, Food).
Try it!

eats(adam, sushi).
eats(eric,chips).
eats(eric,pears).
eats(isaac,fish).
eats(isaac,fish).
east(ibti,chips).
east(ibti, sushi).
eats(jordan,fish).
eats(jordan,olives).
eats(jonathan,olives).
eats(jonathan,chips).
eats(maria, sushi).
eats(robert,chips).
eats(robert,olives).
eats(sean, sushi).
eats(sean,chips).
eats(young,olives).
eats(young,pears).

Maria Hybinette, UGA
14

`Familiar’ Compound Terms

!  The parents of Spot and Fido and Rover

!  Can depict the term as a tree

parents(spot, fido, rover)

Functor(and atom) of arity 3. components (any terms)

parents

rover spot fido

Maria Hybinette, UGA
15

Compound Terms

!  An atom followed by a (parenthesized),
comma-separated list of one or more terms:
x(y,z), +(1,2), .(1,[]),
parent(adam,abel), x(Y,x(Y,Z))

!  A compound term can look like an SML,
Scheme function call: f(x,y)

» Again, this is misleading

!  Better to think of them as structured data

Maria Hybinette, UGA
16

Summary Terms

!  All Prolog programs and data are built from
such terms

!  Later, we will see that, for instance, +(1,2) is
usually written as 1+2

!  But these are not new kinds of terms, just
abbreviations

<term> ::= <constant> | <variable> | <compound-term>
<constant> ::= <integer> | <real number> | <atom>
<compound-term> ::= <atom> (<termlist>)
<termlist> ::= <term> | <term> , <termlist>

Maria Hybinette, UGA
17

The Prolog Program (Database)

!  A Prolog language system
maintains a collection of facts
and rules of inference

!  It is like an internal database
!  A Prolog program is just a set

of data for this database
!  The simplest kind of thing in

the database is a fact: a term
followed by a period

eats(adam, sushi).
eats(eric,chips).
eats(eric,pears).
eats(isaac,fish).
eats(isaac,fish).
east(ibti,chips).
east(ibti, sushi).
eats(jordan,fish).
eats(jordan,olives).
eats(jonathan,olives).
eats(jonathan,chips).
eats(maria, sushi).
eats(robert,chips).
eats(robert,olives).
eats(sean, sushi).
eats(sean,chips).
eats(young,olives).
eats(young,pears).

Maria Hybinette, UGA
18

SWI-Prolog

!  Prompting for a query with ?-
!  Normally interactive: get query, print result,

repeat

{atlas:maria:141} swipl
Welcome to SWI-Prolog (Multi-threaded, Version 5.2.3)
Copyright (c) 1990-2003 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

Maria Hybinette, UGA
19

The consult Predicate

!  Predefined predicate to read a program from a file
into the database

»  Example: File eats.pl defines the “eats” constraints, or
lists of facts.

?- consult(eats).
% eats compiled 0.00 sec, 0 bytes

true.
?- [eats].

% eats compiled 0.00 sec, 0 bytes

true.

eats(adam, sushi).
eats(eric,chips).
eats(eric,pears).
eats(isaac,fish).
eats(isaac,fish).
eats(ibti,chips).
east(ibti, sushi).
eats(jordan,fish).
eats(jordan,olives).
eats(jonathan,olives).
eats(jonathan,chips).
eats(maria, sushi).
eats(robert,chips).
eats(robert,olives).
eats(sean, sushi).
eats(sean,chips).
eats(young,olives).
eats(young,pears).

Maria Hybinette, UGA
20

Simple Queries

!  A query asks the language to
prove something

!  The answer will be True or False
!  Some queries, like consult are

executed only for their side
effects.

!  Example Query program:
» Does kyle eat fish (type query)?

?- eats(adam,sushi).

true.
?- eats(jordan,vegetables).

false.

Here constraints
acts as a procedure

or function

eats(adam, sushi).
eats(eric,chips).
eats(eric,pears).
eats(isaac,fish).
eats(isaac,fish).
east(ibti,chips).
east(ibti, sushi).
eats(jordan,fish).
eats(jordan,olives).
eats(jonathan,olives).
eats(jonathan,chips).
eats(maria, sushi).
eats(robert,chips).
eats(robert,olives).
eats(sean, sushi).
eats(sean,chips).
eats(young,olives).
eats(young,pears).

Maria Hybinette, UGA
21

Simple Queries: the Period ‘.’

!  Queries can take multiple lines
!  If you forget the final period,

Prolog prompts for more inputs
with |.

?- eats(ibti,vegetables)

No period

eats(adam, sushi).
eats(eric,chips).
eats(eric,pears).
eats(isaac,fish).
eats(isaac,fish).
east(ibti,chips).
east(ibti, sushi).
eats(jordan,fish).
eats(jordan,olives).
eats(jonathan,olives).
eats(jonathan,chips).
eats(maria, sushi).
eats(robert,chips).
eats(robert,olives).
eats(sean, sushi).
eats(sean,chips).
eats(young,olives).
eats(young,pears).

Maria Hybinette, UGA
22

Simple Queries: the Period ‘.’

!  Queries can take multiple lines
!  If you forget the final period,

Prolog prompts for more inputs
with |.

?- eats(ibti,vegetables)

|

curser

Prolog prompt

eats(adam, sushi).
eats(eric,chips).
eats(eric,pears).
eats(isaac,fish).
eats(isaac,fish).
east(ibti,chips).
east(ibti, sushi).
eats(jordan,fish).
eats(jordan,olives).
eats(jonathan,olives).
eats(jonathan,chips).
eats(maria, sushi).
eats(robert,chips).
eats(robert,olives).
eats(sean, sushi).
eats(sean,chips).
eats(young,olives).
eats(young,pears).

Maria Hybinette, UGA
23

Simple Queries: the Period ‘.’

!  Queries can take multiple lines
!  If you forget the final period,

Prolog prompts for more inputs
with |.

?- eats(ibti,vegetables)

| .

false.

eats(adam, sushi).
eats(eric,chips).
eats(eric,pears).
eats(isaac,fish).
eats(isaac,fish).
east(ibti,chips).
east(ibti, sushi).
eats(jordan,fish).
eats(jordan,olives).
eats(jonathan,olives).
eats(jonathan,chips).
eats(maria, sushi).
eats(robert,chips).
eats(robert,olives).
eats(sean, sushi).
eats(sean,chips).
eats(young,olives).
eats(young,pears).

Maria Hybinette, UGA
24

Queries With Variables

!  Any term can appear as a query, including a term
with variables

!  The Prolog system shows the bindings necessary
to prove the query

?- eats(michael,X).

X = fish

true.
?-

Here, it waits for
input. We hit
Enter (or ;) to
make it proceed.

Maria Hybinette, UGA
25

Multiple Solutions

!  There might be more than one
way to prove the query

!  By typing ; rather than Enter, you
ask the Prolog system to find
more solutions

»  Example: What does kyle eat?

?- eats(isaac,X).

X = fish ;
X = chips ;

No

“;” (no return) Asks: anymore values that satisfy the query?

eats(adam, sushi).
eats(eric,chips).
eats(eric,pears).
eats(isaac,fish).
eats(isaac,fish).
east(ibti,chips).
east(ibti, sushi).
eats(jordan,fish).
eats(jordan,olives).
eats(jonathan,olives).
eats(jonathan,chips).
eats(maria, sushi).
eats(robert,chips).
eats(robert,olives).
eats(sean, sushi).
eats(sean,chips).
eats(young,olives).
eats(young,pears).

Maria Hybinette, UGA
26

Flexibility

!  Normally, variables can appear in
any or all positions in a query:
» eats(X,olives)
» eats(corey,X)
» eats(X,Y)
» eats(X,X)

–  (guesses)?

eats(adam, sushi).
eats(eric,chips).
eats(eric,pears).
eats(isaac,fish).
eats(isaac,fish).
east(ibti,chips).
east(ibti, sushi).
eats(jordan,fish).
eats(jordan,olives).
eats(jonathan,olives).
eats(jonathan,chips).
eats(maria, sushi).
eats(robert,chips).
eats(robert,olives).
eats(sean, sushi).
eats(sean,chips).
eats(young,olives).
eats(young,pears).

Maria Hybinette, UGA
27

Conjunctions

!  A conjunctive query has a list of query terms separated by
commas
»  think of commas as “AND’s”

!  The Prolog system tries prove them all (using a single set of
bindings)

!  Example: Query folks that eat common foods with eric

% who’ll share what with eric?

?- eats(eric, Food), eats(Person, Food).
Food = chips
Person = eric;

Food = chips
Person = isaac;

eats(adam, sushi).
eats(eric,chips).
eats(eric,pears).
eats(isaac,fish).
eats(isaac,fish).
east(ibti,chips).
east(ibti, sushi).
eats(jordan,fish).
eats(jordan,olives).
eats(jonathan,olives).
eats(jonathan,chips).
eats(maria, sushi).
eats(robert,chips).
eats(robert,olives).
eats(sean, sushi).
eats(sean,chips).
eats(young,olives).
eats(young,pears).

Maria Hybinette, UGA
28

More General Queries

!  Query folks that eat common foods:
»  conjoin two constraints with a common

food.
»  conjoined with a comma (read as
“and’).

?- eats(Person1,Food),eats(Person2,Food).

Person1 = adam
Food = sushi

Person2 = adam;

Person1 = adam

Food = sushi
Person2 = maria;

eats(adam, sushi).
eats(eric,chips).
eats(eric,pears).
eats(isaac,fish).
eats(isaac,fish).
east(ibti,chips).
east(ibti, sushi).
eats(jordan,fish).
eats(jordan,olives).
eats(jonathan,olives).
eats(jonathan,chips).
eats(maria, sushi).
eats(robert,chips).
eats(robert,olives).
eats(sean, sushi).
eats(sean,chips).
eats(young,olives).
eats(young,pears).

Both Adam and Maria like sushi

Maria Hybinette, UGA
29

More Examples: Conjunctions

%

% 1) Who is a child of Sven?

% Assume ‘Child’

% 2) Who is a child of Child?
% Assume ‘GrandChild’

?- parent(sven,Child),
| parent(Child, GrandChild).

Child = ingrid,
GrandChild = maria ;

Child = ingrid,
GrandChild = knut ;

No
?-

parent(maria,gunnar).
parent(maria,tucker).
parent(maria,emmy).
parent(ingrid,maria).
parent(ingrid,knut).
parent(emy,ingrid).
parent(sven,ingrid).
parent(sven,emil).

Sven, Emy

Emil Ingrid

Maria Knut

Gunnar Tucker Emmy

Who are Sven’s grandchildren?

mariafamily.pl!

Maria Hybinette, UGA
30

More Examples: Conjunctions

% Great grandchildren of Emy?

% 1) Who is a child of Emy

% 2) Who is a child of ?

% 3) Who is a child of ?

parent(maria,gunnar).
parent(maria,tucker).
parent(maria,emmy).
parent(ingrid,maria).
parent(ingrid,knut).
parent(emy,ingrid).
parent(sven,ingrid).
parent(sven,emil).

Sven, Emy

Emil Ingrid

Maria Knut

Gunnar Tucker Emmy

Great grandchildren of Emy?

Maria Hybinette, UGA
31

More Examples: Conjunctions

% Great grandchildren of Emy?

?- parent(emy,Child),
| parent(Child,Grandchild),
| parent(Grandchild,GreatGrandchild).

Child = ingrid
Grandchild = maria
GreatGrandchild = gunnar ;

Child = ingrid
Grandchild = maria
GreatGrandchild = tucker ;

Child = ingrid
Grandchild = maria
GreatGrandchild = emmy ;

No
?-

parent(maria,gunnar).
parent(maria,tucker).
parent(maria,emmy).
parent(ingrid,maria).
parent(ingrid,knut).
parent(emy,ingrid).
parent(sven,ingrid).
parent(sven,emil).

Sven, Emy

Emil Ingrid

Maria Knut

Gunnar Tucker Emmy

Great grandchildren of Emy?

Maria Hybinette, UGA
32

Motivation: Need Rules

!  Long query for great grandchildren of Emy?
» Nicer to query directly:

 greatgrandparent(emy, GreatGrandchild)
» While not adding separate facts of that form to the

database?
–  this relation should follow from the parent relation

already defined.

% Great grandchildren of Emy?

?- parent(emy,Child),
| parent(Child,Grandchild),
| parent(Grandchild,GreatGrandchild).

parents.pl!

Maria Hybinette, UGA
33

A Rule

!  A rule says how to prove something: to prove
the head, prove its conditions

!  To prove greatgrandparent(GGP,GGC), find
some GP and P for which you can prove
parent(GGP,GP), then parent(GP,P) and
then finally parent(P,GGC)

greatgrandparent(GGP,GGC) :-
 parent(GGP,GP),
 parent(GP,P),
 parent(P,GGC).

head

Maria Hybinette, UGA
34

A Rule

!  A rule says how to prove something: to prove
the head, prove the conditions

!  To prove greatgrandparent(GGP,GGC), find
some GP and P for which you can prove
parent(GGP,GP), then parent(GP,P) and
then finally parent(P,GGC)

greatgrandparent(GGP,GGC) :-
 parent(GGP,GP),
 parent(GP,P),
 parent(P,GGC).

head

Maria Hybinette, UGA
35

A Rule

!  A rule says how to prove something: to prove
the head, prove the conditions

!  To prove greatgrandparent(GGP,GGC), find
some GP and P for which you can prove
parent(GGP,GP), then parent(GP,P) and
then finally parent(P,GGC)

greatgrandparent(GGP,GGC) :-
 parent(GGP,GP),
 parent(GP,P),
 parent(P,GGC).

conditions (body)

head

Maria Hybinette, UGA
36

Facts and Rules

Head :- Body. % This is a rule.

Head. % This is a fact.

“if” body is true
“provided that”
“turnstile”
– it’s supposed to look like “!”

Head is the consequence.
 Head can be concluded if the body is true

Maria Hybinette, UGA
37

 Facts and Rules

bioparents(X,Y) :- male(X),female(Y).

Body (pre-conditions) Head

Goals

!  Note that left side of the rule looks just like a fact,
except that the parameters are variables

!  Read:
»  The pair “parents(X,Y)” satisfies the predicate “parents” if there is a

node X and Y such that X satisfies the predicate “X” and “Y” satisfies
the predicate Y.

Maria Hybinette, UGA
38

Clauses

!  A program consists of a list of clauses
!  A clause is either a fact or a rule, and ends

with a period

parent(maria,gunnar).
parent(maria,tucker).
parent(maria,emmy).
parent(ingrid,maria).
parent(ingrid,knut).
parent(emy,ingrid).
parent(sven,ingrid).
parent(sven,emil).
greatgrandparent(GGP,,GGC) :-

 parent(GGP,GP),
 parent(GP,P),
 parent(P,GGC).

Maria Hybinette, UGA
39

Example: Clauses: Facts and
Rules

tedge(Node1,Node2) :-

 edge(Node1,SomeNode),

 edge(SomeNode,Node2).

!  Example: A directed graph of five
nodes:

!  Define the edges of the graph, as
facts?

!  Define a rule called “tedge” which
defines the property of a “path of
length two” between two edges?

edge(a,b).
edge(a,e).
edge(b,d).
edge(b,c).
edge(c,a).
edge(e,b).

e

a

c

b d

The pair (Node1,Node2) satisfies the predicate tedge if there is a
node SomeNode such that the pairs (Node1,SomeNode) and
(SomeNode,Node2) both satisfies the predicate edge. Maria Hybinette, UGA

40

Interpretation of Clauses

!  Form of Clause:
» H :- G1,G2, …, Gn.

!  Declarative Reading:
»  “That H is provable follows from goals G1,G2, …,Gn

being provable”

!  Procedural Reading:
»  “To execute procedure H, the procedures called by the

goals G1,G2, …, Gn are executed first”

Maria Hybinette, UGA
41

Example 3: Another Rule

!  “Person1 and Person2 are compatible if there
exists some Food that they both eat.”

!  “One way to satisfy the head of this rule is to
satisfy the body

Compatible(Person1, Person2) :- eats(Person1,Food),

 eats(Person2,Food).

eats(steve,olives).
eats(sol,pear).
eats(sol,fish).
eats(george,chips).
eats(cole,fish).
eats(cole,chips).
eats(alex,olives).
eats(corey,olives).
eats(george,olives).
eats(jason,olives).
eats(dong,olives).
eats(david,olives).

Maria Hybinette, UGA
42

Rules using ‘other’ Rules

!  Same relation, defined indirectly
!  Note that both clauses use a variable P
!  The scope of the definition of a variable is the

clause that contains it

grandparent(GP,GC) :-
 parent(GP,P), parent(P,GC).

greatgrandparent(GGP,GGC) :-
 grandparent(GGP,P), parent(P,GGC).

Prolog allows recursion SQL
doesn’t!

Maria Hybinette, UGA
43

Recursive Rules

!  X is an ancestor of Y if:
» Base case: X is a parent of Y
» Recursive case: there is some Z such that Z is a

parent of Y, and X is an ancestor of Z
!  Prolog tries rules in the order given, so put

base-case rules and facts first

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :-
 parent(Z,Y),
 ancestor(X,Z).

Maria Hybinette, UGA
44

Recursion Example 2

!  Who’s married to their boss?
»  boss(X,Y), married(X,Y).

!  Who’s married to their boss’s boss?
»  boss(X,Y), boss(Y,Z), married(X,Z).

!  Who’s married to their boss’s boss’s boss?
»  Okay, this is getting silly. Let’s do the general case.

!  Who’s married to someone above them?
»  above(X,X).
»  above(X,Y) :- boss(X,Underling), above(Underling,Y).
»  above(X,Y), married(X,Y).

Base case: For simplicity, it says that X is “above” herself. If you don’t
like that, replace base case with above(X,Y) :- boss(X,Y).

x!

Y!

Z!

Maria Hybinette, UGA
45

Example: Graph Example

!  Embellish graph program to include “path”s of
any positive length.

!  Thinking Recursively:
»  If there is an edge then there is a path (base)
»  If there is an edge to an intermediate node from

which there is a path to the final node.

»  Two rules with the same head, reflects logical “or”
»  Predicate of head of second rule, is also in the body

of that rule.
»  These rules together illustrate recursion in Prolog!

edge(a,b). edge(b,c).
edge(a,e). edge(c,a).
edge(b,d). edge(e,b).
tedge(N1,N2) :- edge(N1,SomeN),edge(SomeN,N2).
path(N1,N2) :- edge(N1,N2).
path(N1,N2) :- edge(N1,SomeN),path(SomeN,N2).

e

a

c

b d

path(N1,N2) :- edge(N1,N2).
path(N1,N2) :- edge(N1,SomeN),path(SomeN,N2)

Maria Hybinette, UGA
46

Core Syntax of Prolog

!  You have seen the complete core syntax
!  There is not much more syntax for Prolog

than this: it is a very simple language
!  Syntactically, that is!

<clause> ::= <fact> | <rule>
<fact> ::= <term> .
<rule> ::= <term> :- <termlist> .
<termlist> ::= <term> | <term> ,
<termlist>

Maria Hybinette, UGA
47

How does Prolog Compute?

!  Deduce useful implicit knowledge from the “program” or data
base.

!  Computations in Prolog is facilitated by the query, a
conjunction of atoms.

!  New example (more complicated) program:

edge(a,b) edge(b,c)
edge(a,e). edge(c,a).
edge(b,d). edge(e,b).
tedge(N1,N2) :- edge(N1,SomeN),edge(SomeN,N2).
path(N1,N2) :- edge(N1,N2).
path(N1,N2) :- edge(N1,SomeN),path(SomeN,N2)

1!

2!

e

a

c

b d

!  edge(a,b).

edge(a,b). edge(b,c).
edge(a,e). edge(c,a).
edge(b,d). edge(e,b).
tedge(N1,N2) :- edge(N1,SomeN),edge(SomeN,N2).
path(N1,N2) :- edge(N1,N2).
path(N1,N2) :- edge(N1,SomeN),path(SomeN,N2)

1
3
5
7
8
9

2
4
6

!  edge(a,b).
»  Iterates in order through the program’s “edge” clauses.
» Ground Query only value identifiers as parameters

to the predicate.
»  First one to match is edge(a,b).

so Prolog returns with true (so yes).

edge(a,b). edge(b,c)
edge(a,e). edge(c,a).
edge(b,d). edge(e,b).
tedge(N1,N2) :- edge(N1,SomeN),edge(SomeN,N2).
path(N1,N2) :- edge(N1,N2).
path(N1,N2) :- edge(N1,SomeN),path(SomeN,N2)

1
3
5
6
7
8

2
4
6

!  edge(a,b).

!  path(a,b).

edge(a,b). edge(b,c)
edge(a,e). edge(c,a).
edge(b,d). edge(e,b).
tedge(N1,N2) :- edge(N1,SomeN),edge(SomeN,N2).
path(N1,N2) :- edge(N1,N2).
path(N1,N2) :- edge(N1,SomeN),path(SomeN,N2)

1
3
5
6
7
8

2
4
6

!  edge(a,b).

!  path(a,b).
»  another ground query
»  No rule that exactly match the query.
»  Know, the head is true if the body is true
»  If variable’s N1 and N2 are replaced by a and b, then body

of 8 is true
–  edge(a,b) is a fact!
–  and the head with the same substitution must be true

»  Prolog conclude that the query is true

edge(a,b). edge(b,c)
edge(a,e). edge(c,a).
edge(b,d). edge(e,b).
tedge(N1,N2) :- edge(N1,SomeN),edge(SomeN,N2).
path(N1,N2) :- edge(N1,N2).
path(N1,N2) :- edge(N1,SomeN),path(SomeN,N2)

1
3
5
7
8
9

2
4
6

!  edge(a,b).

!  path(a,b).

!  tedge(a,X).

edge(a,b). edge(b,c)
edge(a,e). edge(c,a).
edge(b,d). edge(e,b).
tedge(N1,N2) :- edge(N1,SomeN),edge(SomeN,N2).
path(N1,N2) :- edge(N1,N2).
path(N1,N2) :- edge(N1,SomeN),path(SomeN,N2)

1
3
5
7
8
9

2
4
6

!  edge(a,b).
!  path(a,b).

!  tedge(a,X).
»  non-Ground Query: variable parameters
»  Scan rules, finds that constraint ‘7’ defines tedge, focus on 7
»  Substitutes N1 = a, X = N2
»  Is edge(a, N2) true? True if body is true, evaluates body:

»  edge(a,SomeN), edge(SomeN,N2)?
»  edge(a,SomeN)? two facts fit, take the first one edge(a,b)

»  if we substitute SomeN = b [first query is satisfied]
»  after substitution evaluate 2nd atom, i.e. edge(b,N2)?
»  Similarly as above substitute: N2 = d
»  Following the substitution it finds that X = d satisfies the

original query

edge(a,b). edge(b,c)
edge(a,e). edge(c,a).
edge(b,d). edge(e,b).
tedge(N1,N2) :- edge(N1,SomeN),edge(SomeN,N2).
path(N1,N2) :- edge(N1,N2).
path(N1,N2) :- edge(N1,SomeN),path(SomeN,N2)

1
3
5
7
8
9

2
4
6

Maria Hybinette, UGA
54

How Does Prolog Compute?

!  Unification (pattern matching, eval).
!  Resolution (apply, one at a time).
!  Backtracking

Maria Hybinette, UGA
55

Unification

!  Pattern-matching using Prolog terms
!  Two terms unify if there is some way of

binding their variables that make them
identical.

» Usually the two terms
–  one from the query (or another goal) and
–  the other being a fact or a head of a rule

»  Example:
–  parent(adam,Child) and parent(adam,seth)
–  Do these unify?
–  Yes! they unify by binding the variable Child to the

atom seth.

Maria Hybinette, UGA
56

Resolution

!  The hardwired inference step
!  A clause is represented as a list of terms (a

list of one term, if it is a fact)
!  Resolution step applies one clause, once, to

make progress on a list of goal terms

Maria Hybinette, UGA
57

Resolution

!  When an atom from the query has unified with
the head of of a rule (or a fact),

!  Resolution replaces the atom with the body of
the rule (or nothing, if a fact) and

!  then applies the substitution to the new
query.

Maria Hybinette, UGA
58

tedge(a,X).

!  Unify:
»  tedge(a,X) and tedge(N1,N2).
»  giving the substitution

–  N1 =a, X = N2

!  Resolution:
»  replaces tedge(a,X) with body edge(N1,SomeN), edge(SomeN,N2)

and apply the substitution above to get the new query.
!  edge(a,SomeN),edge(SomeN,N2)

!  Select first atom, edge(a,SomeN)
!  Unify:

»  edge(a,SomeN) with edge(a,b),
»  giving the substitution

–  SomeN = b

!  Resolution: replace edge(a,SomeN) !

edge(a,b) edge(b,c)
edge(a,e). edge(c,a).
edge(b,d). edge(e,b).
tedge(N1,N2) :- edge(N1,SomeN),edge(SomeN,N2).
path(N1,N2) :- edge(N1,N2).
path(N1,N2) :- edge(N1,SomeN),path(SomeN,N2)

 1
3
5
6
7
8

Maria Hybinette, UGA
59

tedge(a,X).

!  Resolution: replace edge(a,SomeN) by nothing (since we unified
with a fact) and apply the substitution above to get the new
query:

»  edge(b,N2)
!  There is only one atom in the query.
!  Unify

»  edge(b,N2), and edge(b,d).
!  giving the substitution

»  N2 = d
!  Resolution: replace edge(b,N2) by nothing (since we unified

with a fact). Since the resulting query is empty we are done!

edge(a,b). edge(b,c)
edge(a,e). edge(c,a).
edge(b,d). edge(e,b).
tedge(N1,N2) :- edge(N1,SomeN),edge(SomeN,N2).
path(N1,N2) :- edge(N1,N2).
path(N1,N2) :- edge(N1,SomeN),path(SomeN,N2)

1
3
5
6
7
8

2
4
6

Maria Hybinette, UGA
60

____Backtracking

!  There are other solutions, we could redo the
computation above and get substitution

»  X=b or X = c or X =d

!  When Prolog reduces a query to the empty
query,

»  it backtracks to the most recent unification to
determine whether there is another fact or rule with
which the unification can succeed.

» Backtracking continues until all possible answers
are determined.

Maria Hybinette, UGA
61

Recursive Queries

above(X,X).
above(X,Y) :- boss(X,Underling), above(Underling,Y).

!  above(c,h). % should return True
»  matches above(X,X)? no
»  matches above(X,Y)with X=c and Y=h
»  boss(c,Underling),

–  matches boss(c,f) with Underling=f
»  above(f,h).

–  matches above(X,X)? no
–  matches above(X,Y) with X=f, Y=h

!  boss(f,Underling),
»  matches boss(f,g) with Underling=g

!  above(g,h)
»  ! ultimately fails because g has no underlings!

a

b c

d e

g h

f

boss(a,b). boss(a,c).
boss(b,d). boss(c,f).
boss(b,e). boss(f,g).
boss(f,h).

Maria Hybinette, UGA
62

Recursive Queries

above(X,X).
above(X,Y) :- boss(X,Underling), above(Underling,Y).

!  above(c,h). % should return True
»  matches above(X,X)? no
»  matches above(X,Y)with X=c and Y=h
»  boss(c,Underling),

–  matches boss(c,f) with Underling=f
»  above(f,h).

–  matches above(X,X)? no
–  matches above(X,Y) with X=f, Y=h

!  boss(f,Underling),
»  matches boss(f,g) with Underling=g

!  above(g,h)
»  ! ultimately fails because g has no underlings!

a

b c

d e

g h

f

boss(a,b). boss(a,c).
boss(b,d). boss(c,f).
boss(b,e). …

boss(a,b). boss(a,c).
boss(b,d). boss(c,f).
boss(b,e). boss(f,g).
boss(f,h).

Maria Hybinette, UGA
63

Recursive Queries

above(X,X).
above(X,Y) :- boss(X,Underling), above(Underling,Y).

!  above(c,h). % should return True
»  matches above(X,X)? no
»  matches above(X,Y)with X=c and Y=h
»  boss(c,Underling),

–  matches boss(c,f) with Underling=f
»  above(f,h).

–  matches above(X,X)? no
–  matches above(X,Y) with X=f, Y=h

!  boss(f,Underling),
»  matches boss(f,Underling) with Underling=h

!  above(h,h)
»  matches above(X,X) with X=h !

a

b c

d e

g h

f

boss(a,b). boss(a,c).
boss(b,d). boss(c,f).
boss(b,e). …

boss(a,b). boss(a,c).
boss(b,d). boss(c,f).
boss(b,e). boss(f,g).
boss(f,h).

Maria Hybinette, UGA
64

Review: Basic Elements of Prolog

!  Variable: any string of letters, digits, and
underscores beginning with an Uppercase
letter

!  Instantiation: binding of a variable to a value
»  Lasts only as long as it takes to satisfy one

complete goal
»  allows unification to succeed

!  Predicates: represents atomic proposition
 functor(parameter list)

Maria Hybinette, UGA
65

Review Prolog

!  Prolog program: Set of propositions
»  Facts
»  Rules: consequence ! antecedent (if antecedent is true

then the consequence is true).
–  edge(A,B) :- edge(A,X),edge(X,B).

!  Running a program: A Prolog query (sometimes called
goals): A proposition of which truth is to be
determined.

»  Idea: Prove truthfulness (or “cannot determine” (not
falsehood)) by trying to find a chain of inference rules
and facts (inference process)

!  Resolution: Process that allows inferred propositions to be
computed from given propositions

»  Unification merges compatible statements. Binding
process.

Maria Hybinette, UGA
66

Inference Process

!  Backward Chaining, Top-down resolution:
»  Start with goal (query), see if a sequence of

propositions leads to set of facts in the database
(Prolog)

–  Looks for something in the database that unify the
current goal,

!  finds a fact, great it succeeds!
!  If it finds a rule, it attempts to satisfy the terms in the

body of the rule (these are now subgoals).

!  Forward Chaining, Bottom-up resolution:
» Begin with program of facts and rules in the

database and attempt to find a sequence that leads
to goal (query).

Maria Hybinette, UGA
67

Backward Chaining

!  When goal has more than one sub-goal, can
use either

» Depth-first search: find a complete proof for the first
sub-goal before working on others (Prolog)

–  Push the current goal onto a stack,
–  make the first term in the body the current goal, and
–  prove this new goal by looking at beginning of

database again.
–  If it proves this new goal of a body successfully, go to

the next goal in the body. If it gets all the way through
the body, the goal is satisfied and it backs up a level
and proceeds.

» Breadth-first search: work on all sub-goals in parallel

Maria Hybinette, UGA
68

Backtracking

!  If a sub-goal fails:
»  reconsider previous subgoal to find an alternative

solution

!  Begin search where previous search left off
!  Can take lots of time and space because may

find all possible proofs to every sub-goal

Maria Hybinette, UGA
69

Compound Terms

!  Basic blocks: variables, constants and
variables

!  Compound terms: Seen it already -- it is the
functor(parameter list) structure
(e.g., eats(cole,fish))

»  Variables cannot be used for the functor
» However the “parameter list” can be any kind of

term (it can be another functor).
»  book(title(lord_of_the_rings), author(tolkien))

»  Uh uh what about unification now! (matching of goals and
heads).

Maria Hybinette, UGA
70

Unification Rules

!  Two terms unify:
»  if substitution can be made for any variables in the

terms so that terms are made identical.
»  If no such substitution exists, the terms do not

unify.
!  The unification algorithm proceeds by recursively

descent of the two terms.
» Constants unify if they are identical
»  Variables unify with any term, including other

variables
» Compound terms unify if their functors and

components unify

Maria Hybinette, UGA
71

Unification Compound Terms

!  Compound terms unify if their functors and components
unify (how do terms become equal?)
»  f(X, a(b,c)) and f(d, a(Z, c)) do unify.

These terms are made equal if d is substituted for X, and b is
substituted for Z.

»  d is substituted for X (X is instantiated to d, X/d)
»  b is substituted for Z (Z is instantiated to b, Z/b)

Z c

a d

f

b c

a X

f

Maria Hybinette, UGA
72

Example 2

!  The terms f(X, a(b,c)) and f(Z, a(Z, c)) unify

!  Z co-refers within the term. Here, X/b, Z/b.

Z c

a Z

f

b c

a X

f

» Earlier :f(X, a(b,c)) and f(d, a(Z, c)) did unify!
!

Maria Hybinette, UGA
73

What about?

!  f(c, a(b,c)) and f(Z, a(Z, c)) ?

!  No matter how hard you try, these terms cannot be made identical
by substituting terms for variables.

Z c

a Z

f

b c

a c

f

Maria Hybinette, UGA
74

Unify?

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

!  g(Z,f(A,17,B),A+B,17) and
!  g(C, f(D, D, E), C, E)?

Maria Hybinette, UGA
75

Unify?

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

!  First write in the co-referring variables.

Maria Hybinette, UGA
76

Unify?

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

!  Recursive descent: We go top-down, left-to-right
»  but the order does not matter as long as it is systematic

and complete.

Z/C, C/Z!

Maria Hybinette, UGA
77

Unify?

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

!  recursive descent We go top-down, left-to-right, but the
order does not matter as long as it is systematic and
complete.

Z/C, C/Z, A/D, D/A!

Maria Hybinette, UGA
78

Unify?

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

!  recursive descent We go top-down, left-to-right, but the
order does not matter as long as it is systematic and
complete.

Z/C, C/Z, A/17, D/17!

Maria Hybinette, UGA
79

Unify?

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

!  recursive descent We go top-down, left-to-right, but the
order does not matter as long as it is systematic and
complete.

Z/C, C/Z, A/17, D/17, B/E, E/B!

Maria Hybinette, UGA
80

Unify?

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

!  recursive descent We go top-down, left-to-right, but the
order does not matter as long as it is systematic and
complete. Z/C, C/Z, A/17, D/17, B/E, E/B!

Maria Hybinette, UGA
81

Unify?

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

!  recursive descent We go top-down, left-to-right, but the
order does not matter as long as it is systematic and
complete. Z/C, C/Z, A/17, D/17, B/E, E/B!

Z/A+B, C/A+B, A/17, D/17, B/E, E/B!

Maria Hybinette, UGA
82

Unify?

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

!  recursive descent We go top-down, left-to-right, but the
order does not matter as long as it is systematic and
complete. Z/C, C/Z, A/17, D/17, B/E, E/B!

Z/17+B, C/17+B, A/17, D/17, B/E, E/B!

Maria Hybinette, UGA
83

Unify?

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

!  recursive descent We go top-down, left-to-right, but the
order does not matter as long as it is systematic and
complete.

Z/17+B, C/17+B, A/17, D/17, B/E, E/B!

Maria Hybinette, UGA
84

Unify?

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

!  recursive descent We go top-down, left-to-right, but the
order does not matter as long as it is systematic and
complete.
Z/17+17, C/17+17, A/17, D/17, B/17, E/17!

Maria Hybinette, UGA
85

Can also use “substitution
method”

Maria Hybinette, UGA
86

Exercise – Alternative Method

Z/C

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

Make 1st tree look like 2nd!

Maria Hybinette, UGA
87

Exercise – Alternative Method

Z/C

A B

+ f

g

C 17

A B 17

C f

g

C E

D E D

Maria Hybinette, UGA
88

Exercise – Alternative Method

A/D, Z/C

A B

+ f

g

C 17

A B 17

C f

g

C E

D E D

Maria Hybinette, UGA
89

Exercise – Alternative Method

D/17, A/D, Z/C

D B

+ f

g

C 17

D B 17

C f

g

C E

D E D

Maria Hybinette, UGA
90

Exercise – Alternative Method

D/17, A/17, Z/C

17 B

+ f

g

C 17

17 B 17

C f

g

C E

17 E 17

Maria Hybinette, UGA
91

Exercise – Alternative Method

B/E, D/17, A/17, Z/C

17 B

+ f

g

C 17

17 B 17

C f

g

C E

17 E 17

Maria Hybinette, UGA
92

Exercise – Alternative Method

B/E, D/17, A/17, Z/C

17 E

+ f

g

C 17

17 E 17

C f

g

C E

17 E 17

Maria Hybinette, UGA
93

Exercise – Alternative Method

C/17+E, B/E, D/17, A/17, Z/C

17 E

+ f

g

C 17

17 E 17

C f

g

C E

17 E 17

Maria Hybinette, UGA
94

Exercise – Alternative Method

C/17+E, B/E, D/17, A/17, Z/17+E

17 E

+ f

g

+
17

17 E 17

+ f

g

+ E

17 E 17

17 E
17 E

E 17

Maria Hybinette, UGA
95

Exercise – Alternative Method

E/17, C/17+E, B/E, D/17, A/17, Z/C

17 E

+ f

g

+
17

17 E 17

+ f

g

+ E

17 E 17

17 E
17 E

E 17

Maria Hybinette, UGA
96

Exercise – Alternative Method

E/17, C/17+17, B/17, D/17, A/17, Z/C

17 17

+ f

g

+
17

17 17 17

+ f

g

+ 17

17 17 17

17 17
17 17

17 17

Maria Hybinette, UGA
97

Operators

!  Prolog has some predefined operators (and
the ability to define new ones)

!  An operator is just a predicate for which a
special abbreviated syntax is supported

»  Example: +(2, 3) can also be written as 2 + 3

Maria Hybinette, UGA
98

The Predicate ‘=‘

!  The goal =(X,Y) succeeds if and only if X
and Y can be unified:

!  Since = is an operator, it can be and usually is
written like this:

?- =(parent(maria,gunnar),parent(maria,X)).

X = gunnar

Yes

?- parent(maria,gunnar)=parent(maria,X).

X = gunnar

Yes

Maria Hybinette, UGA
99

The Predicate ‘=‘

!  Note: The goal =(X,Y) succeeds if and only if
X and Y can be unified. Consider =(5, +(3, 2))

?- (2+3) = 5.

No.

Maria Hybinette, UGA
100

Arithmetic Operators

!  Predicates +, -, * and / are operators too,
with the usual precedence and associativity

?- X = +(1,*(2,3)).

X = 1+2*3

Yes
?- X = 1+2*3.

X = 1+2*3

Yes

Prolog lets you use operator
notation, and prints it out that
way, but the underlying term
is still +(1,*(2,3))

Maria Hybinette, UGA
101

Not Evaluated

!  The term is still +(1,*(2,3))
!  It is not evaluated
!  There is a way to make Prolog evaluate such terms!

?- +(X,Y) = 1+2*3.

X = 1
Y = 2*3

Yes
?- 7 = 1+2*3.

No

Maria Hybinette, UGA
102

Arithmetic (‘is’ gets the value)
!  is operator:
!  is(X, 3 + 4)

»  X is 3 + 4.
!  Unifies it’s first argument with the arithmetic value of its

second argument.
!  Infix OK too: takes an arithmetic expression as right operand

and variable as left operand
!  Variables in the expression (on right) must all be instantiated.

»  is(A, B / 10 + C)
»  A is B / 10 + C
»  In above, B and C needs to have been instantiated.

!  Variable on the left cannot be previously instantiated.
»  In above A cannot be instantiated (what happens if A is not a

variable?)
!  Left hand side cannot be an expression since it is not

evaluated -- it may be a value (and then unification is
possible)

=(X, 3+4) % can X be unified?!

Maria Hybinette, UGA
103

Unification impossible Example

!  Sum is Sum + Number
!  If Sum is not instantiated, the reference to its

right is undefined and the clause fails
!  If Sum is instantiated, the clause fails because

the left operand cannot have a current
instantiation when it is evaluated.

Maria Hybinette, UGA
104

Arithmetic Evaluation is/2

!  Unifies the first argument with the value of it’s second
argument.

»  In contrast to (=) unification predicate, which just unifies
terms without evaluating them

!  Note: left may not be a “variable” then it may unify with
the value on the right.

?- X is 3 + 4.!
X = 7!
!
?- X = 3 + 4.!
X = 3 + 4!
!
?- 10 is 5 * 2. % !
yes % b/c 10 is a “value”!
!
?- 10 = 5 * 2.!
no!

?- is(X,1+2)!
X=3!
?- X is 1+2 !% infix OK.!
X=3 ! !!
?- 1+2 is 4-1. % first argument!
no ! !% already instantiated!
?- X is Y. !% second argument Y!
<error>! !% must be instantiated!
?- Y is 1+2, X is Y.!
X = 3 ! !% Y instantiated !
Y = 3 ! !% before it is needed!

Maria Hybinette, UGA
105

Trace

!  Built-in structure that displays instantiations
at each step

!  Tracing model of execution - four events:
» Call (beginning of attempt to satisfy goal)
»  Exit (when a goal has been satisfied)
» Redo (when backtrack occurs)
»  Fail (when goal fails)

Maria Hybinette, UGA
106

Example Arithmetic

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).
distance(X,Y) :- speed(X,Speed),
 time(X,Time),
 Y is Speed * Time.

distance(chevy, Chevy_Distance). % Query

Maria Hybinette, UGA
107

Example Arithmetic

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).
distance(X,Y) :- speed(X,Speed),
 time(X,Time),
 Y is Speed * Time.

distance(chevy, Chevy_Distance). % Query

trace.
distance(chevy, Chevy_Distance).
(1)   1 Call: distance(chevy, _0)?
(2)   2 Call: speed(chevy, _5)?
(2) 2 Exit: speed(chevy, 105)
(3) 2 Call: time(chevy, _6)?
(3) 2 Exit: time(chevy, 21)
(4) 2 Call: _0 is 105*21?
(2) 2 Exit: 2205 is 105 * 21
(1)   1 Exit: distance(chevy, 2205)

(2)  
Chevy_Distance = 2205

Maria Hybinette, UGA
108

List Structures

!  Other basic data structure (besides atomic
propositions we have already seen): list

!  List is a sequence of any number of elements
!  List is a functor of arity 2,its first component

is the head and the second is the tail.
!  Elements can be atoms, atomic propositions,

or other terms (including other lists)

Maria Hybinette, UGA
109

Same as in Scheme

nil

(a, nil)

(a, .(b, nil)

(a, .(b, .(c, .(d, .(e. nil)))))
(a,b) (note this is a pair, not a proper list)
(a, X) (this might be a list, or might not!)
(a, .(b, nil)), .(c, nil))

Maria Hybinette, UGA
110

List Notation .() or []

!  The lists is written using square brackets [].
!  These are just abbreviations for the underlying term

using the . Predicate
!  List of length 0 is nil, denoted [].

?- X = .(1,.(2,.(3,[]))).

X = [1, 2, 3]

Yes
?- .(X,Y) = [1,2,3]. % head and the rest

X = 1
Y = [2, 3]

Yes

Maria Hybinette, UGA
111

List Notation and the Tail

!  [X | Y]!
» X is bound to first element in list, the head.
»  Y is bound to the remaining elements, called the tail.

!  Useful in patterns: [1,2|X] unifies with any list that starts
with 1,2 and binds X to the tail

List Notation Term denoted
[1|X] .(1,X)

[1,2|X] .(1,.(2,X))

[1,2|[3,4]] same as [1,2,3,4]

?- [1,2|X] = [1,2,3,4,5].

X = [3, 4, 5]

Yes

Maria Hybinette, UGA
112

[apple, prune, grape, kumquat]
[] % (empty list)
[X | Y] % (head X and tail Y)!

Maria Hybinette, UGA
113

The append Predicate

!  Predefined append(X,Y,Z) succeeds if and
only if Z is the result of appending the list Y
onto the end of the list X

?- append([1,2],[3,4],Z).

Z = [1, 2, 3, 4]

Yes

Maria Hybinette, UGA
114

!  append can be used with any pattern of
instantiation (that is, with variables in any
positions)

?- append(X,[3,4],[1,2,3,4]).

X = [1, 2]

Yes

Maria Hybinette, UGA
115

?- append(X,Y,[1,2,3]).

X = []
Y = [1, 2, 3] ;

X = [1]
Y = [2, 3] ;

X = [1, 2]
Y = [3] ;

X = [1, 2, 3]
Y = [] ;

No

Maria Hybinette, UGA
116

Implementing append()

!  Suppose we want to join
»  [a, b, c] with [d, e].
»  [a, b, c] has the recursive structure

–  [a | [b, c]].
»  Then the rule says (if body is true then head is the

consequence)
–  IF [b,c] appends with [d, e] to

form [b, c, d, e]
–  THEN [a|[b, c]] appends with [d,e] to

 form [a|[b, c, d, e]]
» i.e. [a, b, c] [a, b, c, d, e]

append([], List, List).
append([Head | List_1], List_2, [Head | List_3])

 :- append (List_1, List_2, List_3).

Maria Hybinette, UGA
117

Implementing append()

!  If you know that a particular List1 will
append with a List2 to produce a List3,

»  then you know how it will go for a case which is
one step more complex.

–  a list which is one element longer (the Head). i.e. if
you add a Head to List1, then the result of the
append will be that Head on the front of List3.

append([], List, List).
append([Head | List1], List2, [Head | List3])

 :- append (List1, List2, List3).

Maria Hybinette, UGA
118

Implementing append()

?- append([a,b,c],[d],X).

append([a, b, c],)

IF append([b, c],)

IF append([c],)
 IF append([],)

 append(...., [d])

append(.... , [c,d])

append(.... , [b, c , d])

append(.... , [a, b , c ,d])

append([], List, List).
append([Head | List1], List2, [Head | List3])

 :- append (List1, List2, List3).

Maria Hybinette, UGA
119

Implementing append()

?- append([a,b,c],[d],X).
append([a, b, c],)

IF append([b, c],)
IF append([c],)

 IF append([],)

 append(...., [d])

append(.... , [c,d])

append(.... , [b, c , d])

append(.... , [a, b , c ,d])

append([], List, List).
append([Head | List1], List2, [Head | List3])

 :- append (List1, List2, List3).

append([a | [b,c]], [d], [a| NT1])
 IF append([b,c], [d], NT1) X=[a| NT1]

append([b|[c]], [d], [b| NT2])
 IF append([c], [d], NT2) NT1=[b| NT2]

append([c|[]], [d], [c| NT3])
 IF append([], [d], NT3) NT2=[c|NT3]

NT2 = [c | NT3] = [c|[d]} = [c,d]
NT1 = [b| NT2] = [b|[c,d]] = [b,c,d]
X = [a|NT1] = [a|[b,c,d]] = [a,b,c,d]

append([],[d],[d]) NT3 = [d]

Maria Hybinette, UGA
120

Implementing append()

!  Two first parameters are the lists that are appended, the
third parameters is the resulting list

!  First proposition: when the empty list is appended to any
other list

»  the other list is the result.
!  Second proposition:

»  left hand side: first element of the new list (i.e. the result) is the
same as the first element of the first given list (both are named
Head).

»  right hand side: the tail of the first given list (List_1) has the
second given list (List_2) appended to form the tail of the
resulting list (List 2 is the tail).

append([], List, List).
append([Head | List_1], List_2, [Head | List_3])

 :- append (List_1, List_2, List_3).

trace.
append([bob,jo], [jake, darcie], Family).

(1) 1 Call: append([bob, jo], [jake, darcie], _10)?
(2) 2 Call: append([jo], [jake, darcie], _18)?
(3) 3 Call: append([],[jake,darcie],_25)?
(3) 3 Exit: append([],[jake,darcie],[jake,darcie]))
(2) 2 Exit: append([jo],[jake,darcie],[jo,jake,darcie])
(1) 1 Exit: append([bob,jo],[jake,darcie,

[bob,joe,jake,darcie])
Family = [bob, jo, jake, darcie]

append([], List, List).
append([Head | List_1], List_2, [Head | List_3])

 :- append (List_1, List_2, List_3).

Maria Hybinette, UGA
122

Other Predefined List Predicates

!  All flexible, like append
!  Queries can contain variables anywhere

Predicate Description

member(X,Y) Provable if the list Y contains the element
X.

select(X,Y,Z)
Provable if the list Y contains the element
X, and Z is the same as Y but with one
instance of X removed.

nth0(X,Y,Z) Provable if X is an integer, Y is a list, and Z
is the Xth element of Y, counting from 0.

length(X,Y) Provable if X is a list of length Y.

Maria Hybinette, UGA
123

Using select

?- select(2,[1,2,3],Z).

Z = [1, 3] ;

No
?- select(2,Y,[1,3]).

Y = [2, 1, 3] ;

Y = [1, 2, 3] ;

Y = [1, 3, 2] ;

No

Maria Hybinette, UGA
124

!  Predefined reverse(X,Y) unifies Y with the
reverse of the list X

?- reverse([1,2,3,4],Y).

Y = [4, 3, 2, 1] ;

No

Maria Hybinette, UGA
125

!  Definition of reverse function:

reverse([], []).
reverse([Head | Tail], X) :-

 reverse(Tail, Y),
 append(Result, [Head], X).

Maria Hybinette, UGA
126

[r e v e r s e ([1 , 2] , X)]

[r e v e r s e ([2] , Y) ,

 a p p e n d (Y , [1] , X)]

 [r e v e r s e ([] , X) ,

 a p p e n d (X , [2] , X) ,

 a p p e n d (X , [1] , X)]

 [a p p e n d ([] , [2] , []) ,

 a p p e n d ([] , [1] , [])]

solve

solve

solve

nothing

nothing

nothing solve

nothing

reverse([],[]).
reverse([Head|Tail],X) :-
 reverse(Tail,Y),
 append(Y,[Head],X).

This step is wrong: we
substituted X for Y,
but there is already a
different X elsewhere
in the goal list.

Y => TailReverse!

Maria Hybinette, UGA
127

[r e v e r s e ([1 , 2] , X)]

solve

solve

solve

nothing

nothing

nothing solve

reverse([],[]).
reverse([Head|Tail],X) :-
 reverse(Tail,Y),
 append(Y,[Head],X).

This step is wrong: we
substituted X for Y,
but there is already a
different X elsewhere
in the goal list.

append(Y1,[1],X1)]!
[reverse([2],Y)!

append(X2,[1],X1)]!
append(Y2,[2],X2)]!

[reverse([],Y2)!

[append([],[2],X2),!
 append(X2,[1],X1)]!

[append([2],[1],X1)]!

solve
[]! Maria Hybinette, UGA

128

Deficiencies of Prolog

!  Resolution order control
!  The closed-world assumption
!  The negation problem
!  Intrinsic limitations

Maria Hybinette, UGA
129

Advantages:

!  Prolog programs based on logic, so likely to
be more logically organized and written

!  Processing is naturally parallel, so Prolog
interpreters can take advantage of multi-
processor machines

!  Programs are concise, so development time
is decreased – good for prototyping

Maria Hybinette, UGA
130

SWI-Prolog

?- set_prolog_flag(history, 50).

Yes
27 ?- h. % shows history of commands

 2 eats(Person1,Food1).

 3 eats(Person1,Food),eats(Person2,Food).
 4 eats(corey,fish).

?- !!. % Repeats last query

