Prolog Download

CSCI: 4500/6500 Programming Languages

Prolog \& Logic Programming

Great Prolog Tutorials

- JR Fisher's original tutorial :
http://www.csupomona.edu/~jrfisher/www/ prolog tutorial/contents.html
- Roman Barták's interactive tutorial: http://ktiml.mff.cuni.cz/~bartak/prolog/
- Mike Rosner's crash course:
http://www.cs.um.edu.mt/~mros/prologec/
- James Lu and Jerud Mead's tutorial: http://www.cse.ucsc.edu/classes/cmps112/ Spring03/languages/prolog/PrologIntro.pdf
- James Power's tutorial:
http://www.cs.nuim.ie/~jpower/Courses/
 PROLOG/ (2012 not available - BUT let me know if you find it -it is a good one)
- SWI-prolog (swipl 5.10.4-6.0.2 depending on platform) website:
" http://www.swi-prolog.org/
» Mac OS X on Intel \& PPC (Tiger, Leopard (46.3 MB), Snow Leopard and Lion binaries available)
» Linux RPMs.
» Windows NT, XP, Vista7, 2000, 64 Bit,
» Source Install
- XQuartz (X11) 2.5.0 for help \& development tools.

What is Prolog?

- Alain Colmeraeur \& Philippe Roussel, 1971-1973

» With help from theorem proving folks such as Robert Kowalski
» Colmerauer \& Roussel wrote $\mathbf{2 0}$ years later:
"Prolog is so simple that one has the sense that sooner or later someone had to discover it ... that period of our lives remains one of the happiest in our memories.

Lets look at a sample session...

```
{saffron:ingrid:815} swipl
Welcome to SWI-Prolog (Multi-threaded, Version 5.6.9)
Copyright (c) 1990-2006 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions
please visit http://www.swi-prolog.org for details.
For help, use ?- help(Topic). or ?- apropos(Word).
?- ['second']. CTRL
first compiled 0.00 sec, 596 bytes
                                    edit command 1ine history
```

```
{saffron:ingrid:817} ls -1 second.pl
```

{saffron:ingrid:817} ls -1 second.pl
rw-r--r-- 1 ingrid ingrid 43 Apr 10 12:06 second.pl
rw-r--r-- 1 ingrid ingrid 43 Apr 10 12:06 second.pl
{saffron:ingrid:818}

```

\section*{Look at a sample of code...}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{second.pl} \\
\hline ```
elephant(kyle). % this is a comment
elephant(kate).
panda (chi_chi).
panda(ming_ming).
``` &  \\
\hline ```
dangerous(X) :- big_teeth(X).
dangerous(X) :- venomous(X).
guess(X,tiger) :- striped(X),big_teeth(X),isaCat(X).
guess (X,koala) :- arboreal (X),sleepy (X).
guess(X,zebra) :- striped(X),isaHorse(X).
``` &  \\
\hline
\end{tabular}

Maria Hybinete, UGA


Declarative Component: "the program" ("the Database"):
» Consists of facts and rules
" Defines the relations on sets of values
Imperative Component : "the execution engine", the "Prolog Solver":
" extracts the sets of data values implicit in the facts and rules of the program
" Unification - matching query and "head" of rules (later)
» Resolution - replaces the head with the body of the rule and then applies substitution to form a new query(ies).

Maria Hybinette, UGA

\section*{Syntax of Terms}


Prolog as constraints programming


\section*{constant versus Variables}

\footnotetext{
- Variables start with a capital letter, A, B, ... Z or underscore _:
» Food, Person, Person2, _A123
- Constant "atoms" start with \(\mathbf{a}, \mathbf{b}, \ldots \mathbf{z}\) or appear in single quotes:
» maria, olives, isaac, ' CSCI4500'
» Other kinds of constants besides atoms:
- Integers -7, real numbers 3.14159 , the empty list []
- Note: Atom is not a variable; it is not bound to anything, never equal to anything else
}

\section*{constant versus Variables}
- Nothing stops you from putting constants into constraints:
\% what Food does eric eat?
eats( eric, Food).
\% 2 answers: chips \& pear
\% use ';' for next answer.
\% what Person eats fish?
eats( Person, fish)
\% 2 answers: ? \& ...?
\% who'll share what with robert? ** more later eats (robert, Food), eats (Person, Food).
Try it!

\section*{Compound Terms}
- An atom followed by a ( parenthesized ), comma-separated list of one or more terms:
\(x(y, z),+(1,2),(1,[])\),
parent (adam, abel), \(X(Y, X(Y, Z))\)
- A compound term can look like an SML, Scheme function call: \(f(x, y)\)
" Again, this is misleading
- Better to think of them as structured data

\section*{The Prolog Program (Database)}
- A Prolog language system maintains a collection of facts and rules of inference
- It is like an internal database
- A Prolog program is just a set of data for this database
- The simplest kind of thing in the database is a fact: a term followed by a period
```

eats(adam, sushi),
eats (eric,chips)
eats(isaac,fish)
eats(isaac,fish)
east(ibti,chips).
east(ibti, sushi)
eats(jordan, fish)
eats (jonathan,olives)
eats (jonathan,chips)
eats(maria, sushi).
eats(robert, chips).
eats(robert, olives)
eats(sean, sushi)
eats(young,olives).
eats (young,pears).

```
`Familiar' Compound Terms
- The parents of Spot and Fido and Rover

- Can depict the term as a tree


\section*{Summary Terms}
```

<term> ::= <constant> | <variable> | <compound-term>
<constant> ::= <integer> | <real number> | <atom>
<compound-term> ::= <atom> (<termlist>)
<termlist> ::= <term> | <term> , <termlist>

```
- All Prolog programs and data are built from such terms
- Later, we will see that, for instance, \(+(1,2)\) is usually written as 1+2
- But these are not new kinds of terms, just abbreviations

\section*{SWI-Prolog}
```

{atlas:maria:141} swipl
Nelcome to SWI-Prolog (Multi-threaded, Version 5.2.3)
Copyright (c) 1990-2003 University of Amsterdam.
sWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions
Please visit http://www.swi-prolog.org for details
For help, use ?- help(Topic). or ?- apropos(Word).

```
?-
- Prompting for a query with ?-
- Normally interactive: get query, print result, repeat

The consult Predicate

- Predefined predicate to read a program from a file into the database
" Example: File eats.pl defines the "eats" constraints, or lists of facts
Queries can take multiple lines
- If you forget the final period,
Prolog prompts for more inputs
with |.

21
Maria Hybinette, UGA

Simple Queries: the Period ' '



\section*{Simple Queries: the Period '.'}


\section*{Queries With Variables}
\begin{tabular}{|c|c|}
\hline ?- eats (michael, x ) . & \multirow[t]{2}{*}{Here, it waits for input. We hit} \\
\hline & \\
\hline \(\mathrm{x}=\mathrm{fish}\) & Enter (or ;) to \\
\hline \({ }_{\text {true }}\) ?- & make it proceed. \\
\hline
\end{tabular}
- Any term can appear as a query, including a term with variables
- The Prolog system shows the bindings necessary to prove the query

Multiple Solutions


\section*{Flexibility}
\begin{tabular}{|c|c|}
\hline - Normally, variables can appear in any or all positions in a query:
```

>eats(X,olives)
>eats (corey,X)
> eats (X,Y)
> eats (X,X)

```
        - (guesses)? & eats (adam, sushi). eats (eric, chips). eats (eric, pears). eats(isaac, fish). eats (isaac, fish). east(ibti, chips). east(ibti, sushi). eats (jordan, fish).
eats (jordan, olives) eats (jordan, olives).
eats (jonathan, olives). eats (jonathan, chips). eats (maria, sushi). eats (robert, chips). eats (robert, olives). eats (sean, sushi). eats (sean, chips). eats (young, olives). eats (young, pears). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Conjunctions & \multirow[t]{3}{*}{eats (adam, sushi). eats (eric, chips). eats (eric, pears). eats (isaac, fish). eats (isaac, fish). east(ibti, chips). east(ibti, sushi). eats (jordan, fish). eats (jordan, olives). eats (jonathan, olives). eats (jonathan, chips). eats (maria, sushi). eats (robert, chips). eats (robert, olives). eats (sean, sushi). eats (sean, chips) eats (young, olives).
eats (young, pears).} \\
\hline & \\
\hline ```
% who'll share what with eric?
?- eats(eric, Food), eats(Person, Food).
Food = chips
Person = eric;
Food = chips
Person = isaac;
``` & \\
\hline
\end{tabular}
- A conjunctive query has a list of query terms separated by commas
» think of commas as "AND's"
- The Prolog system tries prove them all (using a single set of bindings)
- Example: Query folks that eat common foods with eric
\(\qquad\)

More Examples: Conjunctions
\begin{tabular}{|c|c|}
\hline Who are Sven's grandchildren? & Sven, Emy \\
\hline ```
 1) Who is a child of Sven?
 Assume 'Child'
 2) Who is a child of Child?
 Assume 'GrandChild'
?- parent(sven,Child),
 parent(Child, GrandChild).
Child = ingrid,
GrandChild = maria ;
Child = ingrid,
GrandChild = knut ;
No
?-
``` & \begin{tabular}{l}
Emil \\
mariafamily.pl \\
parent (maria, gunnar). \\
parent (maria, tucker). \\
parent (maria, emmy). \\
parent (ingrid, maria). \\
parent (ingrid,knut). \\
parent (emy,ingrid). \\
parent (sven, ingrid). \\
parent(sven, emil).
\end{tabular} \\
\hline
\end{tabular}

More General Queric atso (asam, sumati). eats (eric, chips)
eats (eric, pears) eats (eric, pears) eats (isaac, fish)
eats (isaac, fish) east (ibti, chips).
east (ibti, sushi) east (ibti, sushi)
eats (jordan, fish) eats (jordan, fish).
eats (jordan, olives) eats (jordan, olives). eats (jonathan, chips)
eats (maria, sushi). eats (robert, chips). eats (robert, olives) eats (sean, sushi)
eats (sean, chips). eats (young, olives)
eats (young, pears) eats (young, pears)
folks that eat common foods.
» conjoin two constraints with a common
» conjoined with a comma (read as
?- eats (Person1,Food), eats (Person2,Food)

Person1 = adam Food = sushi
Person2 \(=\) adam;

Person1 = adam
Food = sushi
Person2 = maria;

Person2 = maria;
\(2 \varepsilon\)
\(\qquad\) food. "and').

More Examples: Conjunctions


\section*{More Examples: Conjunctions}


\section*{A Rule \\ head \\ ```
greatgrandparent(GGP,GGC) :- \\ parent(GGP,GP), \\ parent(GP,P), \\ parent(P,GGC).
``` \\ \begin{tabular}{|c|c|}
\hline & A Rule \\
\hline \multirow[t]{5}{*}{head} & \\
\hline & greatgrandparent (GGP, GGC) \\
\hline & parent (GGP, GP) , \\
\hline & parent (GP, P), \\
\hline & parent(P,GGC). \\
\hline
\end{tabular}
- A rule says how to prove something: to prove the head, prove its conditions
- To prove greatgrandparent (GGP , GGC), find some GP and \(P\) for which you can prove parent(GGP,GP), then parent (GP,P) and then finally parent (\(P\), GGC)

\footnotetext{
\section*{A Rule}
head \(\rightarrow\)\begin{tabular}{c}
greatgrandparent (GGP, GGC) :- \\
parent (GGP,GP) \\
parent \((\mathrm{GP}, \mathrm{P})\), \\
parent \((\mathrm{P}, \mathrm{GGC})\)
\end{tabular}\(\quad\) conditions (body)
- A rule says how to prove something: to prove the head, prove the conditions
- To prove greatgrandparent (GGP , GGC), find some GP and \(P\) for which you can prove parent (GGP, GP), then parent (GP, P) and then finally parent (\(\mathrm{P}, \mathrm{GGC}\))
}

\section*{Motivation: Need Rules}
```

% Great grandchildren of Emy?
?- parent(emy,Child)
| parent(Child,Grandchild),
parent(Grandchild,GreatGrandchild)

```
- Long query for great grandchildren of Emy? » Nicer to query directly: greatgrandparent(emy, GreatGrandchild)
» While not adding separate facts of that form to the database?
- this relation should follow from the parent relation already defined.
\begin{tabular}{|c|}
\hline A Rule \\
\hline \\
\hline \begin{tabular}{l}
A rule says how to prove something: to prove the head, prove the conditions \\
- To prove greatgrandparent (GGP , GGC) , find some GP and \(P\) for which you can prove parent (GGP, GP), then parent (GP, P) and then finally parent (\(P, G G C\))
\end{tabular} \\
\hline
\end{tabular}
\(\qquad\)

\section*{Facts and Rules}

Head is the consequence.
Head can be concluded if the body is true

Facts and Rules

\section*{Example: Clauses: Facts and Rules}
- Example: A directed graph of five nodes:
- Define the edges of the graph, as facts?

- Define a rule called "tedge" which defines the property of a "path of length two" between two edges?
tedge (Node1,Node2) :-
edge (Node1, SomeNode), edge (SomeNode, Node2) .

The pair (Node1, ,Node2) satisfies the predicate tedge if there is a
node SomeNode such that the pairs (Nodel, SomeNode) and
\(\qquad\) node SomeNode such that the pairs (Node1, someNode) and
(SomeNode, Node2) both satisfies the predicate edge.

Example 3: Another Rule

Compatible (Person1, Person2) :- eats (Person1,Food), eats (Person2,Food).
- "Person1 and Person2 are compatible if there exists some Food that they both eat."
- "One way to satisfy the head of this rule is to satisfy the body
eats (steve, olives).
eats (sol, pear).
eats (sol, fish).
eats (george, chips).
eats (cole, fish).
eats (cole, chips).
eats (alex, olives).
eats (corey, olives).
eats (george, olives).
eats (jason,olives).
eats (dong, olives).
eats (david,olives).

Interpretation of Clauses
- Form of Clause:
» H :- \(\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{n}}\).
- Declarative Reading:
" "That \(H\) is provable follows from goals \(G_{1}, G_{2}, \ldots, G_{n}\) being provable"
- Procedural Reading:
" "To execute procedure H , the procedures called by the goals \(\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{n}}\) are executed first"
\(\qquad\)

\section*{Rules using 'other' Rules}
```

grandparent(GP,GC) :-
parent(GP,P), parent(P,GC).
greatgrandparent(GGP,GGC) :-
grandparent(GGP,P), parent(P,GGC).

```
- Same relation, defined indirectly
- Note that both clauses use a variable \(P\)
- The scope of the definition of a variable is the clause that contains it

Prolog allows recursion SQL doesn't

\section*{Recursive Rules}
```

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :-
parent(Z,Y),
ancestor(X,Z).

```
- \(X\) is an ancestor of \(Y\) if:
» Base case: \(X\) is a parent of \(Y\)
» Recursive case: there is some \(z\) such that \(z\) is a parent of y , and x is an ancestor of z
- Prolog tries rules in the order given, so put base-case rules and facts first

\section*{Example: Graph Example}
- Embellish graph program to include "path"s of any positive length.
- Thinking Recursively
" If there is an edge then there is a path (base)

" If there is an edge to an intermediate node from which there is a path to the final node.
\[
\begin{array}{ll}
\text { path (N1,N2) } & :-\operatorname{edge}(\mathbb{N} 1, \mathrm{~N} 2) \\
\text { path }(\mathbb{N} 1, \mathrm{~N} 2) & :-\operatorname{edge}(\mathrm{N} 1, \text { Som }
\end{array}
\]
" Two rules with the same head, reflects logical "or"
"Predicate of head of second rule, is also in the body of that rule.
»These rules together illustrate recursion in Prolog!
\begin{tabular}{|c|c|}
\hline edge (a, b) & edge (b, c) . \\
\hline edge (\(\mathrm{a}, \mathrm{e}\)) . & edge (c,a). \\
\hline edge (b, d) . & edge (e, b) . \\
\hline tedge (N1, N2) & :- edge (N 1, SomeN) , edge (Somen, N 2) \\
\hline path (\(\mathrm{N} 1, \mathrm{~N} 2\)) & :- edge (N1, N2). \\
\hline path (\(\mathrm{N} 1, \mathrm{~N} 2\)) & :- edge (N1, SomeN), path (Somen, N 2) \\
\hline
\end{tabular}

\section*{How does Prolog Compute?}
- Deduce useful implicit knowledge from the "program" or data base.
- Computations in Prolog is facilitated by the query, a conjunction of atoms.
- New example (more complicated) program
\begin{tabular}{|c|c|c|c|}
\hline \multirow{4}{*}{1} & edge (\(\mathrm{a}, \mathrm{b}\)) & edge (\(\mathrm{b}, \mathrm{c}\)) & \\
\hline & edge (\(\mathrm{a}, \mathrm{e}\)). & & edge (\(c, a)\). \\
\hline & edge (b, d). & & edge (e, b) \\
\hline & tedge (N1, 21\()\)
path (N1, 2 2) & & :- edge (N 1, SomeN \()\), edge (SomeN, N 2\().\)
:- edge (\(\mathrm{N} 1, \mathrm{~N} 2)\). \\
\hline & path (N1, N2) & & :- edge (N1, SomeN), path (SomeN, N2) \\
\hline
\end{tabular}
a
\begin{tabular}{|c|c|}
\hline edge (\(\mathrm{a}, \mathrm{b}\)) & 2 edge (b, c) \\
\hline edge (\(\mathrm{a}, \mathrm{e}\)) & 4 edge (\(c, a)\). \\
\hline edge (b,d) & 6 edge (e, b) \\
\hline 6 tedge (\(\mathrm{N} 1, \mathrm{~N} 2\)) & :- edge (N 1 , SomeN) , edge (Somen, N 2\()\). \\
\hline 7 path (\(\mathrm{N} 1, \mathrm{~N} 2\)) & :- edge (\(\mathrm{N} 1, \mathrm{~N} 2\)). \\
\hline 8 path (\(\mathrm{N} 1, \mathrm{~N} 2)\) & :- edge (N 1 , SomeN) , path (SomeN, N 2) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1 & edge (\(\mathrm{a}, \mathrm{b}\)) & 2 edge (b, c) \\
\hline 3 & edge (a, e) . & 4 edge (c, a) . \\
\hline 5 & edge (b, d) & 6 edge (e, b) . \\
\hline 6 & tedge (\(\mathrm{N} 1, \mathrm{~N} 2\)) & :- edge (N 1 , SomeN) , edge (SomeN, N 2) \\
\hline 7 & path (\(\mathrm{N} 1, \mathrm{~N} 2\)) & :- edge (\(\mathrm{N} 1, \mathrm{~N} 2\)) . \\
\hline 8 & path (\(\mathrm{N} 1, \mathrm{~N} 2\)) & :- edge (N 1, SomeN) , path (Somen, N 2) \\
\hline
\end{tabular}
- edge (a, b).
» Iterates in order through the program's "edge" clauses.
» Ground Query only value identifiers as parameters to the predicate.
» First one to match is edge \((a, b)\). so Prolog returns with true (so yes).
\begin{tabular}{|c|c|c|}
\hline 1 & edge (a, b) & 2 edge (b, c) \\
\hline 3 & edge (a, e). & 4 edge (\(c, a)\). \\
\hline 5 & edge (b, d). & 6 edge (e, b) . \\
\hline 7 & \begin{tabular}{l}
tedge (\(\mathrm{N} 1, \mathrm{~N} 2\)) \\
path (N1, N2)
\end{tabular} & :- edge (N 1, SomeN), edge (Somen, N 2) \\
\hline 9 & path (N1,N2) & :- edge (N1, SomeN) , path (Somen, N2) \\
\hline
\end{tabular}

\section*{- edge (a,b).}
- path (a,b).
» another ground query
» No rule that exactly match the query.
» Know, the head is true if the body is true
» If variable's N 1 and N 2 are replaced by \(a\) and \(b\), then body of 8 is true
edge (\(a, b\)) is a fact!
- and the head with the same substitution must be true
»Prolog conclude that the query is true
\begin{tabular}{|c|c|c|}
\hline 1 & edge (a, b) & 2 edge (b, c) \\
\hline 3 & edge (\(\mathrm{a}, \mathrm{e}\)) . & 4 edge (\(c, a)\). \\
\hline 5 & edge (b, d) & 6 edge (e, b) \\
\hline 7 & tedge (\(\mathrm{N} 1, \mathrm{~N} 2\)) & :- edge (\(\mathrm{N} 1, \mathrm{SomeN}\)) , edge (Somen, N 2) . \\
\hline 8 & path (N1,N2) & :- edge (\(\mathrm{N} 1, \mathrm{~N} 2\)) \\
\hline 9 & path (N1,N2) & :- edge (N 1, SomeN) , path (SomeN, N 2) \\
\hline
\end{tabular}
- edge (a,b).
- path (a,b).
- tedge (\(\mathrm{a}, \mathrm{X}\))
" non-Ground Query: variable parameters
"Scan rules, finds that constraint '7' defines tedge, focus on 7
» Substitutes N1 = a, X = N2
» Is edge(\(a, N 2\)) true? True if body is true, evaluates body: " edge (a,SomeN), edge (SomeN, N2)?
» edge (\(a\), SomeN)? two facts fit, take the first one edge \((a, b)\)
" if we substitute SomeN = b [first query is satisfied]
» after substitution evaluate \(2^{\text {nd }}\) atom, i.e. edge (\(\mathrm{b}, \mathrm{N} 2\))?
» Similarly as above substitute: \(\mathrm{N} 2=\mathrm{d}\)
»Following the substitution it finds that \(\mathrm{X}=\mathrm{d}\) satisfies the original query
- edge (a,b).
- path (a,b) .

\section*{Unification}
- Pattern-matching using Prolog terms
- Two terms unify if there is some way of binding their variables that make them identical.
» Usually the two terms
- one from the query (or another goal) and
- the other being a fact or a head of a rule

\section*{» Example:}
- parent(adam,Child) and parent(adam,seth)
- Do these unify?
- Yes! they unify by binding the variable Child to the atom seth.
\(\qquad\)

\section*{Resolution}
- When an atom from the query has unified with the head of of a rule (or a fact),
- Resolution replaces the atom with the body of the rule (or nothing, if a fact) and
- then applies the substitution to the new query.

\begin{tabular}{|c|c|}
\hline edge (a, b) . & 2 edge (b, c) \\
\hline edge (\(\mathrm{a}, \mathrm{e}\)) . & 4 edge (c, a) . \\
\hline edge (b,d). & 6 edge (e, b) . \\
\hline tedge (\(\mathrm{N} 1, \mathrm{~N} 2\)) & :- edge (N 1, SomeN) , edge (SomeN, N 2\()\). \\
\hline path (\(\mathrm{N} 1, \mathrm{~N} 2\)) & :- edge (\(\mathrm{N} 1, \mathrm{~N} 2)\). \\
\hline path (\(\mathrm{N} 1, \mathrm{~N} 2\)) & :- edge (N 1, SomeN) , path (SomeN, N 2) \\
\hline
\end{tabular}
- Resolution: replace edge(a,SomeN) by nothing (since we unified with a fact) and apply the substitution above to get the new query:
" edge(b,N2)
- There is only one atom in the query.
- Unify
" edge(b,N2), and edge(b,d).
- giving the substitution
\[
\geqslant \mathrm{N} 2=\mathrm{d}
\]
- Resolution: replace edge(b,N2) by nothing (since we unified with a fact). Since the resulting query is empty we are done!

57

\section*{Resolution}
- The hardwired inference step
- A clause is represented as a list of terms (a list of one term, if it is a fact)
- Resolution step applies one clause, once, to make progress on a list of goal terms

\section*{Recursive Queries}

\section*{Recursive Queries}
above (\(\mathrm{X}, \mathrm{X}\)).
above (X,Y) :- boss (X,Underling), above(Underling, Y).
- above (c,h). \% should return True
" matches above (\(\mathrm{X}, \mathrm{X}\)) ? no
» matches above (\(X, Y\)) with \(X=c\) and \(Y=h\)
» boss(c,Underling),
- matches boss(c,f) with Underling=f

» above(f,h).
- matches above \((X, X)\) ? no
- matches above(\(X, Y\)) with \(X=f, Y=h\)
- boss(f,Underling),
matches boss \((f, g)\) with Underling \(=g\)
- above(g,h)
" ... ultimately fails because g has no underlings...

Maria Hybinette, UGA

\section*{Recursive Queries}
above (\(\mathrm{X}, \mathrm{X}\)).
above (X,Y) :- boss (X,Underling), above (Underling, \(Y\)).
- above (\(\mathrm{c}, \mathrm{h}\)). \% should return True
" matches above (\(\mathrm{X}, \mathrm{X}\)) ? no
» matches above (\(X, Y\)) with \(X=c\) and \(Y=h\)
» boss(c,Underling), - matches boss(c,f) with Underling=f
boss (a,b). boss (a, c) \(\begin{array}{ll}\text { boss (b,d). } & \text { bosss (} \mathrm{c}, \mathrm{f} \text {) }\end{array}\) \(\begin{array}{ll}\text { boss (} b, d \text {). } & \text { boss (} c, f) \\ \text { boss (} b, e \text {). } & \text { boss (} f, g \text {) }\end{array}\) boss (f,h).
" above(f,h).
- matches above \((X, X)\) ? no
- matches above \((X, Y)\) with \(X=f, Y=h\)
- boss(f,Underling),
" matches boss(f,Underling) with Underling=h
- above(h,h)
" matches above \((\mathrm{X}, \mathrm{X})\) with \(\mathrm{X}=\mathrm{h} . .\).

Maria Hybinette, UGA
\(6:\)

\section*{Review Prolog}
- Prolog program: Set of propositions
» Facts
» Rules: consequence \(\Leftarrow\) antecedent (if antecedent is true then the consequence is true)
\[
\text { edge }(A, B) \text { :- edge }(A, X) \text {, edge }(X, B)
\]
- Running a program: A Prolog query (sometimes called goals): A proposition of which truth is to be determined.
" Idea: Prove truthfulness (or "cannot determine" (not falsehood)) by trying to find a chain of inference rules and facts (inference process)
- Resolution: Process that allows inferred propositions to be
» Unification merges compatible statements. Binding process.

\section*{above (X,X).}
above (X,Y) :- boss (X,Underling), above (Underling, Y).
- above (c,h). \% should return True
" matches above \((X, X)\) ? no
" matches above (\(\mathrm{X}, \mathrm{Y}\)) with \(\mathrm{X}=\mathrm{c}\) and \(\mathrm{Y}=\mathrm{h}\)
" boss(c,Underling),
- matches boss(c,f) with Underling=f
boss (a,b). boss (a, c). boss (b, d). boss (c,f).
" above(f,h).
- matches above \((X, X)\) ? no
- matches above(\(X, Y\)) with \(X=f, Y=h\)
- boss(f,Underling),
" matches boss \((\mathrm{f}, \mathrm{g})\) with Underling= - above(g,h)
" ... ultimately fails because g has no underlings...

\section*{Review: Basic Elements of Prolog}
- Variable: any string of letters, digits, and underscores beginning with an Uppercase letter
- Instantiation: binding of a variable to a value
» Lasts only as long as it takes to satisfy one complete goal
» allows unification to succeed
- Predicates: represents atomic proposition
functor(parameter list)

\section*{Inference Process}

Backward Chaining, Top-down resolution:
» Start with goal (query), see if a sequence of propositions leads to set of facts in the database (Prolog)
- Looks for something in the database that unify the current goal,
- finds a fact, great it succeeds!
- If it finds a rule, it attempts to satisfy the terms in the
body of the rule (these are now subgoals).
Forward Chaining, Bottom-up resolution:
» Begin with program of facts and rules in the database and attempt to find a sequence that leads to goal (query).

\section*{Backward Chaining}
- When goal has more than one sub-goal, can use either
» Depth-first search: find a complete proof for the first sub-goal before working on others (Prolog)
- Push the current goal onto a stack,
- make the first term in the body the current goal, and
- prove this new goal by looking at beginning of database again.
- If it proves this new goal of a body successfully, go to the next goal in the body. If it gets all the way through the body, the goal is satisfied and it backs up a level and proceeds.
»Breadth-first search: work on all sub-goals in parallel

67

\section*{Compound Terms}
- Basic blocks: variables, constants and variables
- Compound terms: Seen it already -- it is the functor (parameter list) structure (e.g., eats (cole,fish))
» Variables cannot be used for the functor
»However the "parameter list" can be any kind of term (it can be another functor).
》 book(title(lord_of_the_rings), author(tolkien))
» Uh uh what about unification now! (matching of goals and heads).

Unification Compound Terms
- Compound terms unify if their functors and components unify (how do terms become equal?)
》 \(f(x, a(b, c))\) and \(f(d, a(z, c))\) do unify.

These terms are made equal if \(d\) is substituted for \(X\), and \(b\) is substituted for \(\mathbf{Z}\).
» \(d\) is substituted for \(X(X\) is instantiated to \(d, X / d)\)
Maria Hybinete, UGA " \(\mathbf{b}\) is substituted for \(\mathbf{Z}(\mathbf{Z}\) is instantiated to \(\mathbf{b}, \mathbf{Z} / \mathbf{b})\)

\section*{Backtracking}
- If a sub-goal fails:
» reconsider previous subgoal to find an alternative solution
- Begin search where previous search left off
- Can take lots of time and space because may find all possible proofs to every sub-goal

\section*{Unification Rules}
- Two terms unify:
" if substitution can be made for any variables in the terms so that terms are made identical.
» If no such substitution exists, the terms do not unify.
- The unification algorithm proceeds by recursively descent of the two terms.
" Constants unify if they are identical
" Variables unify with any term, including other variables
» Compound terms unify if their functors and components unify

\section*{Example 2}
- The terms \(f(x, a(b, c))\) and \(f(z, a(z, c))\) unify

- z co-refers within the term. Here, \(\mathrm{x} / \mathrm{b}, \mathrm{z} / \mathrm{b}\).
»Earlier : \(f(X, a(b, c))\) and \(f(d, a(Z, c))\) did unify...

\section*{What about?}
- \(f(c, a(b, c))\) and \(f(Z, a(z, c))\) ?

- No matter how hard you try, these terms cannot be made identical by substituting terms for variables.

\section*{Unify?}

\section*{- First write in the co-referring variables.}

75

\section*{Unify?}
- recursive descent We go top-down, left-to-right, but the order does not matter as long as it is systematic and complete.

\section*{Unify?}
- \(g(Z, f(A, 17, B), A+B, 17)\) and
- \(g(C, f(D, D, E), C, E)\) ?

74

\section*{Unify?}
- Recursive descent: We go top-down, left-to-right
» but the order does not matter as long as it is systematic and complete.
\[
\mathrm{z} / \mathrm{C}, \quad \mathrm{C} / \mathrm{Z}
\]

\section*{Unify?}
- recursive descent We go top-down, left-to-right, but the order does not matter as long as it is systematic and complete.
\(\mathrm{Z} / \mathrm{C}, \mathrm{C} / \mathrm{Z}, \mathrm{A} / 17, \mathrm{D} / 17, \mathrm{~B} / \mathrm{E}, \mathrm{E} / \mathrm{B}\)

\section*{Unify?}
- recursive descent We go top-down, left-to-right, but the order does not matter as long as it is systematic and complete. \(\mathbf{Z} / \mathbf{C}, \mathrm{C} / \mathrm{Z}, \mathrm{A} / 17, \mathrm{D} / 17, \mathrm{~B} / \mathrm{E}, \mathrm{E} / \mathrm{B}\)

\section*{Unify?}
- recursive descent We go top-down, left-to-right, but the order does not matter as long as it is systematic and complete.

- recursive descent We go top-down, left-to-right, but the order does not matter as long as it is systematic and complete. Z/C, C/Z, A/17, D/17, B/E, E/B

\section*{Unify?}
- recursive descent We go top-down, left-to-right, but the order does not matter as long as it is systematic and complete. \(\mathbf{Z} / \mathbf{C}, \mathbf{C} / \mathbf{Z}, \mathrm{A} / \mathbf{1 7}, \mathrm{D} / \mathbf{1 7}, \mathrm{B} / \mathrm{E}, \mathrm{E} / \mathrm{B}\)

\section*{Unify?}
- recursive descent We go top-down, left-to-right, but the order does not matter as long as it is systematic and complete.

Can also use "substitution
method"
Exercise - Alternative Method

D/17, A/D, Z/C

87

Di7, AID, ZIC

\section*{Exercise - Alternative Method}

Z/C

Make \(1^{18 t}\) tree look like 2 nd

Exercise - Alternative Method
A/D, Z/C

Maria Hybinette, UGA
\(8 \varepsilon\)

\section*{Exercise - Alternative Method}

D/17, A/17, Z/C

Exercise - Alternative Method

C/17+E, B/E, D/17, A/17, Z/C

\section*{Operators}
- Prolog has some predefined operators (and the ability to define new ones)
- An operator is just a predicate for which a special abbreviated syntax is supported
» Example: \(+(2,3)\) can also be written as \(2+3\)

\section*{The Predicate '='}
- Note: The goal \(=(\mathrm{X}, \mathrm{Y})\) succeeds if and only if \(X\) and \(Y\) can be unified. Consider \(=(5,+(3,2)\))
```

?- (2+3) = 5.
No.

```

Not Evaluated
```

?- +(X,Y) = 1+2*3.
X = 1
Y = 2* 3
Yes
?- 7 = 1+2*3.
No

```
- The term is still +(1,* \((2,3))\)
- It is not evaluated
- There is a way to make Prolog evaluate such terms...

\section*{The Predicate "='}
- The goal \(=(X, Y)\) succeeds if and only if \(X\) and \(Y\) can be unified:
\(?-=(\) parent (maria, gunnar), parent (maria, \(X))\).
\(X=\) gunnar
Yes
- Since = is an operator, it can be and usually is written like this:
?- parent (maria, gunnar) =parent (maria, \(X\)).
\(\mathrm{x}=\) gunnar
Yes

\section*{Arithmetic Operators}
- Predicates +, -, * and / are operators too, with the usual precedence and associativity
```

```
\(?-X=+(1, *(2,3))\).
```

```
\(?-X=+(1, *(2,3))\).
\(?-\mathrm{X}=1+2 * 3\).
\(?-\mathrm{X}=1+2 * 3\).
\(X=1+2 * 3\)
\(X=1+2 * 3\)
Yes
```

```
Yes
```

```
\(\mathrm{X}=1+2 * 3 \quad\) Prolog lets you use operator
notation, and prints it out that
 way, but the underlying term
 is still \(+(1, *(2,3))\)

\section*{Arithmetic ('is' gets the value)}
- is operator:
- is (\(\mathrm{X}, 3+4\))

» \(x\) is \(3+4\).
- Unifies it's first argument with the arithmetic value of its second argument.
- Infix OK too: takes an arithmetic expression as right operand and variable as left operand
- Variables in the expression (on right) must all be instantiated.
» is (\(\mathrm{A}, \mathrm{B} / 10+\mathrm{C}\))
» \(A\) is \(B / 10+C\)
» In above, \(B\) and \(C\) needs to have been instantiated.
- Variable on the left cannot be previously instantiated.
» In above \(A\) cannot be instantiated (what happens if \(A\) is not a variable?)
- Left hand side cannot be an expression since it is not evaluated -- it may be a value (and then unification is possible)

\section*{Unification impossible Example}
- Sum is Sum + Number
- If Sum is not instantiated, the reference to its right is undefined and the clause fails
- If Sum is instantiated, the clause fails because the left operand cannot have a current instantiation when it is evaluated.

\section*{Trace}
- Built-in structure that displays instantiations at each step
- Tracing model of execution - four events:
» Call (beginning of attempt to satisfy goal)
» Exit (when a goal has been satisfied)
» Redo (when backtrack occurs)
» Fail (when goal fails)

105
distance (chevy, Chevy_Distance). \% Query

\section*{Example Arithmetic}
```

speed(ford,100). l}\begin{array}{l}{\mathrm{ trace. }}<br>{\mathrm{ distance (chevy, Chevy_Distance),}}
(1) 1 Call: distance(chevy, _0)?
speed (chevy,105). (2) 2 Call: speed (chevy, 5)?
speed(dodge,95). (2) 2 Exit: speed (chevy, 105)
speed (volvo,80). (3) 2 Exil: time (chevy, 6)?
(4) 2 Call: _ 0 is 105*21?
time(ford,20). (2) 2 Exit: }2205\mathrm{ is 105 * 21
time (chevy,21). (1) 1 Exit: distance (chevy, 2205)
time (dodge,24).
time(volvo,24).
distance(X,Y) :- speed (X,Speed),
time(X,Time),
Y is Speed * Time.

```

\section*{Arithmetic Evaluation is/2}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
\[
\begin{aligned}
& ?-x \text { is } 3+4 . \\
& x=7 \\
& ?-x=3+4 . \\
& x=3+4
\end{aligned}
\] \\
?- 10 is 5 * 2. \% yes \% b/c 10 is a "value"
\[
?-10=5 * 2
\]
no
\end{tabular} & \\
\hline \multicolumn{2}{|l|}{- Unifies the first argument with the value of it's second argument.} \\
\hline - Note: left may not the value on the ri Maria Hybinette, UGA & "variable" then it may unify with \\
\hline
\end{tabular}
```

speed(ford,100).
speed(chevy,105)
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time (chevy,21).
time (dodge,24).
time(volvo,24).
distance (X,Y) :- speed (X,Speed),
time(X,Time),
Y is Speed * Time.

```
 Maria Hybinete, UGA
 106
\(\qquad\)

\section*{List Structures}
- Other basic data structure (besides atomic propositions we have already seen): list
- List is a sequence of any number of elements
- List is a functor of arity 2 ,its first component is the head and the second is the tail.
- Elements can be atoms, atomic propositions, or other terms (including other lists)

\section*{Same as in Scheme}
nil
(a, nil)
(a, . (b, nil)
(a, . (b, .(c, .(d, .(e. nil)))))
(a,b) (note this is a pair, not a proper list)
(a, X) (this might be a list, or might not!)
(a, . (b, nil)), (c, nil))
\(\qquad\)

\section*{List Notation and the Tail}
\begin{tabular}{|l|l|}
\hline \hline List Notation & Term denoted \\
\hline\([1 \mid \mathrm{x}]\) &.\((1, \mathrm{x})\) \\
\hline\([1,2 \mid \mathrm{X}]\) &.\((1, \cdot(2, \mathrm{X}))\) \\
\hline\([1,2 \mid[3,4]]\) & same as \([1,2,3,4]\) \\
\hline
\end{tabular}
- \([\mathrm{X} \mid \mathrm{Y}]\)
" \(\mathbf{X}\) is bound to first element in list, the head.
" \(\mathbf{Y}\) is bound to the remaining elements, called the tail.
- Useful in patterns: \([1,2 \mid \mathrm{X}]\) unifies with any list that starts with 1,2 and binds X to the tail
\[
\begin{aligned}
& ?-[1,2 \mid X]=[1,2,3,4,5] . \\
& X=[3,4,5] \\
& Y e s
\end{aligned}
\]

The append Predicate
\[
\begin{aligned}
& ?-\operatorname{append}([1,2],[3,4], z) . \\
& Z=[1,2,3,4] \\
& Y e s
\end{aligned}
\]
- Predefined append (\(X, Y, Z\)) succeeds if and only if \(Z\) is the result of appending the list \(Y\) onto the end of the list \(x\)

\section*{List Notation .() or []}
- The lists is written using square brackets [].
- These are just abbreviations for the underlying term using the . Predicate
- List of length 0 is nil, denoted [].
\[
\begin{aligned}
& ?-X=\cdot(1, \cdot(2, \cdot(3,[]))) . \\
& X=[1,2,3] \\
& Y e s \\
& ?-\cdot(X, Y)=[1,2,3] \cdot \% \text { head and the rest } \\
& X=1 \\
& Y=[2,3] \\
& Y e s
\end{aligned}
\]

\section*{Implementing append()}
```

?- append(X,Y,[1,2,3]).
X = []
Y = [1, 2, 3] ;
X = [1]
Y = [2, 3] ;
X = [1, 2]
Y = [3] ;
X = [1, 2, 3]
Y = [] ;
No

```

\section*{Implementing append()}
```

append([], List, List)
append([Head | List1], List2, [Head | List3])
:- append (List1, List2, List3).

```
- If you know that a particular List1 will append with a List2 to produce a List3, »then you know how it will go for a case which is one step more complex.
- a list which is one element longer (the Head). i.e. if
you add a Head to List1, then the result of the append will be that Head on the front of List3.

append([], List, List).
append([Head | List_1], List_2, [Head | List_3])
:- append (List_1, List_2, List_3).

\section*{- Suppose we want to join}
» [a, b, c] with [d, e].
» \([a, b, c]\) has the recursive structure
[a | [b, c]].
» Then the rule says (if body is true then head is the consequence)
- IF [b, c] appends with [d, e] to
form [b, c, d, e]
- THEN [a| \(b, c]\)] appends with [d,e] to
form [a|[b, c, d, e]]

\section*{append([], List, List).}
append([Head | List1], List2, [Head | List3])
:- append (List1, List2, List3).
```

?- append([a,b,c],[d],X).
append( [a, b, c], ....)
IF append([b, c], ....)
IF append([c], ....)
IF append([], ....)
append(...., [d])
append(.... , [c,d])
append(.... , [ b, c , d])
append(.... , [ a, b , c ,d ])

```

Implementing append ()
```

append([], List, List).
append([Head | List_1], List_2, [Head | List_3])
:- append (List_1, List_2, List_3).

```
- Two first parameters are the lists that are appended, the third parameters is the resulting list
- First proposition: when the empty list is appended to any other list
" the other list is the result.
- Second proposition:
" left hand side: first element of the new list (i.e. the result) is the same as the first element of the first given list (both are named Head).
» right hand side: the tail of the first given list (List_1) has the second given list (List 2) appended to form the tail of the resulting list (List 2 is the tail).
append([], List, List).
append([Head | List_1], List_2, [Head | List_3])
:- append (List_1, List_2, List_3).
```

trace
append([bob,jo], [jake, darcie], Family).
(1) 1 Call: append([bob, jo], [jake, darcie], _10)?
(2) 2 Call: append([jo], [jake, darcie], _18)?
(3) 3 Call: append([],[jake,darcie], 25)?
(3) 3 Exit: append([],[jake,darcie],[jake,darcie]))
(2) 2 Exit: append([jo],[jake,darcie],[jo,jake,darcie])
(1) 1 Exit: append([bob,jo],[jake,darcie,
[bob,joe,jake,darcie])
Family = [bob, jo, jake, darcie]

```

\section*{Using select}
```

?- select(2,[1,2,3],z).
Z = [1, 3] ;
No
?- select(2,Y,[1,3])
Y = [2, 1, 3] ;
Y = [1, 2, 3] ;
Y = [1, 3, 2] ;
No

```
- Definition of reverse function:
```

reverse([], []).
reverse([Head | Tail], X) :-
reverse(Tail, Y),
append(Result, [Head], X)

```

\section*{Other Predefined List Predicates}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Predicate } \\
\hline member \((\mathbf{X}, \mathbf{Y})\) & \begin{tabular}{l}
Provable if the list \(\mathbf{Y}\) contains the element \\
\(\mathbf{X}\).
\end{tabular} \\
\hline select \((\mathbf{X}, \mathbf{Y}, \mathbf{Z})\) & \begin{tabular}{l}
Provable if the list \(\mathbf{Y}\) contains the element \\
\(\mathbf{X}\), and \(\mathbf{Z}\) is the same as \(\mathbf{Y}\) but with one \\
instance of \(\mathbf{X}\) removed.
\end{tabular} \\
\hline nth0 \((\mathbf{X}, \mathbf{Y}, \mathbf{Z})\) & \begin{tabular}{l}
Provable if \(\mathbf{X}\) is an integer, \(\mathbf{Y}\) is a list, and \(\mathbf{Z}\) \\
is the \(\mathbf{X}\) th element of \(\mathbf{Y}\), counting from 0.
\end{tabular} \\
\hline length \((\mathbf{X}, \mathbf{Y})\) & Provable if \(\mathbf{X}\) is a list of length \(\mathbf{Y}\). \\
\hline
\end{tabular}
- All flexible, like append
- Queries can contain variables anywhere
\(\qquad\)
```

?- reverse([1,2,3,4],Y).

```
\(Y=[4,3,2,1]\);
No
- Predefined reverse (\(X, Y\)) unifies \(Y\) with the reverse of the list \(X\)
\(\qquad\)

\section*{Deficiencies of Prolog}

\section*{Advantages:}
- Prolog programs based on logic, so likely to be more logically organized and written
- Processing is naturally parallel, so Prolog interpreters can take advantage of multiprocessor machines
- Programs are concise, so development time is decreased - good for prototyping
- Resolution order control
- The closed-world assumption
- The negation problem
- Intrinsic limitations

SWI-Prolog
?- set_prolog_flag(history, 50).
Yes
27 ?- h. \% shows history of commands
2 eats(Person1,Food1).
eats (Person1, Food), eats (Person2, Food).
eats (corey, fish).
?- ! !```

