


~ 

arallel discrete event simu- 

I 

lation (PDES), sometimes 
called distributed simula- 
tion, refers to the execu- 
tion of a single discrete 
event simulation program 

on a parallel computer. PDES has 
attracted a considerable amount of 
interest in recent years. From a 
pragmatic standpoint, this interest 
arises from the fact that large simu- 
lations in engineering, computer 
science, economics, and military 
apphcations, to mention a few, con- 
sume enormous amounts of time 
on sequential machines. From an 
academic point of view, parallel 
simulation is interesting because it 
represents a problem domain that 
often contains substantial amounts 
of parallelism (e.g., see [59]), yet 
paradoxically, is surprisingly diffi- 
cult to parallelize in practice. A suf- 
ficiently general solution to the 
PDES problem may lead to new in- 
sights in parallel computation as a 
whole. Historically, the irregular, 
data-dependent nature of PDES 
programs has identified it as an 
application where vectorization 
techniques using supercomputer 
hardware provide little benefit [ 141. 

A discrete event simulation 
model assumes the system being 
simulated only changes state at dis- 
crete points in simulated time. The 
simulation model jumps from one 
state to another upon the occur- 
rence of an event. For example, a 
simulator of a store-and-forward 
communication network might in- 
clude state variables to indicate the 
length of message queues, the sta- 
tus of communication links (busy or 
idle), etc. Typical events might in- 
clude arrival of a message at some 
node in the network, forwarding a 
message to another network node, 
component failures, etc. 

We are especially concerned with 
the simulation of asynchronous sys- 
tems where events are not synchro- 
nized by a global clock, but rather, 
occur at irregular time intervals. 
For these systems, few simulator 
events occur at any single point in 
simulated time; therefore paral- 

lelization techniques based on lock- 
step execution using a global simu- 
lation clock perform poorly or re- 
quire assumptions in the timing 
model that may compromise the 
fidelity of the simulation. Concur- 
rent execution of events at different 
points in simulated time is re- 
quired, but as we shall soon see, this 
introduces interesting synchroniza- 
tion problems that are at the heart 
of the PDES problem. 

This article deals with the execu- 
tion of a simulation program on a 
parallel computer by decomposing 
the simulation application into a set 
of concurrently executing pro- 
cesses. For completeness, we con- 
clude this section by mentioning 
other approaches to exploiting par- 
allelism in simulation problems. 

Comfort and Shepard et al. have 
proposed using dedicated func- 
tional units to implement specific 
sequential simulation functions, 
(e.g., event list manipulation and 
random number generation [20, 
23, 471). This method can provide 
only a limited amount of speedup, 
however. Zhang, Zeigler, and Con- 
cepcion use the hierarchical decom- 
position of the simulation model to 
allow an event consisting of several 
subevents to be processed concur- 
rently [2 1,981. A third alternative is 
to execute independent, sequential 
simulation programs on different 
processors [ 11, 391. This replicated 
trials approach is useful if the simu- 
lation is largely stochastic and one is 
performing long simulation runs to 
reduce variance, or if one is at- 
tempting to simulate a specific sim- 
ulation problem across a large 
number of different parameter set- 
tings. However, one drawback with 
this approach is that each processor 
must contain sufficient memory to 
hold the entire simulation. Further- 
more, this approach is less suitable 
in a design environment where re- 
sults of one experiment are used to 
determine the experiment that 
should be performed next because 
one must wait for a sequential exe- 
cution to be completed before re- 
sults are obtained. 

Why Is PDIS Hard? 
The reason PDES is difficult be- 
comes evident if one examines the 
operation of a sequential discrete 
event simulator. Sequential simula- 
tors typically utilize three data 
structures: (1) the state variables that 
describe the state of the system, (2) 
an event list containing all pending 
events that have been scheduled, 
but have not yet taken effect, and 
(3) a global clock variable to denote 
how far the simulation has pro- 
gressed. Each event contains a time- 
stamp, and usually denotes some 
change in the state of the system 
being simulated. The time- 
stamp indicates when this change 
occurs in the actual system. The 
“main loop” of the simulator re- 
peatedly removes the smallest time- 
stamped event from the event list, 
and processes that event. Process- 
ing an event involves executing 
some simulator code to effect the 
appropriate change in state, and 
scheduling zero or more new events 
into the simulated future in order 
to model causality relationships in 
the system under investigation. 
Modern simulators often contain 
additional simulation constructs 
(e.g., processes); however, these 
abstractions are usually built on top 
of the event list mechanism de- 
scribed earlier. 

In this execution paradigm, it is 
crucial that one always select the 
smallest timestamped event (E,i”) 
from the event list as the one to be 
processed next. This is because if 
one were to select some other event 
containing a larger timestamp, say 
Ex, it would be possible for Ex to 
modify state variables used by Emi,. 
This would amount to simulating a 
system in which the future could 
affect the past! This is clearly unac- 
ceptable; we call errors of this na- 
ture causality errors. 

Let us now consider paralleliza- 
tion of a simulation program that is 
based on the above paradigm. The 
greatest opportunity for parallelism 
arises from processing events con- 
currently on different processors. 
However, a direct mapping of this 

COYY”IIICIT,CII~OFT”~liCY/October 199O/Vo1.33, No.10 31 



paradigm onto (say) a shared mem- 
ory multiprocessor quickly runs 
into difficulty. Consider the con- 
current execution of two events, Ei 
and E2, with timestamps Tt and T2, 
respectively. Assume Ti < T2. If Ei 
writes into a state variable that is 
read by E2, then E1 must be exe- 
cuted before E2 to be sure no cau- 
sality error occurs.’ In other words, 
certain sequencing con~tnzints must be 
maintained in order for the compu- 
tation to be correct. 

Most existing PDES strategies 
avoid scenarios such as the one de- 
scribed above by mandating that a 
process-oriented methodology is 
used that strictly forbids processes 
to have direct access to shared state 
variables (exceptions that do allow 
shared state are described in [29, 
45, 461). The system being mod- 
eled, usually referred to as the phys- 
ical system, is viewed as being com- 
posed of some number of physical 
processes that interact at various 
points in simulated time. For exam- 
ple, in a communication network 
simulator, the physical processes 
might be switching centers that in- 
teract by transmitting data over 
communication lines. The simula- 
tor is constructed as a set of logical 
processes LPo, LPI, . . , one per 
physical process. A.11 interactions 
between physical processes are 
modeled by timestamped event 
messages sent between the corre- 
sponding logical processes. Each 
logical process contains a portion of 
the state corresponding to the 
physical process it mcodels, as well as 
a local clock that denotes how far 
the process has progressed. All the 
simulation methods discussed here 
utilize this logical process para- 
digm. 

One can ensure that no causality 
errors occur if one adheres to the 
following constraint: 

Local Causality C:onstraint-A 
discrete event simulation, con- 
sisting of logical processes 
(LPs) that interact exclusively 

- 
‘To simplify the discussion. we will ignore 
concurrent execution of portions of El and E, 
that still satisfy this sequencing constraint. 

by exchanging timestamped 
messages, obeys the local cau- 
sality constraint if and only 
if each LP processes events 
in nondecreasing timestamp 
order. 

Adherence to this constraint is 
sufficient, though not always neces- 
sary, to guarantee that no causality 
errors occur. It may not be neces- 
sary because two events within a 
single LP may be independent of 
each other, in which case process- 
ing them out of timestamp se- 
quence does not lead to causality 
errors. 

Although the exclusion of shared 
states in the logical process para- 

FIGURR (I. EVaIt F, Itfccts E, m SdIcd- 
ullng a third event Es which modlfles a state 
uriablc used IIV Ep fUls nemrltates squcn- 
tial exwtlon of all three mnts. 

digm avoids many types of causality 
errors, it does not prevent others. 
Consider two events, El at logical 
process LPI with timestamp 10, and 
E2 at LPp with timestamp 20 (see 
Figure 1). If Er schedules a new 
event E3 for LPp which contains a 
timestamp less than 20, then Es 
could affect EP, necessitating se- 
quential execution of all three 
events. If one had no information 
regarding what events could be 
scheduled by what other events, 
one would be forced to conclude 
that the only event that is safe to 
process is the one containing the 
smallest timestamp, leading to a 
sequential execution. 

Consider this situation from the 
perspective of the physical system. 
There, the cause must always pre- 

cede the effect. These cause-and- 
effect relationships in the physical 
system become sequencing con- 
straints in the simulator.* It is the 
simulation mechanism’s responsi- 
bility to ensure that these sequenc- 
ing constraints are not violated 
when the simulation program is 
executed on the parallel computer. 

Operationally, we must decide 
whether or not E i can be executed 
concurrently with E2. But, how do 
we know whether or not El affects 
E2 without actually performing the 
simulation for E i? This is the fun- 
damental dilemma PDES strategies 
must address. The scenario in 
which El affects Es can be a com- 
plex sequence of events, and is criti- 
cally dependent on event time- 
stamps. 

PDES is difficult because the se- 
quencing constraints that dictate 
the order in which computations 
must be executed relative to each 
other, is in general, quite complex 
and highly data-dependent. This 
contrasts sharply with other areas 
where parallel computation has had 
a great deal of success (e.g., vector 
operations on large matrices of 
data). In that area, much is known 
about the structure of the computa- 
tion at compile time. The dynamic 
nature of the PDES problem is the 
principal reason that a general so- 
lution has been elusive. 

PDES mechanisms broadly fall 
into two categories: conservative and 
optimistic. A more detailed taxon- 
omy of simulation mechanisms is 
described in [85]. Conservative 
approaches strictly a.oid the possi- 
bility of any causality error ever 
occurring. These approaches rely 
on some strategy to determine 
when it is safe to process an event 
(i.e., they must determine when all 
events that could affect the event in 
question have been processed). On 
the other hand, optimistic ap- 
proaches use a detection and recovery 
approach: causality errors are de- 
tected, and a rollback mechanism is 
invoked to recover. We will describe 

2The simulator may actually have more con- 
straints that arise as an artifact of the way the 
simulator was programmed. 

32 October 199O/Vol.33, No.lO/COYYUNI~TIONSOFT”SliCY 



some of the details and underlying 
concepts behind several conserva- 
tive and optimistic simulation 
mechanisms that have been pro- 
posed. First, however, we will make 
a brief digression to discuss the 
implications of excluding the use of 
shared variables. 

We assume the simulation con- 
sists of N logical processes, LPa, . . . , 
LPN-I. Clocki refers to the simu- 
lated time up to which LP, has pro- 
gressed: when an event is pro- 
cessed, the process’s clock is 
automatically advanced to the time- 
stamp of that event. If LPi may 
send a message to LPI during the 
simulation, we say a link exists from 
LPj t0 LPP 

Loglcal Procesmem, 
Revlmlted 
The logical process methodology 
requires application programmers 
to partition the simulator’s state 
variables into a set of disjoint states, 
and ensure that no simulator event 
directly accesses more than one 
state. It is appropriate to ask if this 
is a natural way to program simula- 
tions. While it is true that one can 
always implement shared variables 
using messages, this raises certain 
important questions, which will be 
discussed momentarily. 

The exclusion of shared vari- 
ables may or may not be burden- 
some, depending on the applica- 
tion. For example, it is usually not a 
severe restriction for a queuing net- 
work simulation. Here, it is natural 
to create a logical process for each 
server. Because the behavior of one 
server is independent of the state of 
other servers, exclusion of shared 
variables does not create any prob- 
lem. 

On the other hand, consider a 
battlefield simulation with a num- 
ber of combat units moving across a 
terrain, and occasionally interacting 
with each other [35, 961. A natural 
approach to modeling this system is 
to partition the battlefield into a 
two-dimensional grid, and to utilize 
a two-dimensional data structure in 
which each element in the array 
provides state information that in- 

dicates, for example, the number of 
combat units currently residing in 
the corresponding grid sector. This 
captures the spatial proximity of 
combat units to each other. Proxim- 
ity is important because a common 
activity performed by each combat 
unit is to scan its immediate envi- 
ronment to determine what other 
units are in close proximity, and 
then attack, retreat, move to a new 
position, etc. 

The information indicating what 
resides in each grid sector must be 
shared among many combat units. 
In the absence of shared state vari- 
ables, the most natural approach to 
programming this simulation is to 
“emulate” shared memory by build- 
ing a logical process for each grid 
sector, and sending “read” and 
“write” event messages to access the 
shared information. However, this 
approach often leads to poor per- 
formance because message-passing 
overheads are substantial, and the 
grid processes that contain this in- 
formation may become bottlenecks. 
Even if the underlying machine 
architecture supports shared mem- 
ory, access to a state variable resid- 
ing in another logical process is 
expensive because the process con- 
taining the variable will usually be 
at a different point in simulated 
time than the one requesting it; an 
additional overhead is incurred to 
ensure the remote memory refer- 
ence is properly synchronized with 
other simulator events. Not only 
must the read operation access the 
appropriate version of the state 
variable (in fact, the desired version 
may not have been created yet!), 
but it must also interact with the 
synchronization algorithm in the 
same way as ordinary event mes- 
sages. In contrast, the correspond- 
ing operation in a sequential simu- 
lator is a simple memory reference. 

A more efficient approach is to 
duplicate the shared information in 
the logical processes (combat units) 
that need it. Because the shared 
state can be modified, a protocol is 
required to ensure coherence 
among the various copies of the 
shared state. This approach can be 

,.................................. 

effective in achieving good perfor- 
mance; however, it significantly 
complicates the coding of the appli- 
cation, making it difficult to under- 
stand and maintain [97]. In particu- 
lar, “events” that do not correspond 
to any activity in the system being 
simulated are now required to keep 
internal data structures up to date. 
A better approach is to hide the 
coherence strategy in the underly- 
ing simulation system, much like 
computing systems using distrib- 
uted shared memory [51]. Use of 
such techniques in parallel simula- 
tion is an important area of future 
research. 

conmewatlve 
Wechanlmmm 
Historically, the first distributed 
simulation mechanisms were based 
on conservative approaches. As dis- 
cussed earlier, the basic problem 
conservative mechanisms must 
solve is determining when it is safe 
to process an event. More precisely, 
if a process contains an unproc- 
essed event Et with timestamp Tt 
(and no other with smaller time- 
stamp), and that process can deter- 
mine that it is impossible for it to 
later receive another event with time- 
stamp smaller than Tt, then the 
process can safely process Et be- 
cause it can guarantee that doing so 
will not later result in a violation of 
the local causality constraint. Pro- 
cesses containing no safe events 
must block; this can lead to dead- 
lock situations if appropriate pre- 
cautions are not taken. 

DeOUloclr Avolclance 

Independently, Chandy and Misra 
[ 151, and Bryant [ 121 developed 

CCYY"WICIT,CIICCFT"EACMlOctober 1990/Vo1.33.No.l0 33 



some of the first PDES algorithms. 
These approaches require that one 
statically specify the links that indi- 
cate which pr0cesse.s may commu- 
nicate with which other processes. 
In order to determine when it is 
safe to process a messsage, it is re- 
quired that the sequence of time- 
stamps on messages sent over a link 
be nondecreasing. This guarantees 
that the timestamp of the last mes- 
sage received on an incoming link is 
a lower bound on the timestamp of 
any subsequent message that will be 
later received. 

Messages arriving on each in- 
coming link are stored in FIFO 
order, which is also timestamp 
order because of the above restric- 
tion. Each link has a clock associ- 
ated with it that is equal to either 
the timestamp of the message at the 
front of that link’s queue if the 
queue contains a message, or the time- 
stamp of the last received message 
if the queue is empty. The process 
repeatedly selects the link with the 
smallest clock and, if there is a mes- 
sage in that link’s queue, processes 
it. If the selected queue is empty, 
the process blocks. This protocol 
guarantees that each process will 
only process events in nondecreas- 
ing timestamp order, thereby en- 
suring adherence to the local cau- 
sality constraint. 

If a cycle of empty queues arises 
that has sufficiently small clock val- 
ues, each process in that cycle must 
block, and the simulation dead- 
locks. Figure 2 shows one such 
deadlock situation. In general, if 
there are relatively few unproc- 
essed event messages compared to 
the number of links in the network, 
or if the unprocessed events be- 
come clustered in one portion of 
the network, deadlock may occur 
very frequently. 

Null messages are used to avoid 
deadlock situations. Null messages 
are used only for synchronization 
purposes, and do not correspond to 
any activity in the ph.ysical system. 
A null message with timestamp T,,ull 
that is sent from LPA to LPB is es- 
sentially a promise by LPA that it 
will not send a message to LPB car- 

rying a timestamp smaller than 
T null. How does a process determine 
the timestamps of the null messages 
it sends? The clock value of each in- 
coming link provides a lower bound 
on the timestamp of the next un- 
processed event that will be re- 
moved from the link’s buffer. 
When coupled with knowledge of 
the simulation performed by the 
process (e.g., a minimum time- 
stamp increment for any message 
passing through the logical pro- 
cess), this incoming bound can be 
used to determine a lower bound 
on the timestamp of the next outgo- 
ing message on each output link. 

FBGURE 2. Deadlock Sibrtion. Ead~ 
process is ramng on the lnwninq 1111 WI- 
taining the smmst Iink clock ea1ue Eewrse 
the wrwspondlnp queue IS cnptf. All me 
processes are blocked, mn tmgk tbcn an 
went mssaga in other qwws that an 
waning to k prowssed. 

Whenever a process finishes pro- 
cessing an event, it sends a null 
message on each of its output ports 
indicating this bound; the receiver 
of the null message can then com- 
pute new bounds on its outgoing 
links, send this information on to its 
neighbors, and so on. It is up to the 
application programmer to deter- 
mine the timestamps assigned to 
null messages. 

It can be shown that this mecha- 
nism avoids deadlock so long as one 
does not have any cycles in which 
the collective timestamp increment 
of a message traversing the cycle 
could be zero. A necessary and suffi- 
cient condition for deadlock using 
this scheme is that a cycle of links 
must exist with the same link clock 

time [76]. This implies certain types 
of simulations cannot be per- 
formed, (e.g., queuing network 
simulations in which the minimum 
service time for jobs passing 
through a server is zero). 

A variation on the null message 
approach is to send null messages 
on a demand basis rather than after 
each event [7, 69, 911. Nicol and 
Reynolds use a variation of this 
approach in the SRADS simulation 
protocol [75]. Whenever a process 
is about to become blocked because 
the incoming link with the smallest 
link clock value has no messages 
waiting to be processed, it requests 
the next message (null or other- 
wise) from the process on the send- 
ing side of the link. The process 
resumes execution when the re- 
sponse to this request is received. 
This approach helps to reduce the 
amount of null message traffic, 
though a longer delay may be re- 
quired to receive null messages be- 
cause two message transmissions 
are required. 

beaUleek DetectIon anU 
Recovery 

Chandy and Misra [16] also devel- 
oped an alternative approach to 
parallel simulation that eliminates 
the use of null messages. The 
mechanism is similar to that de- 
scribed above, except no null mes- 
sages are created. Instead, the com- 
putation is allowed to deadlock. A 
separate mechanism is used to de- 
tect when the simulation is dead- 
locked, and still another mecha- 
nism is used to break the deadlock. 
Deadlock detection mechanisms are 
described in [26,38,69]. The dead- 
lock can be broken by observing 
that the message(s) containing the 
smallest timestamp is (are) always 
safe to process. Alternatively, one 
may use a distributed computation 
to compute lower bound informa- 
tion (not unlike the distributed 
computation using null messages 
described above) to enlarge the set 
of safe messages. Unlike the dead- 
lock avoidance approach, this 
mechanism does not prohibit cycles 
of zero timestamp increment, 

October 199O/Vol.33, No.lO/COYYUWIWTIOWSOFTHEACY 



though performance may be poor 
if many such cycles exist. 

The mechanism described above 
only attempts to detect and recover 
from global deadlocks. Misra sug- 
gests that one can modify this ap- 
proach to detect and recover from 
local deadlocks, (i.e., situations 
where only a portion of the net- 
work has deadlocked [69]). In par- 
ticular, he suggests employing a 
preprocessing step that identifies 
all subnetworks that are prone to 
deadlock, and applying these tech- 
niques on individual subnetworks. 
The overhead to implement this 
approach may be large, however, if 
the network topology contains 
many cycles. An alternative ap- 
proach based on detecting specific 
types of cycles of blocked processes 
is described in [58]. 

Several other conservative ap- 
proaches to parallel simulation 
have been developed [3, 13, 18, 36, 
37, 62, 75, 76, 841. The key ideas 
used by these mechanisms are de- 
scribed in the following sections. 

Synehronoos Opemtlm## 
Several researchers have proposed 
synchronous algorithms in which 
one iteratively determines which 
events are safe to process, and then 
processes them [3, 18, 62, 731. Bar- 
rier synchronizations are used to 
keep iterations (or components of a 
single iteration) from interfering 
with each other. Because barrier 
synchronizations are necessary, 
these algorithms are best suited for 
shared memory machines in order 
to keep the associated overheads to 
a minimum. 

It is instructive to compare the 
synchronous style of execution with 
the deadlock detection and recov- 
ery approach described earlier. 
Both share the characteristic that 
the simulation moves through 
phases of (1) processing events, and 
(2) performing some global syn- 
chronization function to decide 
which events are safe to process. 
The two methods differ in the way 
they enter into the synchronization 
phase. 

In the best case, the detection 

and recovery strategy will never 
deadlock, eliminating most of the 
clock synchronization overhead. In 
contrast, synchronous methods will 
continually block and restart 
throughout the simulation. While it 
is true that the synchronous meth- 
ods do not require a deadlock- 
detection mechanism, detecting 
deadlock is straightforward on the 
shared-memory machines for 
which synchronous methods are 
best suited. However, an important 
disadvantage of the detection and 
recovery method is that during the 
period leading up to a deadlock, 
when the computation is grinding 
to a halt, execution may be largely 
sequential. This can lead to limited 
speedup in accordance with Am- 
dahl’s law: no more than k-fold 
speedup is possible if llkth of the 
computation is sequential. Synchro- 
nous methods have some control 
over the amount of computation 
that is performed during each iter- 
ation, so, at least in principle, they 
offer a mechanism for guarding 
against such behavior. 

The feature that separates dif- 
ferent synchronous approaches is 
principally the method used to de- 
termine which events are safe to 
process. We discuss ideas that have 
been introduced to streamline this 
process below. A common thread 
that runs through many techniques 
is the minimum timestamp incre- 
ment function used in the original 
deadlock avoidance approach. A 
simple extension of this concept 
leads to the notion of distance be- 
tween processes; distance provides 
a lower bound in the amount of 
simulated time that must elapse for 
an unprocessed event on one pro- 
cess to propagate (and possibly af- 
fect) another process. Later, we will 
discuss a more general principle 
called look ahead that encompasses 
both minimum timestamp incre- 
ments and distance between ob- 
jects. 

Conservotlwe Time Wlndows 
Lubachevsky uses a moving simu- 
lated time window to reduce the 
overhead associated with determin- 

ing when it is safe to process an 
event [62]. The lower edge of the 
window is defined as the minimum 
timestamp of any unprocessed 
event. Only those unprocessed 
events whose timestamp resides 
within the window are eligible for 
processing. 

The purpose of the window is to 
reduce the “search space” one must 
traverse in determining if an event 
is safe to process. For example, if 
the window extends from simulated 
time 10 to time 20, and the applica- 
tion is such that each event pro- 
cessed by an LP generates a new 
event with a minimum timestamp 
increment of 8 units of simulated 
time, then each LP need only exam- 
ine the unprocessed events in 
neighboring LPs to determine 
which events are safe to process. No 
unprocessed event two or more 
hops away can affect one in the lo- 
to-20 time window because such an 
event would have to have a time- 
stamp earlier than the start of the 
window. 

An important question is which 
method will be used for determin- 
ing the size of the time window. If 
the window is too small, there will 
be too few events available for con- 
current execution. On the other 
hand, if the window is too large, the 
simulation mechanism behaves in 
much the same way as it would if no 
time window were used at all (such 
mechanisms implicitly assume an 
infinitely large time window), im- 
plying the overhead to manage the 
window mechanism is not justified. 
Setting the window to an appropri- 
ate size requires application-specific 
information that must be obtained 
either from the programmer, the 

COYYUNlCITlONt OFTNlliCYlOctaber 199O/Vo1.33, No.10 33 



compiler, or from :monitoring the 
simulation at runtime. 

ltnprovlng Lookohrend by 
Precomputlng Serrke Wmes 

Lookahead refers to lthe ability to 
predict what will ha.ppen, or more 
importantly, what will not happen, 
in the simulated future. If a process 
at simulated time Cl0c.K can predict 
with complete certainty all events it 
will generate up to simulated time 
Clock + L, the process is said to 
have lookahead L. Non-zero mini- 
mum timestamp increments are the 
most obvious form of lookahead: a 
minimum timestamp increment of 
M translates directly into a 
lookahead of (at least) M because 
the process can guarantee that no 
new event messages will be created 
with timestamp smaller than 
Clock + M. Lookahead enhances 
one’s ability to predict future 
events, which in turn: can be used 
to determine which other events 
are safe to process. It is used in the 
deadlock avoidance approach to 
determine the timestamps that are 
assigned to null messages. It is also 
used to some extent in the deadlock 
detection and recovery algorithm 
because whenever a process sends a 
message with timestarnp increment 
of T to another process, it is guar- 
anteeing that no ,other messages 
will follow on that link that contain 
a timestamp smaller than Clock + T. 

Nicol proposes improving the 
lookahead ability of processes by 
precomputing portions of the com- 
putation for future events [72]. For 
example, in a queuing network sim- 
ulation using first-come-first-serve 
queues without preemption, one 
can precompute the service time of 
jobs that have not yet been re- 
ceived. If the server process is idle 
and its clock has a value of 100, and 
the service time of the next job has 
been precomputed to be 50, then 
the lower bound on the timestamp 
of the next message it will send is 
150 rather than 100. If the average 
service time is much larger than the 
minimum, this will provide a better 
lower bound on the timestamp of 
the next message. 

Interestingly, the ability to use 
precomputation to improve look- 
ahead itself requires lookahead 
ability. Precomputation is possible 
if one can predict aspects of future 
event computations without knowl- 
edge of the event message that 
causes that computation, or the 
state of the process when that fu- 
ture event computation would take 
place. For example, if the service 
time depends on a parameter in the 
message (e.g., a message length for 
a communication network simula- 
tion), precomputation would not be 
so simple. Nevertheless, precom- 
putation appears to be a useful 
technique when it can be applied. 

COmStlonol Knowleclge 

In a sequential simulation, one 
often schedules an event under the 
premise that this event will take 
place if no disruptive event occurs 
first. For example, in a simulation 
of a queuing network with servers 
that can be preempted, one might 
schedule an event corresponding to 
the departure of a low priority job 
assuming that no high priority job 
will preempt it; if preemption does 
occur, this event must be canceled 
or modified. 

Chandy and Sherman refer to 
events that occur if some predicate 
is satisfied as conditional events; 
other events that are uncondition- 
ally known to occur are called defi- 
nite events [ 181. While it is always 
safe to process definite events, the 
same is not true for conditional 
events. In sequential simulations, 
the fact that a conditional event 
contains a timestamp that is smaller 
than any other unprocessed event is 
sufficient to convert it to a definite 
one. 

Chandy and Sherman propose a 
conservative parallel simulation 
protocol where conditional knowl- 
edge is used to determine when 
events are safe to process [ 181. One 
aspect of this approach that distin- 
guishes it from others is that com- 
munication is not restricted to only 
those processes that exchange event 
messages during the simulation; 
arbitrary pairs of processes may 

send messages to each other in 
order to determine which events 
are safe to process (i.e., in order to 
convert conditional events into def- 
inite ones). 

Sxploltlng Network apology 

Several researchers have suggested 
exploiting properties of the net- 
work topology to streamline the 
simulation algorithm. For example, 
Kumar points out that the synchro- 
nization protocol can be greatly 
simplified for acyclic networks [48]. 
Nevison takes this approach one 
step further, and examines queuing 
networks whose constituent subnet- 
works are loops, a situation that 
often arises in manufacturing ap- 
plications [713. He uses the struc- 
ture of the network to improve 
lookahead knowledge, and devises 
a simulation strategy based on this 
approach. De Vries also takes a sim- 
ilar approach in optimizing queu- 
ing network simulations where the 
network consists of feedforward 
and feedback components [24]. 
Strategies are devised to reduce the 
number of null messages transmit- 
ted in the deadlock avoidance 
mechanism for these specific cases. 

Lin and Lazowska suggest elimi- 
nating cycles from the network by 
defining logical processes so that 
any cyclic subnetwork is encapsu- 
lated into a single logical process 
[55]. The Chandy/Misra algorithms 
are then used to simulate the acyclic 
network. 

Periwmrrnce o# Conse~otlue 
MecRonlsms 

The degree to which processes can 
look ahead and predict future 
events plays a critical role in the 
performance of conservative strate- 
gies. Actually, what is more impor- 
tant than predicting future events is 
the fact that a process with 
lookahead L can guarantee that no 
events, other than the ones that it 
can predict, will be generated up to 
time Clock + f.. This may enable 
other processes to safely process 
pending event messages that they 
have already received. 

To illustrate this point, let us 

36 October 199O/Vd33. N~.~O/COYYUNICITIONSOCTI~E~~.CY 



consider the simulation of a queu- 
ing network consisting of two sta- 
tions connected in tandem as shown 
in Figure 3a. The first station is 
modeled by logical process LPI, 
and the second by LPp. Each station 
contains a server and a queue that 
holds jobs (customers) waiting to 
receive service. Assume incoming 
jobs are served in Iirst-come-first- 
serve order. 

The textbook approach to pro- 
gramming the simulator is to use 
two types of events: (1) an arrival 
event denotes a job arriving at a sta- 
tion, and (2) a departure event de- 
notes a job completing service, and 
moving on to another server. As 
shown in Figure 3b, a jobJ arriving 
at the first station at time T will, in 
general, (1) spend Q units of time 
(Q 2 0) in the queue, waiting to be 
served and (2) an additional S units 
of time being served, before it is 
forwarded to LP2. 

The simulator described above 
has poor lookahead properties. In 
particular, LPI must advance its 
simulated time clock to T + Q + S 
before it can generate a new arrival 
event with timestamp T + Q + S. It 
has zero lookahead with regard to 
generating new arrival events. 

An alternative approach to pro- 
gramming this simulation is de- 
picted in Figure 3c. Here, the de- 
parture event has been eliminated, 
and processing one arrival event 
immediately causes a new arrival 
event to be scheduled. This is possi- 
ble because first-come-first-serve 
queues are used and no preemp- 
tion is possible. The event at time T 
can predict the arrival event at T + 
Q + S because both Q and S can be 
computed at simulated time T. In 
particular, Q is the remaining ser- 
vice time for the job being served at 
time T, plus the service times of all 
jobs precedingj in the queue. Simi- 
larly, S can be computed at simu- 
lated time T because it does not 
depend on the state of the process 
at a time later than T. The 
lookahead using this alternative 
approach is Q + S. 

Programming the simulation to 
exploit lookahead can dramatically 

improve performance. Figure 5 
shows performance measurements 
of simulating a central server queu- 
ing network (shown in Figure 4) 
using Chandy and Misra’s deadlock 
detection and recovery algorithm 
on a BBN Butterfly multiprocessor, 
with each logical process executing 
on a separate processor. A closed 
network is simulated with a fixed 
number of circulating jobs (re- 
ferred to as the message popula- 
tion). Figure 5a shows the average 
number of messages processed be- 
tween deadlocks, and figure 5b 
shows speedup relative to a sequen- 

6% 

(W 

(c) 

. . . . . . . . . . . . . . . . . . . . . . . . ..~........ 

tial event list implementation where 
the event list is implemented using 
a splay tree [87]. As illustrated, the 
version that exploits lookahead far 

b arrival 

I 

cl arrival 

FlGURE 3. lwa approacha to simulttlng a queuing network. (1) tuo queues connected 
in tandem, each using a first-ame-first-serve dlsdpllne and no weemption. (b) hlstow of 
wents nhen using the “classkal” approach that does not exploit lookahead. (cl histow for ap- 
proach that does exuloit loobahead. 

37 



ClGURC a. CIlltnl scncr IW!ing Wmk. lM! fork proms rortcS IIIWllng MIS to OM 
of the secondary sems. Here, the fork pmcess Is qurllv llkelv to select either Sewer. 

ClGURC s. Performance of deadloclr detectlon and recovetv slmlator for central semer 
queuing network. (a) aeerapenunberofmsages processed between deadloc+sasafunctlon of 
the message population. (Ib) speedup orer a sequentlrl mat list IwlemenMom. 

outperforms the version that does 
not. Similar speedup curves were 
observed for the deadlock avoid- 
ance approach using null messages 

WJI. 
One way of viewing lookahead is 

to observe that the arrival event at 
time T + Q + S is invariant to any 
other events occurring in the inter- 
val [T,T + Q + S]. This allows the 
event to be generated at time T. We 
will come back to this property 
later, when discussing lazy cancella- 
tion, a technique used by optimistic 
mechanisms. 

Before continuing, we should 
note that the above situation is one 
in which the application contains 
good lookahead, and the simulator 
could be easily reprogrammed to 
exploit it. This is not always the 
case, however. For example, con- 
sider a queuing network where the 
service time distribution has a mini- 
mum of zero (e.g., an exponential 
distribution) and preemption may 
occur. A high priority job that has 
been simulated up to time T could 
(albeit very unlikely) affect every 
station in the network at time T, so 
no station can look ahead beyond T. 
Exploiting lookahead in simula- 
tions such as these is much more 
challenging. 

Reed, Malony, and McCredie 
performed extensive measure- 
ments of the deadlock avoidance 
and deadlock detection and recov- 
ery algorithms executing on a Se- 
quent multiprocessor for various 
queuing network simulations [80]. 
However, they report disappoint- 
ing performance except in a few 
specialized cases (e.g., feedforward 
networks that do not contain any 
cycles). When cycles are present, 
the parallel simulator seldom 
achieves a significant speedup. 
They did not attempt to exploit 
lookahead, however. 

Using synthetic workloads, 
Fujimoto characterizes lookahead 
quantitatively using a parameter 
called the lookahead ratio, and pre- 
sents empirical data to demonstrate 
the importance of exploiting 
lookahead to achieve good perfor- 
mance [28]. Depending on 

38 October 199O/Vol.33, No.lO/COYYUNIUTIONSOCT”l.CY 



lookahead, speedups for these syn- 
thetic workloads ranged from 
slower than sequential execution to 
nearly ideal (speedup of N on N 
processors) using up to 16 proces- 
sors on a BBN Butterfly. To fur- 
ther substantiate this claim, he re- 
produced the poor performance 
obtained by Reed et al. for queuing 
network simulations, and demon- 
strated that these simulators can 
achieve good performance if they 
are reprogrammed to exploit 
lookahead, as was discussed earlier. 
These techniques are only applica- 
ble to first-come-first-serve queues, 
however. 

Also, Fujimoto reports an “ava- 
lanche effect” for the deadlock de- 
tection and recovery simulator 
where the efficiency of the simula- 
tor is poor for small message popu- 
lations, but improves dramatically 
once the population reaches a cer- 
tain critical level [28]. This behavior 
can be seen in figure 5a. The mes- 
sage population required to induce 
message avalanche (i.e., to achieve 
good performance) is dependent 
on the simulator’s lookahead. Good 
lookahead reduces the population 
required to induce avalanche. 

Both Reed et al. and Fujimoto 
observe that performance is only 
modestly affected by the amount of 
computation performed by each 
event. This indicates the poor per- 
formance that was observed is due 
to the failure of the algorithms to 
exploit parallelism, rather than the 
overheads associated with imple- 
menting the algorithm. On the 
other hand, it should also be 
pointed out that the problems ex- 
amined in these studies were rela- 
tively modest in size compared to 
the capacity of the machines that 
were used to test the effectiveness 
of the algorithms in exploiting par- 
allelism. In many cases, one may be 
able to improve performance by 
simply increasing the size of the 
problem, and thereby increase the 
amount of parallelism that is avail- 
able. 

Su and Seitz report some success 
in using variations of the deadlock 
avoidance algorithm to speed up 

logic simulations on an Intel iPSC 
computer 19 11. Although speedups 
are relatively modest (8, using 64 
processors, and 10 to 20, using 128 
processors are typical), they argue 
that better performance could be 
obtained on machines such as 
shared-memory multiprocessors 
where the overhead of sending null 
messages can be substantially re- 
duced. Reed et al., Fujimoto, and 
Wagner et al. [94] exploit tech- 
niques using shared memory to 
improve the efficiency of these al- 
gorithms. 

Wagner and Lazowska [93] and 
Lin and Lazowska [53] examine 
lookahead analytically, and derive 
expressions for lookahead for cer- 
tain queuing network simulations. 
Nicol analyzes average perfor- 
mance as a function of lookahead 
for a synchronous protocol based 
on precomputing service times [73]. 
He shows that conservative algo- 
rithms can achieve good perfor- 
mance for large simulation prob- 
lems (i.e., problems containing a 
high degree of parallelism) if ade- 
quate lookahead is available. 
Loucks and Preiss also examine the 
impact of exploiting lookahead on 
computation and communication 
overhead, and verify its important 
impact on performance [61]. 

Lubachevsky has examined the 
performance and scalability of the 
bounded lag approach that uses 
synchronous execution, lookahead, 
and time windows to improve per- 
formance [62, 631. Specifically, he 
uses two forms of lookahead: mini- 
mum timestamp increments and 
nonpreemptable periods of activity, 
called “opaque” periods. Using a 
worst-case analytic analysis, he 
shows that performance of this 
approach scales as the problem and 
machine size increase in proportion 
to within a factor of O(logN) of 
ideal, assuming adequate look- 
ahead is available. He also demon- 
strates speedups as high as 16 on 25 
processors of a Sequent Balance 
multiprocessor, and over 1900 on a 
16,384 processor Connection Ma- 
chine for queuing network and 
Ising model (spinning atomic parti- 

cles) simulations. 
Ayani and Rajaei [3, 41, and 

Chandy and Sherman [18] also re- 
port some success in speeding up 
queuing and switching network 
simulations using their approaches 
on Sequent and Intel iPSC systems, 
respectively. Speedup varies con- 
siderably, depending on aspects of 
the simulation model. Ayani re- 
ports speedups as high as 5 on a 9 
processor Sequent Balance, and 
Chandy and Sherman report 
speedups as high as 9 on 24 iPSC 
processors, and 7 using 12 proces- 
sors. Merrifield, Richardson, and 
Roberts report speedups as high as 
18 using 3 1 processors in a network 
of Transputers for road traffic sim- 
ulations using the deadlock avoid- 
ance approach [68]. 

Much has been learned concern- 
ing the performance of conserva- 
tive mechanisms. In general, con- 
servative mechanisms must be 
adept at predicting what will not 
happen in order to be successful. It 
is the fact that “no smaller time- 
stamped event will later be re- 
ceived” that is the firing condition 
allowing an event to be safely pro- 
cessed. Effectively exploiting the 
lookahead properties of the simula- 
tion appears to be the key to achiev- 
ing good performance with these 
methods. 

c*l,lque OS Censervetlue 
MecMmlsms 

Perhaps the most obvious drawback 
of conservative approaches is that 
they cannot fully exploit the paral- 
lelism available in the simulation 
application. If it is possible that 
event EA might affect Es either di- 
rectly or indirectly, conservative 

CCYU”NIWTICIICCCT”hAC.CYlOctober 199O/Vo1.33. No.10 39 



approaches must execute EA and Es 
sequentially. If the simulation is 
such that EA seldom affects Es, 
these events could have been pro- 
cessed concurrently Imost of the 
time. In general, if the worst-case 
scenario for determining when it is 
safe to proceed is far from the typi- 
cal scenario that arise:s in practice, 
the conservative approach will usu- 
ally be overly pessimistic, and force 
sequential execution when it is not 
necessary. 

Another way of st.ating this fact is 
to observe that conservative algo- 
rithms rely on lookahead to achieve 
good performance.” If there were 
no lookahead, the smallest time- 
stamped event in the simulation 
could affect every otber pending 
event, forcing sequential execution 
no matter what conservative proto- 
col is used. Characteristics such as 
preemptive behavior, t.he possibility 
of a timestamp increment of zero or 
close to zero, and dependence of an 
output message with timestamp T 
on the state of an LP at time T all 
diminish the lookahead properties 
of the simulation. Conservative al- 
gorithms appear to be poorly suited 
for simulating applications with 
poor lookahead properties, even if 
there is a healthy atnount of paral- 
lelism available. 

A related problem faced by con- 
servative methods concerns the 
question of robustness; it has been 
observed that seemingly minor 
changes to the alpplication may 
have a catastrophic effect on per- 
formance [50]. For example, add- 
ing short, high-priority messages 
that interrupt “normal” processing 
in a computer network simulation 
can destroy the lookahead proper- 
ties on which the mechanism relies, 
and lead to severe performance 
degradations. This is problematic 
because experimenters often do not 
have advance knowledge of the full 
range of experiments that will be 
required; thus it behooves them to 
invest substantial a.mounts of time 
parallelizing the application if an 

3That is, except in a few special instances such 
as feedforward networks that do not contain 
cycles. 

unforeseen addition to the model at 
some future date could invalidate 
all of this work. 

Critics of conservative methods 
also point out that many existing 
conservative techniques (the dead- 
lock avoidance and deadlock detec- 
tion and recovery mechanisms in 
particular) require static configura- 
tions: one cannot dynamically cre- 
ate new processes, and the inter- 
connection among logical processes 
must also be statically defined. 
Techniques to circumvent this 
problem-for instance, to create 
“spare” processes at the start of the 
simulation and to define a fully 
connected network-usually lead 
to excessive overheads (e.g., broad- 
cast communications may be re- 
quired to determine when it is safe 
to proceed). 

Most conservative schemes re- 
quire knowledge concerning logical 
process behavior to be explicitly 
provided by the simulation pro- 
grammer for use in the synchroni- 
zation protocol. The deadlock de- 
tection and recovery algorithm is 
perhaps the only existing conserva- 
tive approach that does not explic- 
itly require such knowledge from 
the user. Information such as mini- 
mum timestamp increments or the 
guarantee that certain events really 
have no effect on others (e.g., an 
arrival event in a queuing network 
simulation may not affect the job 
that is currehtly being serviced) 
may be difficult to ascertain for 
complex simulations. Users would 
be ill-advised to give overly conser- 
vativeestimates (e.g., a minimum time 
stamp increment of zero) because 
very poor performance may result. 
Overly opimistic estimates can lead 
to violations of causality constraints 
and erroneous results. 

Perhaps the most serious draw- 
back with existing conservative sim- 
ulation protocols is that the simula- 
tion programmer must be 
concerned with the details of the 
synchronization mechanism in 
order to achieve good perfor- 
mance. Proponents of optimistic 
approaches argue that the user 
should not have to be concerned 

with such complexities, just as pro- 
grammers of sequential simulations 
need not be concerned with the 
details of the implementation of the 
event list. Of course, certain guide- 
lines that apply to all parallel pro- 
grams must be followed when de- 
veloping parallel simulation code: 
Selecting an appropriate granular- 
ity and maximizing parallelism, but 
requiring the programmer to also 
be intimately familiar with the syn- 
chronization mechanism and pro- 
gram the application to maximize 
its effectiveness will often lead to 
fragile code that is difficult to mod- 
ify and maintain. One potential so- 
lution to this problem is to define 
and utilize a simulation language 
where the essential information 
needed by the simulation mecha- 
nism can be automatically extracted 
from the simulation primitives [6, 
221. It remains to be seen to what 
extent this approach can be effec- 
tive. 

Optimlrtlc Meehanlsms 
Optimistic methods detect and re- 
cover from causality errors; they do 
not strictly avoid them. In contrast 
to conservative mechanisms, opti- 
mistic strategies need not deter- 
mine when it is safe to proceed; in- 
stead they determine when an error 
has occurred, and invoke a proce- 
dure to recover. One advantage of 
this approach is that it allows the 
simulator to exploit parallelism in 
situations where it is possible cau- 
sality errors might occur, but in fact 
do not. Also, dynamic creation of 
logical processes can be easily ac- 
commodated [92]. 

The Time Warp mechanism, 
based on the Virtual Time para- 
digm, is the most well-known opti- 
mistic protocol [41, 441. Here, vir- 
tual time is synonymous with 
simulated time. In Time Warp, a 
causality error is detected whenever 
an event message is received that 
contains a timestamp smaller than 
that of the process’s clock (i.e., the 
timestamp of the last processed 
message). The event causing roll- 
back is called a struggler. Recovery is 
accomplished by undoing the ef- 

October 1990/%1.33, N~.~O,COYY”WIUT,OWSOFT”~~=.CY 



fects of all events that have been 
processed prematurely by the proc- 
ess receiving the straggler (i.e., 
those processed events that have 
time-stamps larger than that of the 
straggler). 

An event may do two things that 
have to be rolled back: it may mod- 
ify the state of the logical process, 
and/or it may send event messages 
to other processes. Rolling back the 
state is accomplished by periodi- 
cally saving the process’s state, and 
restoring an old state vector on roll- 
back. “Unsending” a previously 
sent message is accomplished by 
sending a negative or anti-message 
that annihilates the original when it 
reaches its destination. Messages 
corresponding to simulator events 
are referred to as positive messages. 
If a process receives an anti- 
message that corresponds to a posi- 
tive message that it has already pro- 
cessed, then that process must also 
be rolled back to undo the effect of 
processing the soon-to-be annihi- 
lated positive message. Recursively 
repeating this procedure allows all 
the effects of the erroneous compu- 
tation to eventually be canceled. It 
can be shown that this mechanism 
always makes progress under some 
mild constraints. 

As noted earlier, the smallest time- 
stamped, unprocessed event in the 
simulation will always be safe to 
process. In Time Warp, the smallest 
timestamp among all unprocessed 
event messages (both positive and 
negative) is called global virtual 
time (GVT). No event with time- 
stamp smaller than GVT will ever 
be rolled back, so storage used by 
such events (e.g., saved states) can 
be discarded.4 Also, irrevocable 
operations (such as I/O) cannot be 
committed until GVT sweeps past 
the simulated time at which the 
operation occurred. The process of 
reclaiming memory and commit- 
ting irrevocable operations is re- 
ferred to as fossil collection. 

Several algorithms have been 
proposed for computing GVT. De- 

4Actually, one state vector older than GVT is 
required to restore a process’s state in case a 
rollback to GVT occurs. 

tailed discussion of this topic is be- 
yond the scope of the present dis- 
cussion, but is discussed elsewhere 
[9, 52, 77, 861. 

Lazy CaaceMatlaa 
Optimizations have been proposed 
to repair the damage caused by an 
incorrect computation rather than 
completely repeat it. For instance, it 
may be the case that a straggler 
event does not sufficiently alter the 
computation of rolled back events 
to change the (positive) messages 
generated by these events. The 
Time Warp mechanism described 
uses aggressive cancellation,- 
whenever a process rolls back to 
time T, anti-messages are immedi- 
ately sent for any previously sent 
positive message with a timestamp 
larger than T. In lazy cancellation 
[33], processes do not immediately 
send the anti-messages for any 
rolled back computation. Instead, 
they wait to see if the reexecution of 
the computation regenerates the 
same messages; if the same message 
is recreated, there is no need to 
cancel the message. An anti- 
message created at simulated time 
T is only sent after the process’s 
clock sweeps past time T without 
regenerating the same message. 

Depending on the application, 
lazy cancellation may either im- 
prove or degrade performance. 
Lazy cancellation does require 
some additional overhead when- 
ever an event is processed to deter- 
mine if a matching anti-message 
already exists; one or more message 
comparisons may be required if one 
is reexecuting previously rolled 
back events. Also, lazy cancellation 
may allow erroneous computations 
to spread further than they would 
under aggressive cancellation, so 
performance may be degraded if 
the simulator is forced to execute 
many incorrect computations. One 
can construct cases where lazy can- 
cellation executes a computation 
with N-fold parallelism N times 
slower than aggressive when N proc- 
essors are used [82]. 

On the other hand, lazy cancella- 
tion has the interesting property 

that it can allow the computation to 
be executed in less time than the 
critical path execution time [ 10,901. 
The explanation for this phenome- 
non is that computations with in- 
correct or only partially correct 
input may still generate correct re- 
sults!5 Therefore, one may execute 
some computations prematurely, 
yet still generate the correct answer. 
This is not possible using aggressive 
cancellation because rolled back 
computations are immediately dis- 
carded, even if they did generate 
the correct result. One can con- 
struct a case where lazy cancellation 
can execute a sequential computa- 
tion with N-fold speedup using N 
processors, while aggressive cancel- 
lation requires the same amount of 
time as the sequential execution 
[82]. The conclusion one can make 
from this analysis is that while ag- 
gressive cancellation will not per- 
form better than the critical path 
execution time, lazy cancellation 
can perform arbitrarily better or 
worse depending on details of the 
application and the number of 
available processors. 

Although it is instructive to con- 
struct best-and worst-case behaviors 
for lazy and aggressive cancellation, 
it is not clear that such extreme 
behaviors arise in practice. Empiri- 
cal evidence suggests that lazy can- 
cellation tends to perform as well 
as, or better than, aggressive can- 
cellation in practice [60, 821. 

Lazy Reevaluation 

The lazy reevaluation optimization 

‘For example. suppose the event computes 
the minimum of two variables, A and B, and 
executes prematurely using an incorrect value 
for A. If both the correct and incorrect values 
of A are greater than B, then the incorrect 
execution produces exactly the same result as 
the correct one. 

COYYUNlWTlONtOCT”EACiCY/October 199O/Vol.33, No.10 



(also sometimes called;;umpforward) 
is somewhat similar to lazy cancella- 
tion, but deals with state vectors 
rather than messages [95]. Con- 
sider the case where the state of the 
process is the same after processing 
a straggler event message as it was 
before. If no new messages arrived, 
then it is clear that the reexecution 
of rolled back events will be identi- 
cal to the original execution. 
Therefore, one need not reexecute 
the rolled back events, but instead, 
“jump forward” over them. This 
requires a comparison of state vec- 
tors to determine if the state has 
changed. 

One situation where one could 
derive significant benefit from lazy 
reevaluation is “read-only” or query 
events. Here, lazy reevaluation 
avoids the expense of regenerating 
states when a query event causes a 
rollback.” Although it is true that 
widespread use of query events will 
lead to poor performance because 
they entail a significant overhead 
(even if the hardware supports 
shared memory and lazy reevalua- 
tion is used), query messages may 
be useful in certain restricted situa- 
tions. Finally, it is worth mention- 
ing that lazy reevaluation may sig- 
nificantly complicate the Time 
Warp code, detracting from its 
maintainability. It was imple- 
mented in the JPL Time Warp ker- 
nel [43], but later removed for this 
reason. 

RelatIonshIp to LooJraReod 

The fundamental aspect of the 
computation that is exploited by 
lazy cancellation and lazy reevalua- 
tion is an invariance in the behavior 
of an event E to straggler events 
that are in E’s past. If E still gener- 
ates the same event messages (or 
state vector) in spite of straggler 
messages that are later received, 
then lazy cancellation (lazy reevalu- 
ation) will succeed. This is closely 
related to the lookahead property 
that is used extensively by conserva- 
tive approaches. 

“See [34] and [79] for a discussion of other 
mechanisms to handle queries. 

Recall that in the queuing net- 
work example depicted in Figure 3 
we observed that the arrival event 
at T + Q + S was invariant to any 
other events occurring in the inter- 
val [T,T + Q + S]. This allowed LP, 
to look ahead and schedule the T + 
Q + S arrival event even though its 
local clock had only advanced to T 
(Figure 3~). Now consider a Time 
Warp simulation using lazy cancel- 
lation that is not programmed to 
exploit lookahead, but uses both 
arrival and departure events (Fig- 
ure 3b). Assume LPI has advanced 
beyond T + Q + S, and has pro- 
cessed the departure event at T + 
Q + S, and scheduled the subse- 
quent arrival event. Now suppose a 
straggler event arrives with time- 
stamp TX such that T < TX < T + 
Q + S. LPr will roll back, process 
the straggler, and reexecute the 
departure event at T + Q + S. 
However, because the arrival event 
at T + Q + S is not affected by the 
straggler event (because first-come- 
first-serve queues are used), the 
same arrival event as was generated 
in the original execution will be re- 
created. Because lazy cancellation is 
being used, the Time Warp execu- 
tive does not cancel the original ar- 
rival event at time T + Q + S. The 
key observation to be made here is 
that the invariance property on 
which lookahead is based is the 
same property that allows lazy can- 
cellation to succeed. 

Thus, lazy cancellation takes ad- 
vantage of lookahead, even though 
the application was not explicitly pro- 
grammed to exploit it. Unlike conser- 
vative approaches that require 
lookahead to be specified explicitly, 
lazy cancellation exploits lookahead 
in a way that is trunsparent to the 
application program. The disad- 
vantage of exploiting lookahead in 
this way (as opposed to specifying it 
explicitly) is that the overheads are 
greater. For lazy cancellation, the 
invariant computation (the depar- 
ture event in this example) must be 
reexecuted, and message compari- 
sons are required to determine 
when the optimization is applicable. 
Similarly, lazy reevaluation requires 

comparisons of state vectors. Ex- 
plicitly programming lookahead 
into the application has its advan- 
tages (e.g., see [5]). 

Using the lazy cancellation ap- 
proach does pay off when invari- 
ance (i.e., lookahead) cannot be 
statically guaranteed, but is usually 
dynamically available. For example, 
this will be the case in a queueing 
network where preemption is possi- 
ble, but seldom occurs because 
there are few high priority jobs. 
Here, it is difficult to explicitly pro- 
gram the application to exploit 
lookahead. However, lazy cancella- 
tion will still be able to exploit it 
whenever it is available, for instance 
whenever no preemption actually 
occurs. 

Optlmhtlc Tltne Windows 

Time windows, not unlike those 
proposed for conservative mecha- 
nisms, have also been proposed for 
optimistic protocols. In optimistic 
methods, time windows are used to 
prevent incorrect computations 
from propagating too far ahead 
into the simulated time future. 

The Moving Time Window 
(MTW) approach uses a fixed time 
window of size W (the algorithm 
could easily be modified to dynami- 
cally change the size of the window, 
however) [SS]. Only events with 
time-stamps in the interval [T,T + 
W], where T is the smallest time- 
stamped event in the simulation, 
are eligible for processing. 

The utility of time windows in 
optimistic mechanisms is currently 
a point of debate. Critics of this 
method point out that such win- 
dows cannot distinguish good com- 
putations from bad ones, so they 
may impede the progress of correct 
computations. Further, incorrect 
computations that are far ahead in 
the simulated future are already 
discriminated against by Time 
Warp’s scheduling mechanism 
which gives precedence to activities 
containing small timestamps. Fi- 
nally, it is not clear how the size of 
the window should be determined. 
Empirical data suggests that time 
windows offer little advantage in 

42 October 199O/Vol33. No.lO/COYMUN1CATIONS OF T”B ICY 



certain cases [83], but some im- 
provement in others [89]. 

-I# &ass 

Madisetti, Walrand, and Messer- 
Schmitt propose a mechanism in 
Wolf whereby a straggler message 
causes a process to send special con- 
trol messages to quickly stop the 
spread of erroneous computations 
[65]. Processes that may be “in- 
fected” by the erroneous computa- 
tion are notified when an error (i.e., 
a straggler message) is detected. 

Like the time window scheme, 
the disadvantage of this approach is 
that some correct computations 
may be unnecessarily frozen. Also, 
the set of processors that might be 
affected by erroneous computa- 
tions may be significantly larger 
than the set that actually is; there- 
fore, some unnecessary control 
messages may be sent. Finally, this 
scheme requires that one know the 
speed in real-time at which both the 
erroneous computation can spread, 
and the time required to transmit 
the control messages. Determining 
bounds on these quantities may be 
difficult for certain systems. 

Direct Cancellation 

In Time Warp, it is important that 
one be able to cancel incorrect com- 
putations more rapidly than they 
spread throughout the system. 
Otherwise, a “dog chasing its own 
tail” effect may occur where erro- 
neous computations rapidly spread 
throughout the system, while anti- 
messages frantically give chase try- 
ing to track them down [l]. Such 
behavior must be avoided; a way to 
prevent it is to give anti-messages 
higher priority than positive mes- 
sages. 

Fujimoto proposes a mechanism 
that uses shared memory to opti- 
mize the cancellation of incorrect 
computations [30]. Whenever an 
event El schedules another event 
EP, a pointer is left from Et to E2. 
This pointer is used if it is later de- 
cided that E2 should be canceled 
(using either lazy or aggressive can- 
cellation). By contrast, conventional 
Time Warp systems must search to 

locate canceled messages. The ad- 
vantages of this mechanism are 
two-fold: it reduces the overheads 
associated with message cancella- 
tion, and it speedily tracks down 
erroneous computations to mini- 
mize the damage that is caused. 
Good performance has been re- 
ported on a version of Time Warp 
that uses direct cancellation [30, 
311. 

Space-rime SlmuIatlon 

Chandy and Sherman have devel- 
oped an approach to simulation 
that is based on relaxation tech- 
niques similar to those used for 
continuous simulation problems 
[19]. The goal of a discrete event 
simulation program is to compute 
the values of state variables in the 
simulation across simulated time. 
For example, the simulation of a 
server in a queuing network simu- 
lation can be viewed as determining 
the number of jobs that exist in the 
server at every point in simulated 
time. 

The simulation can be viewed as 
a two dimensional space-time graph 
where one dimension enumerates 
the state variables used in the simu- 
lation, and the second dimension is 
simulated time. The simulator must 
fill in the space-time graph- 
determine the value of the simula- 
tor’s state variables over simulated 
time in order to characterize the 
behavior of the physical system. 

In Chandy and Sherman’s ap- 
proach, the space-time graph is 
partitioned into disjoint regions, 
with one process assigned to each 
region. That process is responsible 
for filling in the portion of the 
space-time graph that is assigned to 
it. In order to accomplish this task, 
the process must be aware of bound- 
ary conditions for its region, and 
update them in accordance with 
activities in its own region. Changes 
to boundary conditions are passed 
among processes in the form of 
messages. Thus, each process re- 
peatedly computes its portion of 
the space-time graph, transmits 
changes in the boundary conditions 
to processes responsible for neigh- 

In oplimistic 
methods, 

time windows 
are used 
to prevent 
incorrect 

computations 
from propagating 

too far 
ahead into 

the simulated 
future . 

CCYY”“ICITICYCCFT”~liCYIOctober 199O/Vo1.33, No.10 43 



boring regions, and then awaits 
new messages indicating further 
changes to the boundary condi- 
tions. The comput.ation proceeds 
until no more changes occur-until 
the computation converges to a 

fixed point. The origins of this ap- 
proach to simulation are in the 
Unity theory of parallel program- 
ming developed by Chandy and 
Misra [ 171. 

The space-time approach to sim- 
ulation bears much resemblance to 
Time Warp, using lazy cancellation. 
The state queue of a logical process 
is an estimate of some portion of 
the space-time graph based on the 
input events (boundary conditions) 
that are known to it. thus far. New 
incoming messages indicate bound- 
ary condition changes that may roll 
back the process and cause it to re- 
compute this region of the space- 
time graph. If the output messages 
produced by the recomputation are 
different from those that were gen- 
erated earlier (i.e., lazy cancellation 
fails), new messages are sent to 
other processes to indicate the new 
boundary conditions. 

AdUlRg Optlmlsm CO 
Conservative MetRoUs 

A number of hybrid approaches 
have been developed that add opti- 
mism to existing conservative simu- 
lation mechanisms. Lubachevsky, 
Shwartz, and Weiss propose an ex- 
tension to the bounded lag algo- 
rithm called “filtered” rollbacks 
[64]. The bounded lag algorithm 
uses the minimum distance be- 
tween logical processes as a basis for 
deciding which events are safe to 
process. In filtered rollbacks, the 
simulator is allowed to violate this 
lower bound, possibly leading to 
violation of causality constraints. 
Such errors are corrected using a 
Time Warp-like rollback mecha- 
nism. By adjusting tlhe distance val- 
ues, one can vary the optimism of 
the algorithm between the conser- 
vative bounded lag :,cheme and the 
optimistic moving time window 
approach. 

Dickens and Reynolds have pro- 
posed an extension to the conserva- 

tive SRADS protocol [84] to allow 
“local rollbacks” [25]. Though dis- 
cussed in the context of SRADS, the 
approach is generally applicable to 
any conservative scheme. In this 
approach, a conservative protocol is 
used only to process safe events. 
When a processor has no events 
that it can safely process, it optimis- 
tically processes other pending 
events. However, the results of such 
optimistically executed events are 
not allowed to be transmitted to 
other processors. This confines 
rollbacks to the local processor, and 
eliminates the need for anti- 
messages. In Reynold’s terminol- 
ogy, the approach is “aggressive,” 
but lacks “risk” [85]. 

The results of optimistic execu- 
tion in the local rollback approach 
cannot be used by the synchroniza- 
tion protocol to locate other events 
that are safe to process (because the 
optimistic execution may be incor- 
rect). In essence, this approach al- 
lows otherwise unused CPU cycles 
left by the conservative synchroni- 
zation mechanism to be used to op- 
timistically process events in order 
to get a head start once the conser- 
vative protocol can guarantee that 
those events are indeed safe to pro- 
cess. The effectiveness of this ap- 
proach in improving performance 
has not yet been evaluated. 

PeHormance oi Opcrminc 
MecRanlsms 

Several successes have been re- 
ported in using Time Warp to 
speed up real-world simulation 
problems. Substantial speedups 
have been reported by researchers 
at JPL in simulations of battlefield 
scenarios [96], communication net- 
works [78], biological systems [27], 
and simulations of other physical 
phenomena [40]. Typical speedup 
on the JPL Mark III hypercube (a 
68020-based, message-passing ma- 
chine) range from 10 to 20, using 
32 processors. Speedups as high as 
37, using 100 processors of a BBN 
Butterfly have also been reported. 
Fujimoto also reports good perfor- 
mance using another, indepen- 
dently developed version of Time 

Warp for queuing network simula- 
tions [30] and various synthetic 
workloads [3 11. Using direct cancel- 
lation, he reports speedups as high 
as 57, using a 64 processor BBN 
Butterfly, as will be discussed mo- 
mentarily. 

Simulations of Time Warp have 
also shown some promising results 
in producer/consumer simulation 
workloads [2], battlefield simula- 
tions [35], and simulations of digital 
hardware [B]. Loucks and Preiss 
[61] and Baezner et al. [5] demon- 
strate that significant improve- 
ments in performance can be ob- 
tained if one employs application- 
specific knowledge to optimize exe- 
cution. 

We earlier observed that 
lookahead appears to be essential to 
obtain significant speedups using 
conservative algorithms for most 
problems of practical interest. Is 
the same true for optimistic meth- 
ods? Empirical evidence indicates 
that while lookahead improves the 
performance of optimistic algo- 
rithms, it is not a prerequisite for 
obtaining good performance. 

For example, Figure 6 compares 
the performance of Time Warp 
using direct cancellation with the 
conservative deadlock-avoidance 
and deadlock-detection and recov- 
ery algorithms for a closed queuing 
network simulation structured as a 
hypercube topology. Speedup over 
a sequential event list simulator is 
shown as the message density (the 
message population divided by the 
number of logical processes) is var- 
ied. An eight processor BBN But- 
terfly multiprocessor was used in 
these experiments. An exponential 
service time distribution with mini- 
mum value of zero is used.’ Fur- 
ther, some fraction of the jobs in 
the simulator (here, 1 percent) are 
designated as high priority, while 
the rest are low priority. High pri- 
ority jobs preempt service from low 

7Strictly speaking, the deadlock avoidance 
algorithm cannot simulate this network be- 
cause cycles containing zero lookahead exist. 
A “fortified” version of the deadlock avoid- 
ance approach was used that is supplemented 
with a deadlock detection and recovery mech- 
anism to circumvent this problem. 

44 October 199O/Vol.33, No.lOICOLINUNICITIONSOITNE~~CY 



priority jobs. As noted earlier, this 
simulation contains very poor 
lookahead characteristics, and can- 
not be optimized as was done ear- 
lier for the simulator using first- 
come-first-serve queues. As can be 
seen, Time Warp is able to obtain a 
significant speedup for this prob- 
lem, while the conservative algo- 
rithms have difficulty. 

Comparative performance mea- 
surements of Time Warp, the dead- 
lock-avoidance mechanism, and the 
deadlock-detection and recovery 
approach were made for a number 
of other queuing network simula- 
tions. In particular, queuing net- 
works using (1) first-come-first- 
serve queues, (2) prioritized jobs 
but no preemption, and (3) priori- 
tized jobs with preemption were 
simulated. Time Warp perfor- 
mance was found to be comparable 
or far superior to that of the con- 
servative algorithms in these mea- 
surements. 

Performance measurements of 
Time Warp executing on a larger 
number of processors are shown in 
Figure 7. These measurements sim- 
ulate a queuing network (again a 
hypercube) containing 256 logical 
processes. Performance using both 
first-come-first-serve queues and 
queues with preemption are shown. 
Speedups as high as 57, using 64 
processors were obtained. Further 
details of these and the aforemen- 
tioned experiments are discussed in 

[301. 
Fujimoto has also measured the 

performance of Time Warp under 
synthetic workloads similar to those 
used earlier to evaluate the perfor- 
mance of the deadlock-avoidance 
and deadlock-detection and re- 
cover algorithms [31]. This work- 
load model, referred to as the paral- 
lel hold model, is an extension of the 
hold model used to evaluate se- 
quential event list implementations 
(for example, see [67]). Experi- 
ments were performed to measure 
the effect of lookahead, distribu- 
tion of the timestamp increment 
(temporal locality), topology (spe- 
cifically, spatial locality), and com- 
putation granularity on perfor- 

mance. it was found that Time 
Warp was able to achieve speedup 
in proportion to the amount of par- 
allelism available in the workload 
under both saturated (more paral- 
lelism than processors) and unsat- 
urate (less parallelism than proces- 
sors) test conditions. These results 
support the claim made by support- 
ers of optimism that Time Warp 
can transparently exploit whatever 
parallelism is available in the simu- 
lation model without requiring ex- 
tensive, application-specific infor- 
mation (e.g., lookahead) from the 
user. 

Although these results are very 
encouraging, we should hasten to 
point out that state-saving over- 
heads can significantly degrade 
performance. Fujimoto reports that 
performance was cut in half when 
the size of the state was increased to 

2000 bytes (the queuing network 
simulations described earlier re- 
quired state vectors of approxi- 
mately 100 bytes). One must ensure 
that the granularity of the event 
computation is significantly larger 
than the overhead to save state to 
achieve good performance, or use 
hardware support for state saving 
1321. 

Some work has been performed 

Speedup Using Prioritized Jobs and Preemption 
1% Have High Priority 

8 

Time warp 
l 64 Proc8ssss 
0 16 Pftxesses 

Deadlock Avoidance 
cl 64Procasses 
x 16Processes 

Deadlock Recovery 
v 64 Procassas 
* 16 Processas 

16 32 48 
Message Density (messages per process) 

64 

Clam6 6. sp6dup of lime warp and consenatire algotlthms for a hwepcrmbe structured 
queuing nelworh simulation where the service time distribution Is exponential hnlnimum setvice 
time is zero), and preemption Is allowed. one percent of the lobs In the natwork hare high pli- 
Orftl. 

COYYUNICITIONSOFTNEliCYlOctober 199OiVo1.33. No.10 



PDGURR 7. PNfO~anCt Of TiNC #m 1s the IlUllkr Of PMCKSOrS iS Wkd. The SiRlUh- 
UOII pm6nlns WIWII 266l06lalpfm~s~ ~la611ndif1 a hlDc~.~bctop~Iogl.Ptrfo~af~mof 
simulators using first-wmfmst-seme mws and queues nit6 pnemption an shown for differ- 
cm msagc popuhtions. 

FlGURR 8. UnNblS! SitUiiUOII In line lDlp when rollback Is lssuncd t0 k trl# as 
expensive as fomanl progress. 

in deriving analytic models for 
Time Warp behavior. All existing 
models require a number of simpli- 
fying assumptions. For example, 
many costs (e.g., state saving and 
communication overhead) are 
often assumed to be zero. Never- 
theless, the models provide some 
useful insights to Time Warp 
implementors. 

Virtually all existing analytic 
models assume that each processor 
executes only a single process. 
However, one can view a collection 
of logical processes executing on a 
processor as a single “super- 
process.” Therefore, the analytic 
results described next have some 
applicability to the multiple process 
per processor case if one assumes 
that process scheduling within each 
processor is done according to time- 
stamp (i.e., the process with the 
lowest timestamped event is pro- 
cessed next). If this were not the 
case, the behavior of the “super- 
process” would not be the same as 
an ordinary logical process, so the 
results would not generalize. Per- 
formance in the many processes 
per processor case should be some- 
what better than that predicted by 
the super-process model because 
each rollback in the latter model 
causes all of the processes in the 
processor to be rolled back, but the 
actual Time Warp simulation really 
only rolls back one. 

A critical assumption used by 
these models is the cost of rolling 
back a logical process. Radically dif- 
ferent results ensue depending on 
what is assumed. As we shall soon 
see, one can conclude anything 
from optimal execution time to run 
times that are arbitrarily longer than 
a sequential computation, depend- 
ing on the assumption regarding 
rollback cost. 

At one extreme, let us consider 
the case where rollbacks are very 
expensive. In fact, let us assume the 
time to perform a rollback is pro- 
portional to the length of the roll- 
back in simulated time. Further, let 
us assume rolling back a computa- 
tion T units of simulated time takes 
twice (~1 long as forward progress by 

46 October 199O/Vo1.33, N~.~O,COYY”W,UT,OWIOCTRL.CY 



the same amount. Consider the case 
of two processors, Pi and Pp: Sup- 
pose P2 is 10 time units ahead of P, 
when PI sends a message to Pz, 
causing P2 to roll back (see Figure 
Sa). Assume message transmission 
requires zero time. While P2 is roll- 
ing back 10 time units, PI is able to 
move forward 20 time units, ac- 
cording to our assumption that roll- 
back is slower than forward prog- 
ress. The state of the two processors 
after the rollback has completed is 
depicted in Figure 8b. Both proces- 
sors advance a few units of simu- 
lated time, and P2 now sends a mes- 
sage that rolls back PI (Figure 8~). 
While PI is rolling back 20 time 
units, P2 advances 40 time units 
(Figure 8d). It is clear that if these 
processors continue to roll each 
other back, the rollback distance, 
and therefore, the time spent per- 
forming each rollback, is increasing 
exponentially as the simulation 
proceeds. Thus, the rate of prog- 
ress made by the processors (prog- 
ress in simulated time per unit of 
real-time) decreases as the simulation 
proceeds. 

Lavenberg and Muntz [49] and 
Mitra and Mitrani [70] assume the 
rollback cost is proportional to the 
rollback distance, but do not con- 
sider the instability described ear- 
lier. Further, they make the follow- 
ing assumptions: 1) no lookahead is 
used, each processor sends mes- 
sages to the other processor with 
zero timestamp increment, and 
2) each process is “self-driving,” 
being capable of advancing in simu- 
lated time on its own without re- 
ceiving event messages from the 
other processor (this can be accom- 
plished by having the process send 
messages to itself). These models 
do not generalize to more than two 
processors, however. Lubachevsky 
constructs an example to produce 
unstable behavior using three pro- 
cessors [64]. 

At the opposite extreme, Lin and 
Lazowska consider the case where 
rollback requires zero time [56]. 
They show that if it is the case that 
incorrect computations never roll 
back correct ones, then Time Warp 

using aggressive cancellation will 
produce optimal performance- 
execution time equal to the critical 
path lower bound. Further, they 
also show that Time Warp using 
lazy cancellation will execute at least 
as fast as the critical path, and per- 
haps even faster as was described 
earlier. They identify situations 
where Time Warp will always out- 
perform the Chandy/Misra algo- 
rithms, assuming zero overhead for 
both Time Warp and Chandy/ 
Misra. 

Interestingly, the example de- 
picted in Figure 8 that led to unsta- 
ble behavior is one in which incor- 
rect computation never rolls back 
correct computations. Therefore, 
when using Lin and Lazowska’s as- 
sumptions, this same simulation 
yields optimal performance! 

Between these two extremes, 
Madisetti, Walrand, and Messer- 
Schmitt [66], Lipton and Mizell [57], 
and Nicol [74] assume rollback in- 
curs a fixed cost, independent of 
the rollback distance. Like Laven- 
berg/Muntz, and Mitra/Mitrani, 
Madisetti et al. develop a model for 
the two-processor case. They then 
extend this model to an arbitrary 
number of processors by categoriz- 
ing processors as either slow or fast, 
and apply their results for the two- 
processor case. Based on this work, 
Madisetti et al. argue that it is ad- 
vantageous to add additional syn- 
chronization (beyond the event 
messages generated by the simula- 
tion itself) to prevent fast proces- 
sors from getting too far ahead of 
slow ones. This work motivated the 
design of the Wolf protocol dis- 
cussed earlier. 

Also assuming a fixed cost for 
rollback, Lipton and Mizell demon- 
strate that Time Warp can outper- 
form the Chandy/Misra algorithms 
by an arbitrary amount (i.e., in pro- 
portion to the number of proces- 
sors available). Intuitively, this is 
because the amount of parallelism 
that is lost by limiting oneself to 
conservative execution may be arbi- 
trarily large. Optimistic execution is 
able to exploit this lost parallelism. 
More interestingly, Lipton and 

Mizell show that the opposite is not 
true (i.e., Chandy/Misra can at most 
only outperform Time Warp by a 
constant factor). Further, Lipton 
and Mizell’s analysis appears to be 
sufficiently robust that it applies to 
virtually any conservative protocol, 
and not just the Chandy/Misra al- 
gorithms. 

The example discussed earlier 
that led to unstable behavior would 
seem to contradict Lipton and 
Mizell’s latter result. The explana- 
tion for this disparity is again the 
differing assumptions that are 
made regarding the cost of roll- 
back. The constant factor derived by 
Lipton and Mizell contains a term 
that is the rollback cost, so if roll- 
back cost becomes arbitrarily large, 
so does the disparity in perfor- 
mance. 

Finally, Nicol has developed an 
analytic model for Time Warp that 
assumes a constant state-saving cost 
as well as a constant rollback cost. 
He develops upper bounds on 
Time Warp performance for the 
many-processor case, and compares 
Time Warp’s performance to a syn- 
chronous conservative protocol. 
Assuming the Time Warp simula- 
tion is not written to exploit 
lookahead, he derives a sufficient 
condition for the conservative pro- 
tocol to outperform Time Warp. 

Thus, we see that analytic models 
can predict anything from ex- 
tremely good to extremely poor 
performance depending on what is 
assumed about the cost of rollback. 
What is this cost in practice? Let us 
make an accounting of the rollback 
costs in an existing Time Warp 
implementation. In particular, we 
will examine the costs in the imple- 

COMYUNICITIONSOCTNE~CYlOctobcr 199O/Vo1.33, No.10 47 



mentation described in [30], ignor- 
ing the direct cancellation optimiza- 
tion, and then examine the 
implications of alternative design 
choices. 

By rollback cost we mean any 
computation that is not present dur- 
ing the normal, forward progress 
of the computation. ‘We will assume 
that the state of the process is saved 
after each event, and state saving is 
performed by copying the entire 
state vector for the process. This 
strategy is used in both Fujimoto’s 
and JPL’s current implementations 
of Time Warp, and as we shall see, 
minimizes the cost of rollback. Roll- 
back entails three overheads: 1) res- 
toration of the input queue, 2) res- 
toration of the state queue, and 
3) restoration of the output queue. 
Restoration of the input and state 
queues incur negligible cost be- 
cause only a few machine instruc- 
tions are required to reset the 
pointer to the next event to be pro- 
cessed.s The principal overhead in 
a rollback is to restore the output 
queue, which involves sending anti- 
messages, assuming aggressive can- 
cellation is used. 

Because the principal overhead 
is the time required1 to send anti- 
messages, it is reasonable to assume 
that the rollback cost. is propor- 
tional to the length of the rollback. 
However, rolling back T time units 
will not take more time than for- 
ward progress by this amount be- 
cause sending anti-messages takes 
less time than sending positive mes- 
sages. Rollback only requires send- 
ing preexisting anti-messages; on 
the other hand, sen(ding a positive 
message requires allocation of a 
message buffer and filling it with 
the data to be sent.. Further, for- 
ward computation requires a num- 
ber of other costs: scheduling over- 
head, processing incoming positive 
and negative messages, state saving, 
and of course, the simulation com- 
putation itself. Thus, in practice, 
the rollback cost will be much 

“Other costs such as inserting the straggler 
message into the input queue is not consid- 
ered a rollback cost beaux this activity must 
take place during normal forward progress. 

smaller than that of the forward 
computation. The worst case is 
when there are relatively fine- 
grained event computations with 
negligible state saving overhead 
(e.g., queuing network simula- 
tions). We estimate the ratio of the 
time required for forward progress 
to that required for rollback to be 
approximately an order of magni- 
tude for the implementation de- 
scribed in [30]-rollback is about 
one-tenth as costly as forward prog- 
ress by an equivalent amount of 
simulated time. For larger-grained 
computations with significant state 
vectors, this ratio could easily be 
several orders of magnitude. 

Thus, the most appropriate cost 
for rollback using the assumptions 
described above is that it is propor- 
tional to the rollback distance but 
with a constant or proportionality 
less than 0.1. Because the rollback 
cost is so small for medium- to 
large-grained events, one could 
argue that the Lin/Lazowska model 
which assumes zero overhead is 
applicable. The empirical data re- 
ported in [3 l] is consistent with that 
claim. Further, because empirical 
data indicates that rollbacks tend to 
be very short (i.e., relatively con- 
stant in length), one could argue 
that the constant-rollback-cost as- 
sumption is also reasonable in prac- 
tice. 

Before leaving this subject, it is 
instructive to note how alternative 
implementations of Time Warp can 
affect rollback cost, particularly 
with regard to reducing state- 
saving overhead. One approach to 
reducing state-saving overhead is to 
simply save state less frequently 
[56]. The disadvantage of this ap- 
proach is that one may have to roll 
back further than is strictly neces- 
sary to return to the last saved state, 
and recompute forward again to 
reconstruct the desired state. For 
the analytic models described 
above, this recomputation phase 
must be considered as part of the 
rollback cost because it delays the 
process from making forward 
progress beyond the simulated time 
at which the rollback occurred. An 

alternative approach is to perform 
incremental state saving, (e.g., by 
dynamically constructing a “modifi- 
cation list”) as the computation pro- 
gresses forward. This approach 
also increases the cost of rollback 
because one must now reconstruct 
the desired state when a rollback 
occurs. Techniques that increase 
the cost of rollback must be care- 
fully weighed against the benefit 
that will be gained. If the rollback 
cost becomes sufficiently high, un- 
stable behavior may result. 

Critique oi Optlmhtlc 
MeChOdS 

A critical question faced by optimis- 
tic systems such as Time Warp is 
whether the system will exhibit 
thrashing behavior where most of 
its time is spent executing incorrect 
computations and rolling them 
back. Here, the concern is that in- 
correct computations will be exe- 
cuted at the expense of correct 
ones; indeed, if the application con- 
tains only limited parallelism rela- 
tive to the number of available 
processors, a significant degree of 
rollback is inevitable, and in fact, 
may be perfectly acceptable. Thus 
far, the experience of researchers 
at JPL and UCLA, Georgia Tech, 
and the University of Calgary has 
been that such behavior is seldom 
encountered in practice, and, when 
discovered, usually points to a cor- 
rectable weakness in the implemen- 
tation rather than a fundamental 
flaw in the algorithm. As discussed 
earlier, analytic models support this 
conclusion if the cost of rollback 
can be kept sufficiently low. 

An intuitive explanation as to 
why behavior tends to be stable is 
that erroneous computations can 
only be initiated when one pro- 
cesses a correct event prematurely; 
this premature execution, and sub- 
sequent erroneous computations, 
must necessarily be in the simulated 
time future of the correct, straggler 
computation. Also, the further the 
incorrect computation spreads, the 
further it moves into the simulated 
time future, lowering its priority 
for execution because preference is 

48 October t990,VoI 33, No.lO/COYYUWICATIONS OF ‘WE .CY 



always given to computations con- 
taining smaller timestamps. Thus, 
Time Warp systems tend to auto- 
matically slow the propagation of 
errors, allowing the error detection 
and correction mechanism to cor- 
rect the mistake before too much 
damage has been done. A potenti- 
ally more dangerous case is when 
the erroneous computation propa- 
gates with smaller timestamp incre- 
ments than the correct one. It re- 
mains to be seen, however, to what 
extent this behavior can degrade 
performance, or if such pathologi- 
cal situations arise in practice. 

A more serious problem with the 
Time Warp mechanism is the need 
to periodically save the state of each 
logical process. As mentioned, 
state-saving overhead can seriously 
degrade performance of many 
Time Warp programs, even if the 
state vector is relatively modest in 
size. The state-saving problem is 
further exacerbated by applications 
requiring dynamic memory alloca- 
tion because one may have to tra- 
verse complex data structures to 
save the process’s state. State-saving 
overhead limits the effectiveness of 
Time Warp to applications where 
the amount of computation re- 
quired to process an event can be 
made significantly larger than the 
cost of saving a state vector. This 
may be difficult to achieve for cer- 
tain applications. A more general 
solution is to use hardware support 
[29, 321. Supporters of optimism 
concede that hardware support will 
probably be required to exploitfine 
grain parallelism. 

Optimistic algorithms tend to use 
several times as much memory as 
their conservative counterparts. 
Although the space-time tradeoffs 
for optimistic systems are not yet 
understood, this appears to be an 
unavoidable aspect of optimism. 

Jefferson has recently shown that 
one can implement Time Warp, 
using no more memory than is re- 
quired by the corresponding se- 
quential simulation [42], though 
performance will probably be poor 
if one attempts to run Time Warp 
simulations using this little mem- 

ory. He defines a protocol that rolls 
back processes, if necessary, to re- 
claim memory resources as needed. 
This provides a mechanism that al- 
lows Time Warp to gracefully live 
with whatever memory is provided 
to it. Perhaps more surprisingly, 
Jefferson also shows that existing 
con.wruative PDES algorithms are not 
storage optimal. Adding a similar 
mechanism to existing asynchro- 
nous protocols to guarantee execu- 
tion using the minimum amount of 
memory without introducing a sig- 
nificant performance degradation 
is an open question. 

Unlike conservative approaches, 
optimistic systems need to be able to 
recover from arbitrary errors that 
can arise because such errors may 
be erased by a subsequent rollback. 
Erroneous computations may enter 
infinite loops, requiring the Time 
Warp executive to interact with the 
hardware’s interrupt system. In 
certain languages, pointers may be 
manipulated in arbitrary ways; 
Time Warp mut be able to trap ille- 
gal pointer usages that result in 
runtime errors, and prevent incor- 
rect computations from overwriting 
nonstate-saved areas of memory. 
Although such problems are, in 
principal, not insurmountable, they 
may be difficult to circumvent in 
certain systems without appropriate 
hardware support. The alternative 
taken by most existing Time Warp 
systems is to leave the task of ana- 
lyzing incorrect execution se- 
quences to the user, (e.g., by always 
checking array indices at runtime 
and explicitly testing to ensure that 
loops will terminate). 

Finally, proponents of conserva- 
tism point out that the Time Warp 
mechanism is much more complex 
to implement than conservative 
approaches-particularly if one 
attempts to catch errors such as 
those described above. Although 
the actual Time Warp code is not 

“The entire Time Warp kernel described in 
[30] for a shared-memory machine is only a 
few hundred lines of code. The rollback, mes- 
sage cancellation, and event-handling code in 
JPL’s Time Warp Operating System kernel 
for message-passing machines is estimated to 
be fewer than 1000 lines @I]. 

t . . . . - . . . . . -r.TTw 1.1.. 

A serious 
problll 
with the 
Time VVarp 
mechanism 

. 
IS the 
need to 

priodicall y 
save the 
state of 

eat h logical 
process. 

COYYUWICITION5OCTREACMlOctober 199WVo1.33, No.10 



very complex if one ignores the 
error handling aspects,” inexperi- 
enced implementors may make 
seemingly minor design mistakes 
that lead to extremely poor perfor- 
mance. For example, use of an in- 
appropriate scheduling policy can 
be catastrophic. Further, debug- 
ging Time Warp implementations 
is time consuming because it may 
require detailed analysis of com- 
plex rollback scenarios. A certain 
amount of design experience (or 
luck) with optimistic execution is 
often required to obtain a good, 
robust implementation of Time 
Warp. On the other hand, advo- 
cates of optimism counter by point- 
ing out that this development cost 
need only be paid once when devel- 
oping the Time Warp kernel. And 
so the debate rages on . . 

conclurlon 
In this article we have attempted to 
provide insight into the problem of 
executing discrete event simulation 
programs on a parallel computer. 
We have surveyed existing ap- 
proaches and analyzed the merits 
and drawbacks of various tech- 
niques. The state of the art in PDES 
has advanced rapidly in recent 
years, and much more is now 
known about the behavior of pro- 
posed simulation mechanisms than 
a few years ago. 

Optimistic methods such as Time 
Warp offer the greatest hope as a 
general purpose simulation mecha- 
nism, assuming stal:e-saving over- 
head can be kept to, a manageable 
level. Significant s,uccesses have 
been achieved across a wide range 
of applications. 

Conservative methods offer 
good potential for certain classes of 
problems. Significant successes 
have also been obtained, particu- 
larly when application-specific 
knowledge is applied to maximize 
the efficiency of the simulation 
mechanism. Conservative methods 
may find success in packaged simu- 
lation systems (e.g., logic simula- 
tors) in which the simulation code is 
optimized for the synchronization 
algorithm and users only configure 

the provided simulation modules 
into specific systems. 

Which strategy should one use 
for a particular simulation prob- 
lem? If state-saving overheads do 
not dominate, Time Warp has a 
good chance of success, assuming 
of course, the problem contains a 
reasonable degree of parallelism. If 
the application has good lookahead 
properties, conservative mecha- 
nisms may also perform well. If the 
application has both poor 
lookahead, and large state-saving 
overheads, all existing PDES ap- 
proaches will have trouble obtain- 
ing good performance, even if the 
application contains copious 
amounts of parallelism. However, 
Time Warp, aided with hardware 
support for state saving, provides a 
viable solution in this situation. 

An important application area 
that has not yet been adequately 
addressed by either optimistic or 
conservative simulation mecha- 
nisms is real-time applications. 
Theories of performances are not 
sufficiently developed to address 
this question, though significant 
progress has been made. 

Finally, perhaps the most chal- 
lenging problem remaining to be 
explored is application of these 
techniques beyond the realm of dis- 
crete event simulation, in the world 
of general purpose parallel compu- 
tation. A parallel simulator exe- 
cutes events in parallel, yet guaran- 
tees the same results are obtained as 
would be if the events were pro- 
cessed sequentially in increasing time- 
stamp order. Consider any compu- 
tation that is broken up into tasks, 
and the tasks are assigned time- 
stamps to reflect a valid sequential 
execution. For example, each task 
might represent a single iteration of 
a for-loop, with the timestamp indi- 
cating the iteration number. Paral- 
lelization of this for-loop is essen- 
tially the same problem as 
parallelizing a discrete event simu- 
lation: one must execute the itera- 
tions in parallel, but obtain the 
same results they would compute if 
the events were executed sequen- 
tially in increasing timestamp 

order. The degree to which the 
techniques described here can be 
applied to parallelizing arbitrary 
computations is only beginning to 
be explored. 

Acknowledgments. 
The author wishes to thank David 
Jefferson, David Nicol, Peter 
Reiher, and Fred Wieland for valu- 
able comments and suggestions on 
various drafts of this paper, and 
Phil Heidelberger who suggested 
that this article be written. 0 

References 
1. 

2. 

3. 

Abrams, M. The object library for 
parallel simulation (01~s). In Pro- 
ceedings of Winter Simulation Confer- 
ence (December 1988), 210-219. 
Agre, J.R. Simulations of time warp 
distributed simulations. In Proceed- 
ings of the SCS Multiconference on Di.- 
tributed Simulation 21, 2 (March 
1989), 85-90. 
Ayani, R. A parallel simulation 
scheme based on the distance be- 
tween objects. In Proceedings of the 
SCS Multiconference on Distributed 
Simulation 21, 2 (March 1989), pp. 
113-118. 

4. 

5. 

6. 

7. 

8. 

Ayani, R. and Rajaei, H. Parallel 
simulation of a generalized cube 
multistage interconnection net- 
work. In Proceedings of the SCS Mul- 
ticonference on Distributed Simulation 
22, 1 (January 1990), pp. 60-63. 
Baezner, D., Cleary, J., Lomow, G., 
and Unger, B. Algorithmic optimi- 
zations of simulations on Time 
Warp. In Proceedings of the SCS Mul- 
ticonference on Distributed Simulation 
21, 2 (March 1989), pp. 73-78. 
Bagrodia, R.L., and Liao, W-T. 
Maisie: A language and optimizing 
environment for distributed simu- 
lation. In Proceedings of the SCS Mul- 
ticonference on Distributed Simulation 
22, 1 (January 1990), pp. 205-210. 
Bain, W.L., and Scott, D.S. An algo- 
rithm for time synchronization in 
distributed discrete event simula- 
tion. In Proceedings of the SCS Mul- 
ticonference on Distributed Simulation 
19, 3 (July 1988), pp. 30-33. 
Ball, D., and Hoyt, S. The adaptive 
Time-Warp concurrency control 
algorithm. In Proceedings of the SCS 
Multiconference on Distributed Simula- 
tion 22 1 (January 1990), pp. 174- 
177. 

9. Bellenot, S. Global virtual time al- 

50 October 199O/Vo1.33. N~.lOICOYYUNICITIONSOFTNE.CY 



10. 

11. 

12. 

13. 

gorithms. In Proceedings of the Mul- 
ticonference on Distributed Simulation, 
22, 1 (January 1990), pp. 122-127. 
Berry, 0. Performance evaluation 
of the Time Warp distributed simu- 
lation mechanism. Ph.D. thesis, 
University of Southern California, 
May 1986. 
Biles, W.E., Daniels, D.M., and 
O’Donnell, T.J. Statistical consider- 
ations in simulation on a network of 
microcomputers. In Proceedings of 
1985 Winter Simulation Conference 
(December 1985), pp. 388-393. 
Bryant, R.E. Simulation of packet 
communications architecture com- 
puter systems. MIT-LCS-TR-188, 
Massachusetts Institute of Technol- 
ogy, 1977. 
Cai, W., and Turner, S.J. An algo- 
rithm for distributed discrete-event 
simulation-the “carrier null mes- 
sage” approach. In Proceedings of the 
SCS Multiconference on Distributed 
Simulation 22, 1 (January 1990), pp. 
3-8. 

14. Chandak, A., and Browne, J.C. 
Vectorization of discrete event sim- 
ulation. In Proceedings of the 1983 
International Conference on Parallel 
Processing (August 1983), pp. 359- 
361. 

15. Chandy, K.M., and Misra, J. Dis- 
tributed simulation: A case study in 
design and verification of distrib- 
uted programs. IEEE Trans. on 
Softtw. Eng. SE-5, 5 (September 
1979), 440-452. 

16. Chandy, K.M., and Misra, J. Asyn- 
chronous distributed simulation via 
a sequence of parallel computa- 
tions. Commun. ACM 24, 11 (No- 
vember 1981), 198-205. 

17. Chandy, K.M., and Misra, 1. Parallel 

18. 

19. 

20. 

21. 

Program Design, A Foundation. Ad- 
dison-Wesley, 1988. 
Chandy, K.M., and Sherman, R. 
The conditional event approach to 
distributed simulation. In Proceed- 
ings of the SCS Multiconference on Dis- 
tributed Simulation 21, 2 (March 
1989), pp. 93-99. 
Chandy, K.M., and Sherman, R. 
Space, time, and simulation. In Pro- 
ceedings of the SCS Multiconference on 
Distributed Simulation 21, 2 (March 
1989), pp. 53-57. 
Comfort, J.C. The simulation of a 
master-slave event set processor. 
Simulation 42 3 (March 1984), 117- 
124. 
Conception, A.I. A hierarchical 
computer architecture for distrib- 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29: 

30. 

31. 

32. 

33. 

uted simulation. IEEE Trans. on 
Comput. C-38, 2 (February 1989), 
311-319. 
Cota, B.A., and Sargent, R.G. A 
framework for automatic look- 
ahead computation in conservative 
distributed simulations. In Proceed- 
ings of the SCS Multiconference on Dis- 
tributed Simulation 22, 1 (January 
1990) pp. 56-59. 
Davis, C.K., Sheppard, S.V., and 
Lively, W.M. Automatic develop- 
ment of parallel simulation models 
in Ada. In Proceedings of 1988 Simu- 
lation Conference (December 1988), 
pp. 339-343. 
De Vries, R.C. Reducing null mes- 
sages in Misra’s distributed discrete 
event simulation method. IEEE 
Trans. on Softw. Eng. 16, 1 (January 
1990), 82-91. 
Dickens, P.M., Reynolds, Jr., P.F. 
SRADS with local rollback. In Pro- 
ceedings of the SCS Multiconference on 
Distributed Simulation 22, 1, (Janu- 
ary 1990), pp. 161-164. 
Dijkstra, E.W., and Scholten, C.S. 
Termination detection for diffusing 
computations. Inf. Proc. Lett. II 1 
(August 1980), l-4. 
Ebling, M., DiLorento, M., Presley, 
M., Wieland, F., and Jefferson, D.R. 
An ant foraging model imple- 
mented on the Time Warp Operat- 
ihg System. In Proceedings of the SCS 
Multiconference on Distributed Simula- 
tion 22 2 (March 1989), pp. 21-26. 
Fujimoto, R.M. Performance mea- 
surements of distributed simulation 
strategies. Trans. Sot. for Cornput. 
Simul. 6, 2 (April 1989), 89-132. 
Fujimoto, R.M. The virtual time 
machine. International Symfiosium on 
Parallel Algorithms and Architectures 
(June 1989), 199-208. 
Fujimoto, R.M. Time Warp on a 
shared memory multiprocessor. 
Trans. Sot. for Comput. Simul. 6, 3 
(July 1989), 21 l-239. 
Fujimoto, R.M. Performance of 
Time Warp under synthetic work- 
loads. In Proceedings of the SCS Mul- 
ticonference on Distributed Simulation 
22, 1 (January 1990), pp. 23-28. 

Fujimoto, R.M., Tsai, J., and 
Gopalakrishnan, G. Design and 
performance of special purpose 
hardware for Time Warp. In Pro- 
ceedings of the 15th Annual Symposium 
on Computer Architecture (June 
1988), pp. 401-408. 
Gafni, A. Rollback mechanisms for 
optimistic distributed simulation 

34. 

systems. In Proceedings of the SCS 
Multiconference on Distributed Simula- 
tion 19, 3 (July 1988), pp. 61-67. 

Gates, B., and Marti, J. An empiri- 
cal study of Time Warp request 
mechanisms. In Proceedings of the 
SCS Multiconference on Distributed 
Simulation 19, 3 (July 1988), pp. 
73-80. 

35. Gilmer, J.B. An assessment of Time 
Warp parallel discrete event simula- 
tion algorithm performance. In 
Proceedings of the SCS Multiconference 
on Distributed Simulation 19, 3 (July 
1988), pp. 45-49. 

36. Groselj, B., and Tropper, C. Pseu- 
dosimulation: An algorithm for dis- 
tributed simulation with limited 
memory. Internat. Parallel Program. 
15, 5 (October 1986), 413-456. 

37. Groselj, B., and Tropper, C. The 
time of next event algorithm. In 
Proceedings of the SCS Multiconference 
on Distributed Simulation 19, 3 (July 
1988), pp. 25-29. 

39. 

40. 

38. Groselj, B., and Tropper, C. A 
deadlock resolution scheme for dis- 
tributed simulation. In Proceedings 
of the SCS Multiconference on Distrib- 
uted Simulation 21,‘2 (March 1989), 
pp. 108-l 12. 
Heidelberger, P. Statistical analysis 
of parallel simulations. In Proceed- 
ings of 1986 Winter Simulation Con- 
ference (December 1986), pp. 290- 
295. 
Hontalas, P., Beckman, B., 
DiLorento, M., Blume, L., Reiher, 
P., Sturdevant, K., Van Warren, L., 
Wedel, J., Wieland, F., and Jeffer- 
son, D.R. Performance of the collid- 
ing pucks simulation on the Time 
Warp Operating System. In Proceed- 
ings of the SCS Multiconference on Dis- 
tributed Simulation 21, 2 (March 
1989), pp. 3-7. 

Jefferson, D.R. Virtual time. ACM 
Trans. Prog. Lang. and Syst. 7, 3 
(July 1985), 404-425. 
Jefferson, D.R. Virtual time II: 

41. 

42. 

COYMUNICITIONSOFTNSACCY/October 199O/Vo1.33, No.10 51 



Storage management in distributed ence, University of Washington, 
simulation. Principles of Distributed Seattle, Washington, 1989. 
Computation. To be published. 53. Lin, Y-B., and Lazowska, E. Ex- 

43. Jefferson, D.R., *Beckman, B., 
Weiland, F., Blume, .L., DiLorento, 
M., Hontalas, P., Reiher, P., Stur- 
devant, K., Tupman, J., Wedel, J., 
and Younger, H. ‘The Time Warp 
Operating System. I lth Symposium 54. 
on Operating Systems Principles 21, 5 
(November 1987), 77-93. 

44. Jefferson, D.R., and Sowizral, H. 
Fast concurrent simulation using 
the Time Warp mechanism, part 1: 
Local control. Tech. Rep. N-1906- 55’ 
AF, RAND Corporation, December 
1982. 

45. Jones, D.W. Concurrent simulation: 
An alternative to distributed simu- 
lation. In Proceedirtgs of1 986 Winter 
Simulation, (December 1986), pp. 56. 
417-423. 

46. Jones, D.W., Chou, C-C., Renk, D., 
and Bruell, S.C. Experience with 
concurrent simulation. In Proceed- 
ings of I989 Winter Simulation Con- 
ference (December 1989), pp. 756- 
764. 57. 

47. Krishnamurthi, PA., Chandrase- 
karan, U., and Sheppard, S.V. Two 
approaches to the implementation 
of a distributed simulation system. 
In Proceedings 198.5 Winter Simula- 
tion Conference (December 1985), 58. 
pp. 435-443. 

48. 

49. 

50. 

51. 

52. 

Kumar, D. An approximate method 
to predict performance of a distrib- 
uted simulation scheme. In Proceed- 
ings of the 1989 International Confer- 59. 
ence on Parallel Processing 3 (August 
1989), 259-262. 
Lavenberg, S., and Muntz, R. Per- 
formance analysis of a rollback 
method for distributed simulation. 60. 
In Performance ‘83. Elsevier Science 
Pub., North Holland, 1983, 117- 
132. 
Leung, E., Cleary, J., Lomow, G., 
Baezner, D., and Unger, B. The 
effects of feedback on the perfor- 61. 
mance of conservative algorithms. 
In Proceedings of the SCS Multiconfer- 
ence on Distributed Simulation 21, 2 
(March 1989), pp. 44-49. 
Li, K. and Hudak, P. Memory Co- 
herence in Shared Virtual Memory 62. 
Systems. ACM Trans. on Computer 
Systems, 7, 4 (November 1989), pp. 
32 l-359. 

ploiting lookahead in parallel simu- 
lation. Tech. Rep. 89-10-06, Dept. 
of Computer Science, University of 
Washington, Seattle, Washington, 
1989. 
Lin, Y-B., and Lazowska, E.D. Opti- 
mality considerations of “Time 
Warp” parallel simulation. In Pro- 
ceedings of the SCS Multiconference on 
Distributed Simulation 22, 1 (January 
1990), pp. 29-34. 
Lin, Y-B., Lazowska, E.D., and 
Baer, J-L. Conservative parallel 
simulation for systems with no 
lookahead prediction. In Proceed- 
ings of the SCS Multiconference on Dis- 
tributed Simulation 22, 1 (January 
1990), pp. 144-149. 
Lin, Y-B., and Lazowska, E. Reduc- 
ing the state saving overhead for 
Time Warp parallel simulation. 
Tech. Rep. 90-02-03, Dept. of Com- 
puter Science, University of Wash- 
ington, Seattle, Washington, Febru- 
ary 1990. 
Lipton, R.J., and Mizell, D.W. Time 
Warp vs. Chandy-Misra: A worst- 
case comparison. In Proceedings of 
the SCS Multiconference on Distributed 
Simulation 22, 1 (January 1990), pp. 
137-143. 
Liu, L.Z., Tropper, C. Local dead- 
lock detection in distributed simula- 
tions. In Proceedings of the SCS Mul- 
ticonference on Distributed Simulation 
22, 1 (January 1990), pp. 64-69. 
Livny, M. A study of parallelism in 
distributed simulation. In Proceed- 
ings of the SCS Multiconference on Dis- 
tributed Simulation 15, 2 (January 
1985), pp. 94-98. 
Lomow, G., Cleary, J., Unger, B., 
and West, D. A performance study 
of Time Warp. In Proceedings of the 
SCS Multiconference on Distributed 
Simulation 19, 3 (July 1988), pp. 
50-55. 

Loucks, W.M., and Preiss, B.R. The 
role of knowledge in distributed 
simulation. In Proceedings of the SCS 
Multiconference on Distributed Simula- 
tion22, 1 (January 1990), pp. 9-16. 

Lubachevsky, B.D. Efficient distrib- 
uted event-driven simulations of 
multiple-loop networks. Commun. 
ACM 32, (January 1989), 111-123. 

Lin, Y-B., and Lazowska, E. Deter- 63. Lubachevsky, B.D. Scalability of the 
mining the global virtual time in a bounded lag distributed discrete 
distributed simulation. Tech. Rep. event simulation. In Proceedings of 
90-01-02, Dept. OF Computer Sci- the SCS Multiconference on Distributed 

64. 

65. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 

73. 

74. 

75. 

Simulation 21, 2 (March 1989), pp. 
100-107. 
Lubachevsky, B.D., Shwartz, A., 
and Weiss, A. Rollback sometimes 
works . . . if filtered. In Proceedings 
of 1989 Winter Simulation Conference 
(December 1989), pp. 630-639. 
Madisetti, V., Walrand, J., and 
Messerschmitt, D., Wolf: A rollback 
algorithm for optimistic distributed 
simulation systems. In Proceedings of 

I988 Winter Simulation Conference 
(December 1988), pp. 296-305. 
Madisetti, V., Walrand, J., and 
Messerschmitt, D. Synchronization 
in message-passing computers- 
models, algorithms, and analysis. In 
Proceedings of the SCS Multiconference 
on Distributed Simulation 22, 1 (Janu- 
ary 1990), pp. 35-48. 
McCormack, W.M., and Sargent, 
R.G. Analysis of future event set 
algorithms for discrete event simu- 
lation. Commun. ACM 24, (Decem- 
ber 1981), 801-812. 
Merrifield, B.C., Richardson, S.B., 
and Roberts, J.B.G. Quantitative 
studies of discrete event simulation 
modelling of road traffic. In Pro- 
ceedings of the SCS Multiconference on 
Distributed Simulation 22, 1 (January 
1990), pp. 188-193. 
Misra, J. Distributed-discrete event 
simulation. ACM Comput. Surv. 18, 1 
(March 1986), 39-65. 
Mitra, D., and Mitrani, I. Analysis 
and optimum performance of two 
message-passing parallel processors 
synchronized by rollback. In Perfor- 
mance ‘84, Elsevier Science Pub., 
North Holland, 1984, 35-50. 
Nevison, C. Parallel simulation of 
manufacturing systems: Structural 
factors. In Proceedings of the SCS 
Multiconference on Distributed Simula- 
tion 22, 1 (January 1990), pp. 17- 
19. 
Nicol, D.M. Parallel discrete-event 
simulation of FCFS stochastic 
queueing networks. SIGPLAN Not. 
23, 9 (September 1988), 124-137. 
Nicol, D.M. The cost of conserva- 
tive synchronization in parallel dis- 
crete event simulations. Tech. Rep. 
90-20, ICASE, June 1989. 
Nicol, D.M. Performance bounds 
on parallel self-initiating discrete- 
event simulations. Tech. Rep. 90- 
21, ICASE, March 1990. 
Nicol, D.M., and Reynolds, P.F., Jr. 
Problem oriented protocol design. 
In Proceedings of 1984 Winter Simula- 
tion Conference (December 1984), 
pp. 47 l-474. 

52 October 1990/Vo1.33,No.,O,CQYY"NIC1TIO~~OCT"E~~.CY 



76. 

77. 

78. 

79. 

Peacock, J.K., Wong, J.W., and scheduling discrete simulation 
Manning, E.G. Distributed simula- events for concurrent execution. In 
tion using a network of processors. Proceedings of the SCS Multiconference 
Comput. Networks 3, 1 (February on Distributed Simulation 19, 3 (July 
1979), 44-56. 1988), pp. 34-42. 
Preiss, B.R. The Yaddes distributed 
discrete event simulation specifica- 
tion language and execution envi- 
ronments. In Proceedings of the SCS 

Multiconference orz Distributed Simula- 
tion 21, 2 (March 1989) pp. 139- 
144. 

89. Sokol, L.M., and Stucky, B.K. 
MTW: experimental results for a 
constrained optimistic scheduling 
paradigm. In Proceedings of the SCS 

Multiconference on Distributed Simula- 

tion 22, I (January 1990), pp. 169- 
173. 

Presley, M., Ebling, M., Wieland, F., 
and Jefferson, D.R. Benchmarking 
the Time Warp Operating System 
with a computer network simula- 
tion. In Proceedings of the SCS Mul- 

ticonference on Distributed Simulation 

21, 2 (March 1989), pp. 8-13. 
Puccio, J. A causal discipline for 
value return under Time Warp. In 
Proceedings of the SCS Multiconference 

on Distributed Simulation 19, 3 (July 

1988), pp. 171-176. 

90. Som, T.K., Cota, B.A., and Sargent, 
R.G. On analyzing events to esti- 
mate the possible speedup of paral- 
lel discrete event simulation. In Pro- 

ceedings of 1989 Winter Simulation 

Conference (December 1989), pp. 
729-737. 

91. Su, W.K., and Seitz, C.L. Variants of 
the Chandy-Misra-Bryant distrib- 
uted discrete-event simulation algo- 
rithm. In Proceedings of the SCS Mul- 

ticonference on Distributed Simulation 

21, 2 (March 1989), pp. 38-43. 
Tinker, P.A., and Agre, J.R. Object 
creation, messaging, and state ma- 
nipulation in an object oriented 
Time Warp system. In Proceedings of 

the SCS Multiconference on Distributed 

Simulation 21, 2 (March 1989), pp. 
79-84. 

80. Reed, D.A., Malony, A.D., and 
McCredie, B.D. Parallel discrete 
event simulation using shared 
memory. IEEE Trans. Softw. Eng. 

14, 4 (April 1988), 541-553. 

81. Reiher, P.L. private communica- 
tion, February 1990. 

82. Reiher, P.L., Fujimoto, R.M., Bel- 
lenot, S., and Jefferson, D.R. Can- 
cellation strategies in optimistic exe- 
cution systems. In Proceedings of the 

SCS Multiconference on Distributed 

Simulation 22, 1 (January 1990), pp. 
112-121. 

83. Reiher, P.L., Wieland, F., and Jef- 
ferson, D.R. Limitation of optimism 
in the Time Warp Operating Sys- 
tem. In Proceedings of 1989 Winter 

Simulation Conference (December 
1989), pp. 765-770. 

84. Reynolds, P.F., Jr. A shared re- 
source algorithm for distributed 
simulation. In Proceedings of the 9th 

Annual Symposium on Computer Archi- 

tecture, 10, 3 (April 1982), 259-266. 
85. Reynolds, P.F., Jr. A spectrum of 

options for parallel simulation. In 
Proceedings of 1988 Winter Simulation 

Conference (December l988), pp. 
325-332. 

86. Samadi, B. Distributed simulation, 
algorithms and performance analy- 
sis. Ph. D. thesis, University of Cali- 
fornia, Los Angeles, 1985. 

87. Sleator, D.D., and Tarjan, R.E. Self- 
adjusting binary search trees. J. 
ACM 32, 3 (July 1985), 652-686. 

88. Sokol, L.M., Briscoe, D.P., and 
Wieland. A.P. MTW: a strategy for 

92. 

93. 

94. 

95. 

96. 

Wagner, D.B., and Lazowska, E.D. 
Parallel simulation of queueing net- 
works: Limitations and potentials. 
In Proceedings of I989 ACM SIG- 

METRICS and PERFORMANCE 

‘89,17, 1 (May 1989), pp. 146-155. 

Wagner, D.B., Lazowska, E.D., and 
Bershad, B.N. Techniques for effi- 
cient shared-memeory parallel sim- 
ulation. In Proceedings of the SCS 

Multiconference on Distributed Simula- 

tion 21, 2 (March 1989), pp. 29-37. 
West, D. Optimizing Time Warp: 
Lazy rollback and lazy re-evalua- 
tion. M.S. thesis, University of Cal- 
gary, January 1988. 
Wieland, F., Hawley, L., Feinberg, 
A., DiLorento, M., Blume, L., 
Reiher, P., Beckman, B., Hontalas, 
P., Bellenot, S., and Jefferson, D.R. 
Distributed combat simulation and 
Time Warp: The model and its per- 
formance. In Proceedings of the SCS 

Multiconference on Distributed Simula- 
tion 21, 2 (March 1989), pp. 14-20. 

97. Wieland, F., and Jefferson, D.R. 
Case studies in serial and parallel 
simulation. In Proceedings of the 

1989 International Conference on Par- 

allel Processing, vol. 3, (August 
1989), pp. 255-258. 

98. Zhang, G., and Zeigler, B.P. DEVS- 
Scheme supported mapping of hi- 
erarchical models onto multiple 
processor systems. In Proceedings of 

the SCS Multiconference on Distributed 

Simulation 21, 2 (March 1989), pp. 
64-69. 

CR Categories and Subject Descrip- 
tors: C. 1.2 [Processor Architectures]: 
Multiprocessors-MIMD; C.3 [Special 
Purpose and Application-based Sys- 
tems]; 1.6.1 [Simulation and Model- 
ing]: Simulation theory. 

General Terms: Algorithms, Experi- 
mentation, Measurement, Performance. 

Additional Keywords and Phrases: 
Event-driven simulation, parallel pro- 
cessing, synchronization methods. 

About the Author: 
RICHARD FUJIMOTO is an associate 
professor in the College of Computing 
at the Georgia Institute of Technology. 
His current research interests include 
computer architecture, parallel process- 
ing, and simulation. Author’s present 
address: College of Computing, Geor- 
gia Institute of Technology, Atlanta, 
Georgia 30332-0280. 

Much of the research in this article was sup- 
ported by NSF grants DCR-850-4826 and 
CCR-8902362 and a faculty fellowship from 
NASA. 

Permission to copy without fee all or part of this 
material is sranted provided that the copies are not 
made or distributed for direct commercial advan- 
tage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given 
that copying is by permission ofthe Association for 
Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

0 IWO ACM 0001.0782/90/1000-0030 $1.50 

COYYUWICITIOII~OCTREACCllOctobcr 199O/VcJ.33. No.10 


