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Abstract 
We present a s tudy of operating system errors found by 
automatic,  static, compiler analysis applied to the Linux 
and OpenBSD kernels. Our approach differs from previ- 
ous studies tha t  consider errors found by manual inspec- 
tion of logs, testing, and surveys because static analysis 
is applied uniformly to the entire kernel source, though 
our approach necessarily considers a less comprehensive 
variety of errors than previous studies. In addition, au- 
tomation allows us to track errors over multiple versions 
of the kernel source to est imate how long errors remain 
in the system before they are fixed. 

We found tha t  device drivers have error rates up 
to three to seven times higher than the rest of the ker- 
nel. We found tha t  the largest quartile of functions 
have error rates two to six times higher than the small- 
est quartile. We found tha t  the newest quartile of files 
have error rates up to twice tha t  of the oldest quartile, 
which provides evidence tha t  code "hardens" over time. 
Finally, we found tha t  bugs remain in the Linux kernel 
an average of 1.8 years before being fixed. 

1 Introduction 

This paper examines features of operating system er- 
rors found automatical ly by compiler extensions. We 
a t t empt  to address questions like: Do drivers account 
for most errors? How are bugs distr ibuted? How long 
do bugs last? Do bugs cluster? How do different oper- 
ating system kernels compare in terms of code quality? 

We derive initial answers to these questions by ex- 
amining bugs in 21 snapshots of Linux spanning seven 
years. We cross check these results against a recent 
OpenBSD snapshot. The bugs that  we examine were 
found in previous work, which used compiler extensions 
to automatical ly find violations of system-specific rules 
in kernel code [8]. These bugs fall into several categories 
including: not releasing acquired locks, calling blocking 
operations with interrupts disabled, using freed mem- 
ory, and dereferencing potential ly null pointers. 

Basing our analysis on compiler-found errors has 
two nice properties. First ,  the compiler applies a given 
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extension uniformly across the entire kernel. This even- 
handed error slice allows us to do a mostly "apples-to- 
apples" comparison across different par ts  of the kernel. 
Likewise, we can compare two different kernels by run- 
ning the same checks over both.  These comparisons 
would be difficult to make with manual error reports 
because they tend to overrepresent errors where skilled 
developers happened to look or where bugs happened 
to be triggered most often. Second, automat ic  analysis 
lets us easily track errors over many versions, making it 
possible to apply the same analysis to trends over time. 

The scope of errors used in this study, though, is 
limited to those found by our automat ic  tools. These 
bugs are mostly straightforward source-level errors. We 
do not directly track problems with performance, high- 
level design, user space programs, or other facets of a 
complete system. Whether  or not our conclusions will 
apply to these types of issues is an open question. 

The paper revolves around five central questions: 

1. Where are the errors? Section 3 compares the dif- 
ferent subsections of the kernel and shows tha t  
driver code has error rates three to seven times 
higher for certain types of errors than code in the 
rest of the kernel. 

2. How are bugs distr ibuted? Section 4 shows that  
the error distr ibution is readily matched to a loga- 
r i thmic series distr ibution whose properties could 
yield some insight into how bugs are generated. 

3. How long do bugs live? Section 5 calculates in- 
formation about  bug lifetimes across all 21 kernel 
snapshots and shows tha t  the average bug lifetime 
for certain types of bugs is about  1.8 years. 

4. How do bugs cluster? We would expect tha t  if 
a function, file, or directory has one error, it is 
more likely tha t  it  has others. Section 6 shows 
that  clustering tends to occur most heavily where 
programmer ignorance of interface or system rules 
combines with copy-and-paste.  For the most heav- 
ily clustered error type,  less than 10% of the files 
tha t  were checked contained all of the errors. 

5. How do operating system kernels compare? Sec- 
tion 7 shows tha t  OpenBSD has a higher error rate 
than Linux on each of the four checkers we used 
to compare them. OpenBSD's  error rates range 
from 1.2 to six times higher. 

The paper  is laid out as follows. Section 2 describes 
the kernels we check and how we gather da ta  from them. 
Section 3 examines where bugs are. Section 4 discusses 
the distr ibution of error counts and matches it to a the- 
oretical distribution. Section 5 addresses how long bugs 
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live. Section 6 describes how bugs cluster. Section 7 
compares OpenBSD and Linux. Finally, Section 8 sum- 
marizes related work. 

2 Methodology 

This section discusses the versions of Linux that  we use 
for our study and the system that  we use to gather our 
results. 

2.1 Where the data comes  from 
Our data comes from 21 different snapshots of the Linux 
kernel spanning seven years. We use Linux for several 
reasons. First, the source code is freely available. With- 
out this feature, a compiler-driven study could not work. 
Release snapshots dating back to the early nineties are 
readily accessible, allowing us to look for trends in time 
and allowing others to get these same releases to check 
our results. Second, Linux is widely used. As a re- 
sult, relative to other systems, its code has been heavily 
tested, meaning that  many of the bugs that are easy 
to find have already been removed. Finally, many pro- 
grammers have developed Linux code. In aggregate, 
this effect should reduce the degree to which our results 
are skewed because of individual idiosyncrasies. 

Structurally, the Linux kernel is split into 7 main 
sub-directories: ke rne l  (main kernel), mm (memory man- 
agement), ±pc (inter-process communication), arch (ar- 
chitecture specific code), ne t  (networking code), f s  (file 
system code), and d r i v e r s  (device drivers). Figure 1 
shows the size of the code that  we check across time. 
The size is measured in millions of lines of code (LOC), 
including newlines and comments. Each of the 21 dif- 
ferent releases that  we check are marked with a point. 
The graph ignores all parts of the kernel specific to ar- 
chitectures other than x86. 

The graph shows several interesting features: 

• The checked snapshots have grown by a factor of 
roughly 16 (from 105K lines at version 1.0 to 1.6 
million lines in version 2.4.1). 

• The bulk of the code we check comes from the 
drivers. At the extreme ends of the graph, versions 
1.0 and 2.4.1, driver code accounts for about 70% 
of the code size; in the middle of the graph, this 
percentage drops to slightly over 50%. 

• In the two years between 2.3.0 and 2.4.1 the size 
of the OS almost doubles, growing as much as it 
did in the previous 5 years. Most of this growth 
comes from drivers. Secondary contributors are 
the file systems and network code. 

2.2 Measurements 
Most of the graphs in this paper are built upon four 
different measurements. The first three are computed 
directly from the code, while the last is calculated from 
the other metrics: 

I n s p e c t e d  errors: these were errors we manually re- 
viewed. 

P r o j e c t e d  errors: these were unreviewed errors found 
by low false positive checkers. 

N o t e s :  these count the number of times a check was 
applied. If there are no notes there can be no 
errors. 
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Figure 1: The size of the Linux tree that  we check over 
time. Versions 1.1.13, 2.1.{20,60,100,120}, 2.3.{10, 30, 
40}, 2.3.99-pre6, and 2.4.0 have a "+" mark but  are 
not labelled. Most of the growth comes from drivers; 
secondary contributors are the file system and network 
code. The growth of the rest of the kernel is significantly 
smaller. The growth rate changes at 2.3.0 where the rate 
of new driver code increases. 

R e l a t i v e  error rate:  this metric is the number of er- 
rors, either inspected or projected, divided by the 
number of notes for that  error type: e r r_ra t e  = 
e r r o r s / n o t e s .  For example, if one kernel has one 
error and ten notes, its average error rate will be 
1/10 = 10%. We use this to normalize results 
when comparing different code bases or checkers. 

2.3 Gathering the Errors 
Our errors were found by the twelve system-specific 
checkers listed in Table 1. These come from previous 
work on the xgcc compiler [8]. Whereas this past work 
demonstrated the effectiveness of system-specific static 
analysis, it was relatively unreflective about how and 
why the errors arose. This paper takes the approach as 
a given and focuses solely on the errors. 

To get the inspected errors, we manually examined 
the error logs produced by the checkers for a small num- 
ber of kernel versions and determined which reports 
were bugs and which were false positives. These se- 
lected error logs were annotated with this information 
and propagated to all other versions. The propaga- 
tion process used the inspected error logs for one kernel 
version to automatically annotate any errors that  also 
appear in other, uninspected error logs. For example, 
for the Null  checker, we manually inspected the errors 
for Linux 2.4.1. Each error report was annotated, and 
then the annotated results were propagated backwards 
through each version back to 1.0. If a bug in 2.4.1 was 
also reported for an earlier version, these versions au- 
tomatically got the bug annotation. We did this back 
propagation for all bugs found in the 2.4.1 kernel. In ad- 
dition to inspecting error logs ourselves, we distributed 
them to system implementors for external confirmation. 

To get the projected errors, we ran checkers with low 
false positive rates over all Linux versions and treated 
their unexamined results as errors. We primarily use 
three low false positive checkers in this paper: Vat, 
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] Check  I N b u g s  
Block 206 + 87 
Null  124 + 267 
Vat 33 + 69 
Inull 69 
Range 54 
Lock 26 
Intr 27 
Free 17 
Float 10 + 15 
Real 10 + 1 
Param 7 
Size 3 

Rule checked 

To avoid deadlock, do not call blocking functions with interrupts disabled or a spinlock held. 
Check potentially NULL pointers returned from routines. 
Do not allocate large stack variables (> 1K) on the fixed-size kernel stack. 
Do not make inconsistent assumptions about whether a pointer is NULL. 
Always check bounds of array indices and loop bounds derived from user data. 
Release acquired locks; do not double-acquire locks. 
Restore disabled interrupts. 
Do not use freed memory. 
Do not use floating point in the kernel. 
Do not leak memory by updating pointers with potentially NULL realloc return values. 
Do not dereference user pointers. 
Allocate enough memory to hold the type for which you are allocating. 

Table 1: The twelve checkers used in this paper. If the checker has few false positives, we report the number of bugs 
as inspected +projected. In total there are 1025 bugs. The top three are the primary projected checkers: we assume 
all potential errors reported by these checkers are real bugs. The middle set of checkers are used throughout the 
paper, but we only count manually inspected errors from 2.4.1 as real bugs. The bottom set of checkers are used only 
occasionally throughout the paper. 
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Figure 2: The absolute number of projected errors in 
this study. We believe 1000 is a conservative estimate 
of the number of unique bugs we have. The errors found 
by the three projected checkers are usually a function of 
code size, though the block checker has an unusual dip 
from version 2.1.60 to 2.3.0. The number of projected 
errors goes down at 2.3.40 for Block and Null  because 
about 30 Block errors and 40 Null  errors were fixed in 
that version. 

Block, and Null.  The Var checker produces almost 
no false positives, Block less than three percent, and 
Null  less than ten percent. While the projected results 
have more noise, they are fairly representative of the 
inspected results. 

Raw error counts alone cannot answer questions re- 
lating to error rates, which require some notion of the 
number of times a programmer has correctly obeyed a 
given restriction. Thus, we also use notes, which are 
emitted whenever an extension encounters an event that  
it checks. For example, the Null  checker notes every call 
to kmalloc or other routines that  can return NULL; the 
B l o c k  checker the number of critical sections it encoun- 
ters, the Free checker the number of deaUocation calls it 
sees, etc. Notes are the number of places a programmer 

could make a mistake relevant to a given check. Thus, 
for a given checker, dividing the number of errors by the 
number of notes gives the relative error rate. 

Figure 2 graphs all the projected errors we use. We 
have approximately 1000 unique bugs in total, counting 
both projected and inspected errors. There are several 
features to note about the graph: 

• The number of errors for the unsupervised check- 
ers generally rises over time, especially after the 
release of version 2.3.0. 

• The Block checker accounts for an unexpectedly 
large number of the errors. Many developers seem 
unaware of the restriction that it checks. 

• The Null checker also accounts for a large num- 
ber of errors. This is caused by careless slips, ig- 
norance of exactly which functions might return 
NULL, and the ubiquitous use of NULL pointers to 
indicate special cases. 

2 . 4  S c a l i n g  
A key feature of our experimental infrastructure is that 
it is almost completely automatic. The main manual 
parts are actually writing checkers and, for inspected 
bugs, auditing their output  for a single run. Running 
a checker over all versions of Linux requires typing a 
single command. These results are then automatically 
entered in a database and cross-correlated with previous 
runs. A common pattern is inspecting errors from the 
most recent release and then having the system auto- 
matically calculate over all releases how long each error 
lasts, where it dies, how many checks were done, and 
the relative error rate. Further, with the exception of 
some axis labeling, all the graphs in this paper are gen- 
erated from scripts. Thus, adding new results and even 
new checkers or operating systems requires very little 
work. 

2 .5  C a v e a t s  
There are several caveats to keep in mind with our re- 
sults. First, while we have approximately a thousand 
errors, they were all found through automatic compiler 
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analysis. It is unknown whether this set of bugs is rep- 
resentative of all errors. We at tempt to compensate for 
this by (1) using results from a collection of checkers 
that find a variety of different types of errors and (2) 
comparing our results with those of manually conducted 
studies (§ 8). 

The second caveat is that  we treat bugs equally. 
This paper shows patterns in all bugs. An interesting 
improvement would be to find patterns only in impor- 
tant  bugs. Potential future work could use more so- 
phisticated ranking algorithms (as with Intrinsa [11]) 
or supplement static results with dynamic traces. 

The third caveat is that we only check along very 
narrow axes. A potential problem is that poor quality 
code can masquerade as good code if it does not happen 
to contain the errors for which we check. We try to 
correct for this problem by examining bugs across time, 
presenting distributions, and aggregating samples. One 
argument against the possibility of extreme bias is that  
bad programmers will be consistently bad. They are not 
likely to produce perfectly error-free code on one axis 
while busily adding other types of errors. The clustering 
results in Section 6 provide some empirical evidence for 
this intuition. 

A final, related, caveat is that  our checks could mis- 
represent code quality because they are biased toward 
low-level bookkeeping operations. Ideally they could 
count the number of times an operation was eliminated, 
along with how often it was done correctly (as the notes 
do). The result of this low-level focus is that  good code 
may fare poorly under our metrics. As a concrete exam- 
ple, consider several thousand lines of code structured so 
that  it only performs two potentially failing allocations 
but misses a check on one. On the other hand, consider 
another several thousand lines of code that  perform the 
same operation, but  have 100 allocation operations that 
can fail, 90 of which are checked. By our metrics, the 
first code would have a 50% error rate, the second a 10% 
e r r o r  rate, even though the former had an arguably bet- 
ter structure. 

3 Where Are The Bugs? 

Given the set of errors we found using the methodology 
of the previous section, we want to answer the following 
questions: Where are the errors? Do drivers actually 
account for most of the bugs? Can we identify certain 
types of functions that have higher error rates? 

3.1 Drivers 
Figure 3 gives a breakdown of the absolute count of 
inspected bugs for Linux 2.4.1. At first glance, our in- 
tuitions are confirmed: the vast majority of bugs are in 
drivers. This effect is especially dramatic for the Block 
and Null  checkers. While not always as striking, this 
trend holds across all checkers. Drivers account for over 
90% of the Block, Free, and I n t r  bugs, and over 70% 
of the Lock, Null ,  and Var bugs. 

Since drivers account for the majority of the code 
(over 70% in this release), they should also have the 
most bugs. However, this effect is even more pronounced 
when we correct for code size. Figure 4 does so by plot- 
ting the ratio of the relative error rate for drivers versus 
the rest of the kernel using the formula: 

err-ratedrivers/err-ratenon-drivers 
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Figure 3: This graph gives the total number of bugs for 
each checker across each main sub-directory in Linux 
2.4.1. We combine the kerne l ,  r~, and £pc sub- 
directories because they had very few bugs. Most errors 
are in the driver directory, which is unsurprising since it 
accounts for the most code. Currently we only compile 
axch/£386. The Float, Param, Real, and Size checkers 
are not shown. 
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Figure 4: This graph shows drivers have an error 
rate up to 7 times higher than the rest of the ker- 
nel. The a rch / i386  directory has a high error rate for 
the Null  checker because we found 3 identical errors in 
arch/±386, and arch/±386 has relatively few notes. 

If drivers have a relative error rate (err_ratedri  . . . .  ) 
identical to the rest of kernel, the above ratio will be 
one. If they have a lower rate, the ratio will be less 
than one. The actual ratio, though, is far greater than 
one. For four of our checkers, the error rate in driver 
code is almost three times greater than the rest of the 
kernel. The Lock checker is the most extreme case: the 
error rate for drivers is almost seven  t imes  higher than 
the error rate for the rest of the kernel. 

The only checker that  has a disproportionate num- 
ber of bugs in a different part of the kernel is the Null  
checker. We found three identical errors in arch/J386, 
and, since there were so few notes in the a rch / i386  di- 
rectory, the error rate was relatively high. 

These graphs show that  driver code is the most 
buggy, both in terms of absolute number of bugs (as 
we would suspect from its size) and in terms of error 
rate. There are a few possible explanations for these re- 
sults, two of which we list here. First, drivers in Linux 
and other systems are developed by a wide range of pro- 
grammers who tend to be more familiar with the device 
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Figure 5: This graph shows the correlation between 
function sizes and error rates. It is drawn by sorting the 
functions that  have notes by size, dividing them equally 
into four buckets, and computing the aggregated error 
rate per bucket for each checker. For all of the checkers 
except Inull, large functions are correlated with higher 
error rates. 

rather than the OS the driver is embedded in. These 
developers are more likely to make mistakes using OS 
interfaces they do not fully understand. Second, most 
drivers are not as heavily tested as the rest of the kernel. 
Only a few sites may have a given device, whereas all 
sites run the kernel proper. 

3.2 Large Functions 
Figure 5 shows that  as functions grow bigger, error rates 
increase for most checkers. For the Null  checker, the 
largest quartile of functions had an average error rate 
almost twice as high as the smallest quartile, and for the 
Block checker the error rate was about six times higher 
for larger functions. Function size is often used as a 
measure of code complexity, so these results confirm our 
intuition that  more complex code is more error-prone. 
Some of our most memorable experiences examining er- 
ror reports were in large, highly complex functions with 
contorted control flow. The higher error rate for large 
functions makes a case for decomposition into smaller, 
more understandable functions. 

4 How are bugs distributed? 

When we report the errors found by checkers, we also 
provide a summary of the errors sorted by the number of 
errors found per file. A common pattern always emerges 
from these summaries: a few files have several errors 
in them, and a much longer tail of files have just one 
or two errors. In this section we consider the bugs in 
2.4.1 and show that this phenomena can be described 
by the log series distribution [12]. Fit t ing a theoretical 
distribution is useful because it (1) compactly describes 
the basic characteristics of the error data we have, (2) 
makes quantitative, testable predictions, and (3) allows 
us to derive a theoretical metric of kernel-wide error 
clustering behavior (§ 6). The log series distribution 
implies these high-level properties: 

1. The mode (most common value) of the number of 
errors per unit  (i.e. files or chunks of attempts) is 

All bugs in 2.4.1 except Block 
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(Total 243 files, 380 errors) 

Figure 6: This graph shows a histogram of the number 
of files with a given number of bugs for all checkers 
except for Block. The O's are the actual data points; 
the X's are the theoretical log series distribution that 
best fits the data. The theoretical distribution has a 
parameter 8. For this data set, the maximum likelihood 
value is ~ = 0.567, which gives the density formula for 
the distribution: P r [ X  = k] = 1"2°×°'~67~ k 

1. 

2. The probability of seeing a unit  with E errors is 
a monotonically decreasing function of E. Infor- 
mally, "In few files, many bugs; in many files, a 
few bugs." 

3. The distribution is completely determined by a 
single parameter, 8, which can be estimated di- 
rectly from the data. 

4.1 The Data 
Figure 6 shows the distribution of errors in files using a 
histogram-like representation. The "O" points are the 
actual data points, and the "X" points are the theoret- 
ical distribution, described in the next section. Note 
that  over 60% of the files contain only one error, about 
20% contain two, and the distribution rapidly drops off 
for files with three or more errors. Also note that  while 
there are files with a large number of errors, they get 
sparser as the number of errors increases (the "O" points 
are sparser in the tail of the distribution). This implies 
that there will likely be several files each with a unique 
(and large) number of errors. 

4.2 Fitting a Distribution 
To fit a distribution to the graph, we start with a set of 
distributions to test. Each distribution has one or more 
parameters that change the shape of the curve. We 
estimate these parameters using the method of maxi- 
mum likelihood, a well-established statistical technique 
for such estimations [12, 22]. This technique finds the 
value of the parameters that  is most likely to give rise 
to the observed data. Once we have the parameters, we 
can determine how well the data fits the distribution us- 
ing the X 2 (Chi-squared) goodness-of-fit test [22]. The 
specific details of these calculations will be postponed 
to the next subsection. After performing the statisti- 
cal analysis, we discovered that  the data is best fit by 
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Figure 7: This graph shows a histogram of the num- 
ber of files with a given number of bugs for the Block 
checker. The O's are the actual data points; the X's 
are the theoretical Yule distribution that  best fits the 
data. The Yule distribution has parameter p which has 
a maximum likelihood value of p -- 1.09 for this data. 

a logarithmic series distribution if we omit the Block 
checker. 

It  is not possible to prove that  a data set is drawn 
from a particular distribution; the data set could always 
be an anomaly. However, it is possible to show that a 
data set is m o r e  l ike ly  to come from a particular distri- 
bution than another one. Table 2 shows the other distri- 
butions we tried, their maximum likelihood parameters 
for the non-Block errors, and the X 2 p-value obtained. 
The p-value can be roughly interpreted as the proba- 
bility of seeing the data obtained if it actually came 
from the theoretical distribution. Standard statistical 
convention requires a p-value of 5% or lower before re- 
jecting a distribution (sometimes a more stringent value 
of 2% is used). Only the Yule, geometric, and log se- 
ries distributions are not rejected by the X 2 test: these 
distributions have p-values of 23%, 24%, and 79~o, re- 
spectively. We chose the log series distribution because 
it provided the better fit and because it is relatively easy 
to analyze and describe. 

The Block checker's errors do not fit the log series 
distribution as well as the results from other checkers. 
The main cause is that too many files have a large num- 
ber of Block errors; there is simply more clustering (§ 6) 
than the log series distribution predicts. We discuss the 
distribution of Block checker bugs later in this section. 

4.3 The Logarithmic Series Distribution 
This subsection describes the statistical methods we 
used for fitting and testing a distribution for the data. 
A logarithmic series distribution gives the probability of 
seeing any value k as: 

ct6 ~ 
e r [ x = k l =  k (1) 

where k > 0 is the number of bugs, 8 is the parameter 
for the curve (0 < 8 < 1), and c~ is a normalization 
constant chosen such that  the probabilities will add up 
to 1. Once we have determined 8, we have a curve. 
For the bugs in 2.4.1 except for the Block checker, we 
calculated a maximum likelihood value of 8 --- 0.567 

Binomial 
Geometric 
Log series 
Poisson 
Yule 
Zipf 

n = 7, p = 0.234 
p = 0.639 
0 = 0.567 
A = 0.564 
p = 2.57 
p = 1.46 

< 2.2 x 10 -I~ 
0.24 
0.79 
1.4 x I0 -s 
0.23 
7.3 x 10 -3 

Table 2: The distributions we at tempted to fit to all of 
the errors we found in 2.4.1 except for Block. The ge- 
ometric and Poisson distributions were shifted to make 
the first value 1 (we only model the distribution of files 
with at least one error). The parameter values are the 
maximum likelihood values (some were derived numer- 
ically). In the statistical literature a p-value of 0.05 or 
lower is required to "reject" a distribution. Sometimes 
a more stringent value of 0.02 is used. By either of 
these criteria, we cannot reject the log series, geomet- 
ric, or Yule distributions; however, the log series gives 
a distinctly better fit. 

B in1  B i n 2  B i n 3  B i n 4  
Observed 164 50 14 15 
Expected 164.7 46.7 17.6 14.1 

Table 3: X 2 calculation for all errors in 2.4.1 except for 
Block bugs, using 4 bins. 

using the techniques found in Johnson and Kotz [12]. 
Visually, the distribution appears to be a good fit for 
the data, but  a statistical test is more precise than the 
human eye. If this distribution passes the X 2 goodness- 
of-fit test, then we have some assurance that  the data 
could really have come from that  distribution. To apply 
the test, the data is partit ioned into a small number of 
bins such that  the number of errors in each bin is as 
equal as possible. For example, with three bins: all files 
with 1 error are typically in bin 1, then all files with 2 
errors in bin 2, and all other files are in bin 3. These 
bins are picked to put  a reasonable number  of points in 
each 2 bin (the X test usually requires that  each bin has 
at least 5 expected errors). The X 2 value is calculated 
a s :  

b 
~ ' ~  (Oi  - E i )  2 

X 2 ~,~ (2) 
i=l 

where b is the number of bins, and Oi, Ei are the number 
of errors observed and predicted for bin i respectively. 

2 Once this X value is calculated the probability of seeing 
2 such a data set can be looked up in a table of X values, 

with the "degrees of freedom" parameter equal to b - 1. 
Table 3 shows the observed and expected number of 

errors in each bin, when testing the logarithmic series 
distribution with parameter /~ ---- 0.567. For this 8 we 
obtained X 2 -- 1.05, which corresponds to a p-value of 
79%. This means that about 79% of the time a random 
sample that actually came from a log series distribution 
would be as different from the theoretical distribution 
as our bug sample is. 

4.4 Some Properties of the Distribution 
We give a useful approximation for the maximum like- 
lihood 0 [12]. Let x be the average number of errors 
per file, for files with errors (this implies x >---- 1). If 
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x < 25 (our data typically has 1 < x < 2), then 8 can 
be approximated as: 

1 
8 ~ 1 -  1 + [ ( 5 -  ~ log x)(x--1) + 21 Iogx (3) 

Once we have calculated O, we can use it in various 
formulas that  follow from the distribution. For example, 
we can predict the total number of files with errors of a 
given type, given only the number of files that contain 

exactly one bug (F):= - ~ l o g ( 1  - O) (4) 

We can also predict the total number of errors found: 
E -- nz 

i - e (5) 
After calculating 8 for all non-Block bugs in 2.4.1, we 
used our data set to check these approximations. Given 
that  n l  -- 164 files contained one bug, the formulas 
predicted that  there would be F = 242 total files with 
bugs, and E -- 378 bugs in total. The actual number of 
files with errors was 243, and the total number of bugs 
was 380. Note that  since we derived 8 from the data, 
this is not a rigorous evaluation, but it does give a feel 
for how well the "best" curve from this distribution fits 
our data set. 

There are also explicit formulas for the mean num- 
ber of errors per file (#) and the variance (a2): 

a0 
= i - o (6) 

= ~(i i_--~ - ~) (7) 2 

In Section 6 we use these equations to derive a theoret- 
ical measure of kernel-wide clustering. 

The log series distribution not only fit the data for 
all the bugs that we found, but  also fit for each indi- 
vidual checker's bugs separated from the others (with 
different O's). However, for the Block checker, the Yule 
distribution [12] fit better than the log series distribu- 
tion. We omit the details of the Yule distribution, but at 
a high level it is similar to the log series distribution in 
that it is a monotonically decreasing distribution with 
a single parameter. Qualitatively, the primary differ- 
ence is that  it has a longer tail: there is more proba- 
bility of seeing large numbers of bugs in a file, which is 
in accord with our finding that  the Block bugs exhibit 
significantly more clustering (§ 6). Figure 7 shows the 
distribution of Block bugs in 2.4.1 with the maximum 
likelihood Yule distribution, which had a X 2 p-value of 
99%. 

4.5 Discussion 
One potential pitfall with our method is that we rely on 
files as appropriate units for aggregating error counts. 
Relying on files is appealing because programmers who 
introduce errors also group related code into files, mak- 
ing them a natural  unit  for such aggregation. The disad- 
vantage of using files is that  they are not equal in terms 
of size, complexity, and especially number of chances for 
making an error that  our checkers can find. As a result, 
it is possible that the distribution of file sizes or notes 
is influencing the distribution of bugs that we observe. 

To counter this possibility of bias, we also com- 
puted the distribution of bugs over equal-sized chunks 
of notes. The distribution of errors over these chunks 

was essentially equivalent both qualitatively and with 
respect to fitting the theoretical distribution. To form 
these chunks, we order all of the notes by the full path- 
name of the file in which they occur. Then, we take 
consecutive chunks of N notes and count the number of 
errors among those notes. The distribution of chunks 
with at least one error are then plotted as described 
above. The choice of N is somewhat arbitrary, but  one 
natural choice is the average number of notes per file 
(excluding the Var, F loa t ,  and I n u l l  checkers, whose 
notes are somewhat misleading due to the nature of the 
checks), which is about 35. We tried many possible 
values for N, and for most of them the log series distri- 
bution fit, both qualitatively and also by passing the X 2 
test (for non-Block 2.4.1 errors, the p-value was 78% for 
chunks of size 35, almost the same as it was for files). 

Clearly, more data needs to be collected on differ- 
ent types of systems before general conclusions can be 
drawn about the distribution of bugs in all systems. 
However, from our initial results analyzing the distribu- 
tion of bugs in Linux, we believe that  there is significant 
evidence that  recognizable patterns do exist. 

5 How long do bugs live? 
The last two sections looked at how bugs were dis- 
tr ibuted through space. This section looks at their dis- 
tr ibution through time by examining bug lifetimes. A 
lifetime spans the time a bug is introduced (born) to 
the time it is eliminated (killed). If we sample a system 
at time t, the lifetime of the bugs in the system at t are 
controlled by birth rate, which is determined by how 
many of the current bugs were born at each point in 
the past, and death rate, which is symmetrically deter- 
mined by how many of the current bugs will die at each 
point in the future. In aggregate, these control how old 
the bugs in the system are, and how many, on average, 
will be killed in a given time span. We show four views 
of this data: 

1. The lifetime of all bugs in this study. The life- 
time of bugs is an indication of the effectiveness 
of the testing and inspection process for a system. 
In an ideal situation, all bugs would be fixed in- 
stantly, and bug lifetimes would be zero. In gen- 
eral, shorter bug lifetimes are better. 

2. A back-projection of the bugs alive in the most re- 
cent release (2.4.1) showing when they were born, 
the birth rate, and the percentage of the bugs in 
2.4.1 present in each of the past releases used in 
this study. 

3. A magnification of all bug births and deaths for 
the unsupervised checkers across all releases that 
shows birth and death rates across many different 
points in time as well as the number of bugs shared 
by each release. 

4. An estimation of bug lifetimes. This calculation is 
difficult because many bugs we examine are still 
alive. The problem is analogous to measuring the 
lifetime of patients in a medical study: patients 
enter at different times (as with our bugs) and typ- 
ically some number are still alive when the study 
ends. We can use the Kaplan-Meier (KM) estima- 
tor [7] to estimate bug lifetime within some confi- 
dence range. 
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Figure 8: This graph shows the lifetimes of all bugs. 
Each horizontal line represents a bug's  lifetime, sorted 
first by bir th date, then by death date. Bugs found in 
2.4.1 appear  to 'die '  at 2.4.1 but  are really censored. 
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Figure 9: This graph shows the origin of 2.4.1 bugs for 
each bug type  by calculating the percentage of bugs that  
came from before a given date. 

5.1 A bug's life 
Figure 8 gives the raw lifetime da ta  of all bugs in this 
study. Each bug has its own unique horizontal line rep- 
resenting its lifetime. The left endpoint denotes when 
the bug was introduced into the kernel (born). The right 
denotes when the bug was fixed (died). Bugs tha t  are 
still alive in the last release have an artificially t runcated 
right endpoint,  since we cannot follow them into the fu- 
ture. This t runcat ion is called "censoring" in the statis- 
tical l i terature [7] and must be handled when explicitly 
calculating bug lifetimes (we return to this point at  the 
end of the section). Left and right endpoints are trun- 
cated to version releases, since this is the granularity at 
which we sample the kernel. We sort the da ta  within a 
release by the lifetime of the bugs so that  the shortest- 
lived bugs are at  the top of the band and the longest at 
the bot tom. This gives a dist inct  "lip" to each version, 
which corresponds to the bugs that  we only detected 
in tha t  version. Notice tha t  some bugs were detected 
in just  one version but  others lasted many years and 
through many versions. 

5.2 Magnification: birth rates of  2.4.1 bugs 
We magnify the da ta  in Figure 8 by taking all bugs 
alive in 2.4.1 and following them back in t ime ("back 
propagation") to see when they were introduced. Fig- 
ure 9 shows this information by plot t ing the percent- 
age of 2.4.1 bugs alive at  each release broken down by 
checker (some checkers are omit ted from this graph to 
simplify it). The back propagation lets us compare the 
age of bugs in 2.4.1 across many checkers. While back 
propagation only shows "half" of a bug 's  life, it  gives a 
feel for the shape of the bir th  distr ibution.  The distri- 
butions for all of the checkers have a similar shape: a 
sharp dropoff followed by a somewhat longer tail. 

5.3 Magnification: births and deaths through time 
The previous figure focused on known, inspected bugs 
for a single release. For a more complete picture we 
would like to answer: (1) what  are the bir th and death 
rates? (2) how do these rates fluctuate over time? To 
answer these questions we use three of our projected 
checkers, Block, Null ,  and Var, to obtain errors for all 
releases. Because these checkers give few or no false 
positives, they allow us to automatical ly  extract  an ac- 
curate picture of the actual  number of errors, as well as 
when they were born and when they died. 

Figure 10 shows both the bug bir th  and death rates 
across all kernel releases. The left side of each curve's 
peak corresponds to the back-propagat ion bir th-rate  curve 
of Figure 9, while the right side shows the morta l i ty  
rate  (by propagat ing bugs forward to later releases to 
see how long before they are fixed). 

The pr imary feature of the graph is tha t  the curves 
have a sharp dropoff in both  directions, which is similar 
to the back-propagation shape of 2.4.1 errors. The rapid 
falloff going backward in t ime (to the left) from any peak 
means tha t  typical ly around 40%-60% of the bugs in a 
given version are introduced during the previous year; 
the rest are carried over from code older than a year. 

For example, consider the peak on the curve labeled 
2.3.20. The peak appears at  version 2.3.20 because it is 
the only version containing all of 2.3.20's bugs. For each 
version both forwards and backwards we plot the num- 
ber of 2.3.20's bugs tha t  still appear  in tha t  version. The 
graph decreases forward in t ime (to the right) as more 
and more bugs die and backwards in t ime as we con- 
sider releases before a bug was introduced. The graph 
shows a sharp dropoff in both directions; approximately 
125 errors in 2.3.20 were carried over from 2.3.0, while 
about  110 errors survived until  2.4.1. A similar peak 
appears for other versions, though usually they are not 
quite as sharp. 

The non-centered version of the graph encodes sev- 
eral interesting properties. Connecting the peaks gives a 
curve showing the absolute number of errors over time. 
The graph allows one to estimate: 

1. How many bugs two versions share: take the peak 
for version A, and follow its curve either forwards 
or backwards to version B's position on the x axis. 
The height of A's  curve at  tha t  point  is the number 
of bugs tha t  A and B have in common. 

2. The number of bugs introduced and fixed between 
two versions: take the peak for version A, and 
follow its curve to version B. The number fixed is 
A's  peak minus the height of its curve at version 
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Figure 10: The upper graph shows the forward and 
backward lifetimes of bugs in low false positive checkers 
(Block, Nul l  and Vat) for selected major  release snap- 
shots. Symmetrically, all snapshots have sharp dropoffs 
both forward and backwards in time, giving further ev- 
idence that  most bugs die quickly. The lower graph 
shows this symmetry  by centering all lifetime distribu- 
tions around the same point. 

B. The number of bugs introduced between A and 
B is the height of B's peak minus A's  value at B. 

3. For a given version, the distr ibution of how old its 
bugs are: take the peak for version A and consider 
all the peaks before it in time. Follow all of their 
curves to version A; the relative distances between 
these curves indicate how many errors are from 
each version in the past. 

5 .4  C a l c u l a t i n g  average  b u g  l i f e t ime  

Some of the most natural  questions to ask about ag- 
gregated da ta  are what  its average and median values 
are. Extract ing these from the type of da ta  we have 
has three main problems: quantization error, censor- 
ing, and interference. First ,  the granularity of the ver- 
sions we check limits our precision. Most of the ver- 
sions are separated by about  four months, but  the gap 
ranges from about  one month (between 2.4.0 and 2.4.1) 
to about one year (between 1.1.13 and 1.2.0). Another 
effect of this quantization is tha t  we will completely miss 
bugs whose lifespan falls between the versions we check, 
which tends to make the average lifetime we calculate 
artificially long. We deal with quantization by assum- 
ing tha t  the bir th  date (i.e., the first version in which 
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Figure 11: A Kaplan-Meier survival curve tha t  shows 
the probabil i ty  of a bug living longer than a given num- 
ber of years. The dot ted  curves show the 95% confi- 
dence band. This est imator was computed using only 
bugs from low false positive checkers (Block, Null ,  and 
Vat). 

the bug appears) and death date  (i.e., the last version 
in which the bug appears) are exact, which underesti- 
mates the lifetime of the bugs we find. We also ignore 
the bugs we don ' t  find because their lifetimes fall be- 
tween versions. Because these two effects have bias in 
different directions, they will part ial ly cancel each other 
out. 

Second, as we mentioned above, we have no exact 
death da ta  for many bugs since they are still alive at 
2.4.1 (i.e., right censoring). Naively averaging their ob- 
served lifespan (treating t runcat ion as death) will sig- 
nificantly underest imate real lifetime. Fortunately,  this 
is a well-studied problem with a s tandard  statistical 
solution: the Kaplan-Meier (KM) est imator [7]. The 
Kaplan-Meier est imator  gives a maximum-likelihood dis- 
t r ibution of bug lifetimes by taking bugs censored at  
age X (i.e. their age at  2.4.1) to mean "lives at least 
as long as X." Thus, the Kaplan-Meier est imator takes 
both censored and uncensored da ta  into account. For 
a meaningful estimate,  however, some uncensored da ta  
must be available to serve as the basis for extrapolation. 
We use the bugs whose real bir th  and real death were 
observed in the unsupervised runs (i.e. Block, Var, and 
Null)  described in the previous subsection. 

Another problem with calculating lifetimes is our 
own interference: by providing bug logs we may have 
shortened overall bug lifetimes. In previous work [8] we 
found several hundred errors in 2.3.99 and released them 
to kernel developers. We cannot be sure exactly how 
many errors were fixed because of our error reporting, 
but  we do have evidence tha t  our efforts did shorten 
bug lifetime. In Figure 8, there is a noticeable vertical 
"edge" at 2.3.99, but  not at  most other versions. This 
edge corresponds to a significant number of bugs having 
their last appearance at 2.3.99. Specifically, 95 bugs 
died at 2.3.99, while only 14-76 died in each previous 
2.3.x release, and only 4 died at  2.4.0. We can finesse 
this problem by treat ing bugs tha t  die at 2.3.99 as right 
censored; doing this results in a longer lifetime (average 
2.5 years, median 1.7 years if we censor at 2.3.99, as 
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I C h e c k e r  I D i e d  [ C e n s o r e d  I M e a n  (y r )  I M e d i a n  (y r )  
! Block 87 206 2.52 4- 0.15 (1.93, 2.26, -) 

Nul l  267 124 1.27 4- 0.10 (0.64, 0.98, 1.01) 
Vat 69 33 1.43 4- 0.23 (0.26, 0.29, 0.79) 
All 423 363 1.85 4- 0.13 (1.11, 1.25, 1.42) 

Table 4: Average bug lifetimes predicted by the Kaplan-Meier estimator.  D i e d  is the number of bugs for which we 
observed the entire lifetime, while C e n s o r e d  is how many were still present in 2.4.1 and are therefore right-censored. 
The M e a n  is presented with the s tandard  error (the s tandard deviation of random samples of this size from the true 
mean). The M e d i a n  is presented as a triple (LB, M, UB) where LB is the lower 95% confidence level, M is the 
median, and UB is the upper 95% confidence level. An "-" means the statist ic is not derivable from the da ta  we have. 

opposed to average 1.8 years, median 1.25 years if we 
censor at  2.4.1). However, this est imate will err on the 
long side since an unknown number of those 95 bugs 
may have been removed without  our interference. We 
do not consider the problem of interference further in 
the rest of this section. 

Finally, any calculation of bug lifetimes should take 
into account the nature  and purpose of development 
during the period measured. Traditionally the odd re- 
leases (1.3.x, 2.1.x, 2.3.x) are development versions tha t  
incorporate new features and fix bugs, whereas the even 
versions (1.2.x, 2.2.x, 2.4.x) are more stable release ver- 
sions, with most changes being bug fixes (though there 
are exceptions). Development on odd versions proceeds 
in parallel with the stabilization of even versions. We 
have chosen to model mostly the development path,  
picking up many minor releases of odd versions but  only 
the major  releases of even versions (except for 2.4.1). 
This choice also allows us to linearly order the versions 
in time, which we could not have done if we also exam- 
ined the minor releases of even versions. 

Given a set of da ta  points representing bug lifetimes, 
the Kaplan-Meier (KM) est imator derives a maximum- 
likelihood survivor function, which is defined as follows. 
Let X be a random variable representing the lifetime of 
a bug. The survivor function F x  (t) gives the probabil i ty 
tha t  a bug lives at  least as long as t: 

t 
dl 

f x ( t )  = P r i X  > =  t I = H (1 - 77.) (8) 
i = 0  

In this function, di is the number of bugs tha t  die at 
t ime i, and ri is the number of bugs still alive at  t ime i 
(including censored bugs). 

Figure 11 shows the KM survival curve for all of 
the low false positive checkers combined. The two dot- 
ted curves surrounding the curve show the 95% con- 
fidence band. Notice tha t  this band grows rapidly as 
the bug lifetime increases. This increase is due to the 
small number of bugs in our da ta  tha t  have extremely 
long lifetimes. For each possible bug lifetime up to the 
maximum lifetime observed, the KM curve gives us the 
probabil i ty tha t  a random bug will live that  long. For 
example, this curve shows us that  there is approximately 
a 50-60% chance tha t  a bug will last for over one year, 
but  tha t  percentage drops to 30-40% for lifetimes over 
two years. Notice tha t  the upper-left hand corner of 
the curve does not begin at  1.0 because of our sampling 
granularity. There are a significant number of errors 
tha t  only show up in a single version, and we count 
these as having a lifetime of zero. 

The graph can also be used to est imate the max- 

imum error bir th  rate  tha t  can be tolerated without 
increasing the total  number of bugs. If the bir th rate  
exceeds the death rate  then kernel will tend to accrue er- 
rors over time, and if the converse holds then errors will 
gradually be purged. Assuming KM is a good approxi- 
mation of the errors we did not manually inspect, then 
the figure can also be used as a crude metric for how 
well the system is tested and audited:  a sharp down- 
ward slope indicates a rapid  rate  of bug fixing; a more 
horizontal slope indicates tha t  fewer bugs are being re- 
moved in a given time, with the implication tha t  bug 
lifetimes will be longer. 

We were surprised to find tha t  errors tend to live 
quite a long t ime before being extinguished. The av- 
erage bug lifetime we calculated is around 1.8 years, 
with the median around 1.25 years. Table 4 breaks this 
number down by checker. Note the much shorter me- 
dian lifetime for Var compared with Block and Null .  
This perhaps indicates the  relative importance of these 
errors to kernel developers, or could be due to the fact 
tha t  given one Vat bug it is easy to find all other bugs 
tha t  use the same type using a string search. On the 
other hand, the relatively long average lifetime for Vat 
may mean tha t  once the easy errors were removed, the 
rest were more difficult to find, perhaps because they 
didn ' t  cause many stack overflows in practice. 

A v e r a g e  A g e .  If we compute the average age of 
bugs in any one part icular  version, it  is always relatively 
small. For example in 2.4.1 the average age of a bug is 
about 1 year. How does this mesh with our est imate of 
1.8 years for the average bug lifetime? A simple analogy 
with human lifetimes clarifies the situation. Suppose an 
average person has a life expectancy of 77 years. If at  
any t ime we take a sample of the ages of people and 
find the mean, it will always be far less than 77 years. 
Every sample point in a given version is right-censored, 
so we will always get a much shorter average age than 
the average lifetime. 

C o d e  H a r d e n i n g .  A widely held systems belief is 
tha t  as code ages, it becomes less buggy, presumably 
because testing and inspection will gradually weed out 
more errors. In order to test  this hypothesis, we calcu- 
lated the average number of bugs in each file as a func- 
tion of file age. We ordered all files in 2.4.1 tha t  have 
notes by their  ages, equally divided them into four buck- 
ets and computed the aggregated error rate  per bucket 
for each checker. Figure 12 shows tha t  older files tend 
to have lower error rates. For all of the checkers shown, 
the newest quartile of files have an average error rate 
about  twice as high as the oldest quartile of files. 
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Figure 12: Older files tend to have lower error rates. 

6 H o w  do bugs c lus te r?  

Many errors are not independent: if a type of bug ap- 
pears once in a function, file, or directory, another bug 
is much more likely to appear within that  unit  than in 
another random unit. Two reasons for dependence are 
incompetence and ignorance. As programmer compe- 
tence degrades, error rates increase. Similarly, if a pro- 
grammer is ignorant of system restrictions, he/she will 
tend to make more errors than a programmer that  is 
not. Thus, for large systems with many programmers, 
dependent errors will cause error "clustering," where 
parts of the OS have much higher error rates than the 
global error rate. This section: 

1. Graphically shows clustering in Linux, both in raw 
form and compared to the clustering that would 
be measured from random events. 

2. Presents and applies an intuitive measurement of 
clustering for subsystems. This measurement can 
be used to rank subsystems for auditing: subsys- 
tems with strong clustering on one rule will rea- 
sonably have clustering on others and be the most 
profitable candidates for auditing. 

3. Presents and applies a global measure of clustering 
that  can be used to compare the system-wide clus- 
tering of different types of errors. If a particular 
type of error exhibits system-wide clustering, then 
programmers are probably ignorant of the partic- 
ular rule or interface involved. This implies that  
the rule or interface should be abolished or pro- 
grammers should be educated to prevent future 
errors. 

5.1 Views of clustering 
Figures 13 shows a graphical demonstration of cluster- 
ing for the Block checker. We sort the files by the num- 
ber of notes and then plot the number of errors in each 
file. For a random distribution, we would expect the 
number of errors to be a relatively stable fraction of the 
number of notes with few deviations far above the ex- 
pected curve. Instead, we see several unlikely spikes and 
a relatively weak correlation with the number of notes, 
which together indicate clustering. 

Another way to look at clustering is to consider the 
skew caused by clustered bugs. We use "skew" to de- 

Number of Errors vs Number of Notes (Block Checker) 
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Figure 13: A view of the Block errors found in the entire 
Linux 2.4.1 kernel. Files are numbered by the number of 
notes and placed in sorted order on the x-axis. For ran- 
dom coin tosses one would expect the number of errors 
to be a relatively stable fraction of the number of notes. 
The absolute number of notes in each file is plotted on 
the right y-axis, while the absolute number of errors in 
each file is plotted on the left y-axis. 

scribe a situation where a small portion of the popu- 
lation (e.g., files, directories, and notes) accounts for a 
large portion of the interesting cases. Figure 14 shows 
how clustering can be viewed as skew in a distribution 
by considering the Block checker. On the x-axis we 
place the files ordered by number of bugs, with the files 
with the most bugs on the far left. On the y-axis we 
plot how many bugs remain in files to the right of the 
point. For the Block checker (the far left curve), ap- 
proximately 80% of the total errors are accounted for 
by 50% of the files that  contain errors (point A). (Note 
that  all errors from the Block checker occur in 8% of 
all files, so 4% of the total files account for 50% of the 
errors from the Block checker.) 

Of course, even if we threw bugs into the source at 
random, there would be some "clustering" since the er- 
rors would sometimes fall together even though they are 
really independently placed. Thus, for comparison, we 
plot the results of a random experiment run 1,000 times 
over the distribution of notes and plot the maximum and 
minimum results (the two far right curves). Two things 
are immediately apparent: the random experiment pre- 
dicts that  60%-100%+ more files will have errors than 
actually do, and, unlike the observed results, 80% of the 
errors would be accounted for by between 75% (point 
B) and 80% (point C) of the files. 

6 . 2  C l u s t e r i n g  in S u b s y s t e m s  

In this subsection we calculate approximately how likely 
an observed cluster is due to chance using Chernoff 
bounds for independent Poisson trials [19]. This met- 
ric is useful for ranking subsystems for auditing, but it 
does not provide a whole-kernel metric; we present a 
global metric in the next section. 

Suppose we model each call to a function that can 
return a NULL pointer as a coin flip, and with some 
probability Pb~g the caller forgets to check the return 
value along some path that  later uses that  pointer. Tak- 
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DIR Notes NBugs Expect P 
Block  Checke r  
ne t / a tm 152 22 1.94 3.1 × 10 -1~ 
drivers/i2o 692 35 8.81 2.6 × 10 - l °  
drivers/isdn/hisax 956 41 12.17 7.9 × 10 -1° 
drivers/usb/serial 94 9 1.20 3.2 × 10 -5 
drivers/isdn/icn 86 8 1.10 1.2 × 10 -4 
drivers/net/pcmcia 240 12 3.06 5.7 × 10 -4 
dr ivers /net /wan/ lmc 146 9 1.86 8.7 × 10 -a  
drivers/isdn/act2000 24 3 0.31 1.6 × 10 -2 
drivers/atm 317 6 4.04 6.6 × 10 -1 
N u l l  Checke r  
fs/udf 88 11 1.97 5.0 × 10 -~ 
drivers/net/ tokenring 22 6 0.49 7.5 x 10 -5 
drivers/char/drm 69 9 1.54 2.2 x 10 -a  
drivers/net/pcmcia 39 6 0.87 1.6 × 10 -3 
drivers/pcmcia 28 5 0.63 2.4 x 10 -3 
drivers/scsi 253 13 5.65 3.1 x 10 -2 
drivers/char/rio 19 3 0.42 3.7 × 10 -2 
drivers/telephony 7 2 0.16 3.9 × 10 -2 
drivers/ide 56 5 1.25 4.2 x 10 -2 

Table 5: The number of notes and bugs found in Linux 2.4.1 for the top 9 most clustered leaf directories. E x p e c t  is 
the expected number of errors that we would find if errors were distributed as coin flips, i.e. E x p e c t  = N o t e s  * Pbug, 
where ['bug is the total number of bugs found divided by the total number of notes for the entire kernel for that 
checker. There were 206 errors / 16176 notes for Block, and 124 errors / 5550 notes for Null .  We use the Chernoff 
bound for independent Poisson trials to calculate P,  an upper bound on the probability that  the number of bugs would 
exceed the expected number by as much as we observed. As expected, errors for Block (a rule that programmers 
seem relatively ignorant of) cluster significantly more than Null  errors. 

ing Pb~g to be the measured average rate of such errors 
over the entire Linux kernel, sometimes a single function 
or directory will have no errors, sometimes one error, 
and sometimes many. 

To test this model, we compute the likelihood that  
randomly distributed errors cluster in the same way as 
our observations for each directory in the Linux 2.4.1 
distribution. Table 5 lists leaf directories with signif- 
icantly more bugs than the expected number for the 
Block and Null  checkers. We apply the Chernoff bound 
for Poisson trials to bound the probability P that  a di- 
rectory has many more bugs N than the expected num- 
ber of errors E: 

e6 ] E 
P = Pr[N > (1 -I- ~)E] < (1 -{- ~)(1+~) (9) 

Here N is the number of bugs in the directory, E the 
expected number of errors for the directory, and 5 is the 
fraction by which the actual number of bugs exceeds 
the expected number. If clustering did not exist, then 
the probability P for each directory would be expected 
to have reasonably large values (close to 1), especially 
since the number of directories (samples) is relatively 
small. However, the extremely low bounds are strong 
evidence that  the errors are not randomly distributed 
and that clustering exists. At the most extreme, the 
likelihood of seeing the results found in the ne t / a rm 
directory is less than 3.1 out of 1,000,000,000,000,000! 
This clustering turned out to be caused primarily by 
one file that  called a blocking function 22 times with 
a spin lock held. Another example was a single file in 

the d r i v e r s / i 2 o  directory. Within  this file, 34 of the 
errors were caused by cut-and-paste: one of the errors 
was copied in 10 places and another in 24! 

5.3 A Global Clustering Metric 
While equation 9 gives a simple way to rank clustering 
in subsystems by how much they deviate from a coin flip 
process, it does not provide a single summary metric for 
how much clustering exists in the entire kernel. The rea- 
son is that  the bound depends on the global error rate 
being different from the error rate in particular subsys- 
tems; when applied to the whole kernel this difference 
in error rates disappears and the bound becomes mean- 
ingless. For example, it cannot be used to compare how 
errors from different checkers cluster across the entire 
kernel. 

We propose a simple metric that  provides a global 
quantitative measure of clustering. To provide some 
intuition for our metric, consider the possible arrange- 
ments of four errors in four files, shown in Table 6. The 
value of this metric can be seen from this example: given 
a system with a number of known errors, it provides a 
quantitative way of describing how closely the errors are 
grouped together. 

Intuitively, the first row has the least clustering, and 
the last row has the most. A natural  way to formalize 
this intuition is to note that  clustering is an aggregate 
measure of how far the distribution of errors deviates 
from the average for each file. 

Consider a system with N units (files, for exam- 
ple). Let E = {el, e2, ...eN} denote the number of errors 
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Clustering as Skew - Block Checker 
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Figure 14: A plot of clustering as skew: 50% of the 
files account for 80% of the errors. The maximum and 
the minimum are shown by the curves Random-Flax and 
Random-Flirt. The curve for Real represents the observed 
results. If the bugs were thrown into files randomly, we 
would expect that  the curve for Real would fall some- 
where between Random-Max and Random-Flin. 

Arrangement Clustering 
el e2 [ e3 e4 c 

X X X X 0 

xx x x 0.5 
xx xx 1 
xxx x 1.5 
xxxx 3 

Table 6: The possible arrangements of four errors in 
four files and the clustering value assigned to the ar- 
rangement by the clustering metric. Permutations of 
these arrangements result in identical amounts of clus- 
tering and are not shown. 

1 N found in each unit. Let p = ~ ~i=i ei be the average 
number of errors per unit. Then our clustering metric 
c is defined as: 

c = ~-J,':z (e, - p)2 (10) 
N 

E i = l  e i  
The clustering formula is very similar to the formula for 
the variance of the el's, except that the denominator 
is the total number of errors, not the total number of 
units. The problem with directly using a measure such 
as standard deviation or variance as the metric for clus- 
tering is that  the number of units is rather arbitrary. 
Using either of those metrics, it would be difficult to 
compare two different clustering values if their number 
of units were different. However, notice that the vari- 
ance, a 2 is related to c by: 

if2 
e = - -  ( 1 1 )  

tt 
Thus our clustering metric is simply the ratio of the 
variance to the mean. In the statistical literature, this 
is called the dispersion index. It is often used in bio- 
logical applications to measure the clustering tendency 
of populations, and it has also been used in modeling 
the burstiness of network traffic [16]. The main feature 

of c is that  it predicts if the distribution is clustered as 
much as random (c = 1), less clustering than random 
(c < 1), or more clustered than random (c > 1), where 
"random" is taken to mean a Poisson distribution. If 
c = 0, then the distribution is uniform and there is no 
clustering at all. 

Table 7 shows the value of c for Linux version 2.4.1 
broken down by checker (for now, only the value of c 
matters; Ceheo~et~cal will be explained in the next sec- 
tion). The clustering metric is computed twice: once 
by us ingchunks  of notes as the units (as described in 
§ 4) and once by using files as the units. Using chunks 
is a more accurate measure of clustering because each 
chunk has an equal number of notes, and each note rep- 
resents an opportunity for an error. In contrast, using 
files ignores the fact that  different files will contain a dif- 
ferent number of notes. In the remainder of this section 
we focus on the clustering results for chunks. 

The most striking thing about the clustering data 
is that, with the exception of Block, all of the checkers 
show clustering less than random. For the Param, and 
Size checkers, this is easy to explain: there are simply 
too few bugs to show much clustering. For chunks, the 
Free, I n t r ,  and Lock checkers show clustering near uni- 
form (i.e. almost no clustering at all). We hypothesize 
that this is  due to the level of understanding of the pro- 
grammers. For example, anyone who calls c1£ to dis- 
able interrupts should know the meaning of disabling 
interrupts and therefore should know not to leave them 
disabled. By using part of this interface, the program- 
mer demonstrates knowledge of what the interface does 
and knowledge of how to use it. As a result, the bugs 
that we find are mostly isolated mistakes. 

The I n u l l  and Null  checkers show higher clustering 
values, though they still cluster less than random. For 
the Null checker, some programmers might not have 
known all of the functions that  can return NULL. For 
the I n u l l  checker, we believe the clustering was largely 
caused by cut-and-paste of incorrect code. 

Clustering values greater than one potentially demon- 
strate that the programmer did not understand what 
they were doing in the places with all the bugs. Only 
the Block checker falls into this category. It is very 
likely that a programmer does not realize that  he can- 
not call a blocking function when interrupts are disabled 
or a spin lock is held. Or perhaps he knows this rule, 
but fails to know every single function that  can block. 
In either case, the programmer's understanding of the 
interface is incorrect, and he is therefore more likely to 
make the same mistake repeatedly. 

It is important to note that  the clustering values 
are calculated without including the chunks that have 
no bugs. In other words, these numbers only represent 
the clustering among chunks that  have bugs. If we were 
to include all chunks, these numbers would be higher, 
so we use them as an underestimate of the clustering. 
We ignore the zero-bug chunks so that  we can compare 
these numbers to the theoretical distribution that we 
calculated in Section 4. 

We can relate the above clustering metric to the 
distribution of errors in the following way. As we have 
seen, by fitting a logarithmic series curve to the data, we 
obtain a value for 8 that  in tu rn  determines a theoretical 
approximation for the variance a 2 (Equation 7). Divid- 
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ing the approximation by # derives an approximation 
for c: 

a ~ P'( i--'-~ - ~) 1 - c~O 
Cth~o , . e t i~a  - -  - -  = - -  (12) 

/z # 1 - O  

where a = - [ l o g ( 1  - ~)]-1. Using the log series dis- 
tr ibution,  we can not only derive good approximations 
for the mean and s tandard  deviation, we can also use 
the value of 8 to est imate the clustering of that  data. 
Table 7 shows some values of Ceh~o,.eti~a~ for compari- 
son with the actual clustering values. The closer the 
distr ibution of errors follows the log series distribution, 
the more likely the theoretical clustering will be close to 
the actual clustering. For example, for all of the check- 
ers except for Block (the distr ibution shown in Figure 6) 
the actual clustering value by file is 0 . 7 6 6 ,  while the the- 
oretical value is 0.755. Since the theoretical clustering 
value in this case is derived from 8, which was in turn 
derived from the data,  this cannot be used to judge the 
predictive value of Equation 12; however it does give a 
sense for how well the "best" est imate of the cluster- 
ing according to the log series distr ibution matches the 
actual value. 

6.4 Discussion 
So far we have not discussed how clustering comes about. 
One simple hypothesis is that  programmers have dif- 
ferent abilities and tha t  poor programmers are more 
likely to produce many errors in a single place. How- 
ever, from our experience, this is probably only the 
second most impor tant  cause of clustering. The most 
important  cause is probably ignorance: many program- 
mers appear  to be ignorant of the relevant system rules, 
and they produce highly concentrated clusters of errors 
without even being aware of it. In addit ion to ignorance, 
the prevalence of cut-and-paste  error clustering among 
different device drivers and versions suggests tha t  pro: 
grammers believe tha t  "working" code is correct code. 
Unfortunately, if the copied code is incorrect, or it  is 
placed into a context it was not intended for, the as- 
sumption of goodness is violated. Finally, some code is 
simply not executed as often, making it less well tested 
and therefore more likely to contain clusters of errors. 

7 Initial Cross-Validation with OpenBSD 

If Linux is simply a "bad" system, then studying its 
errors would not be part icularly useful. To provide an 
initial examination of this possibility, we compare re- 
cent Linux (2.4.1) and OpenBSD (2.8) releases using 
four checkers: In%r, Free,  Null, and Param. We used 
older versions of these checkers than was used in the rest 
of this paper, but we controlled for checker variation by 
using identical checker versions for both kernels. The 
only difference between them was the text file used to 
specify the names of the routines to check (e.g., what 
routines disable interrupts, free memory, return poten- 
tially NULL pointers, or manipulate user pointers). As 
such, these checkers provide a roughly uniform compar- 
ison in that they will be vulnerable to the same types 
of false positives and miss the same kinds of errors. 

OpenBSD had far a factor of 2-4 fewer checked loca- 
tions (notes) but a higher error rate for the four check- 
ers we compared. The closest result was for the Null 
checker. Here OpenBSD had an error rate of 2.148% (1 
error in 50 possibly failing calls), which was roughly 20% 

Checker 

Block 
Free 
INull 
Intr 
Lock 
Null 
Parma 
Realloc 
Size 

All ex. Block 
All 

C h u n k s  I F i l e s  
c [ C theor  C "] Ceaeo,. 

3.26 2.51 10.92 6.03 
0.0551 0.0651 0.220 0.145 

0.778 0.595 0.224 0.238 
0.217 0.259 0.0356 0.0394 

0.0705 0.0879 0.0369 0.0411 
0.770 1.51 0.394 0.420 
0.167 0.644 0.457 0.495 

0.533 0.912 
0.167 0.644 0.167 0.644 
0.385 0.455 0.766 0.755 

1.61 0.958 5.80 1.75 

Table 7: This table shows the clustering values, c, for 
bugs in 2.4.1 computed by chunks (35 notes / chunk) 
and by file. Values e < 1 imply a more uniform distri- 
bution, c = 1 a random distr ibution (frequencies follow 
a Poisson distr ibution),  and c > 1 indicate more clus- 
tering than random. The values of cth~or are computed 
from equation 12 using the maximum likelihood value 
of 8 for each checker. Considering chunks, Block bugs 
cluster more than any other type,  with Nul l  a distant  
second. The F l o a t ,  Range, and Vat checkers were omit- 
ted because their notes do not always correspond well 
to the number of t imes the rule was checked. 

worse than Linux's rate  of 1.786%. The I n t r  checker 
was next (.617% versus .465%). The Free  checker had 
an error rate two times worse than  Linux (one call site 
out of 200 was incorrect) whereas the Param checker, 
arguably the most important ,  was almost a factor of six 
worse. 

In fact, these numbers may be biased towards un- 
derstat ing the difference in the  kernels. The OpenBSD 
errors were all hand verified by an OpenBSD implemen- 
tor (to the point tha t  many were fixed and checked into 
the main kernel tree during this diagnosis). In contrast,  
the bugs found in Linux were diagnosed by us and are, 
therefore, more likely to be over-reported. 

This being said, the numbers in Table 8 do not give 
a full picture of code quality. Two generic problems are 
that  (1) they are only for a l imited number of check- 
ers and (2), as discussed in Section 2, the checkers only 
examine low-level operations,  and thus give no direct 
measurement of design quality. More specific to the ac- 
tual  measurements,  par t  of OpenBSD's  high error rate 
comes from a very small number  of files tha t  see little 
to no use on most sites. This skew was especially true 
for the errors found by the Parma checker tha t  mostly 
resided in the "System 4" compatibi l i ty  layer, which 
sees l imited use. The checkers found significantly fewer 
errors in the rest of the kernel. 

8 Related Work 
Numerous projects have used stat ic  analysis to find er- 
rors [1, 4, 11, 25]. While  these indirectly contrast  differ- 
ent code bases, they primari ly focus on the machinery 
and methods used to find the errors. In contrast,  we 
assume some way of automatical ly  getting errors and 
concentrate on the errors themselves. 

System reliability studies have focused on: (1) in- 
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C h e c k e r  
Null 
Intr 
Free 
Param 

P e r c e n t a g e  B u g s  N o t e s  
L i n u x  O p e n B S D  R a t i o  L i n u x  O p e n B S D  L i n u x  O p e n B S D  
1.786% 2.148% 1.203 120 27 6718 1257 
0.465% 0.617% 1.328 27 22 5810 3566 
0.297% 0.596% 2.006 14 13 4716 2183 
0.183% 1.094% 5.964 9 18 4905 1645 

Table 8: Comparison of the most recent shipping versions of Linux (2.4.1) and OpenBSD (2.8) on four checkers. For 
these checkers, OpenBSD is always worse than Linux, ranging from about  20% worse to almost a factor of six. 

spection of error logs, (2) analysis of system behavior 
under fault injection, and (3) testing. We consider each 
below. 

While there have been many performance studies 
of operating systems [5, 21, 20], there have been rela- 
tively few tha t  look at code quality from within the OS 
community. Most defect studies come from the soft- 
ware engineering or fanlt-tolerant fields, and almost all 
are based on da ta  gathered from post-mortem inspec- 
tion of error logs or "defect reports," typically for high 
availability systems. 

These studies are largely complementary to our work. 
Their focus natural ly leads to different questions than 
those we consider, such as (1) what causes faults, (2) 
what their effects are, (3) if they can be predicted, and 
(4) how well the system (mis)handled them. Further, 
their error populations and ours have different implica- 
tions. They have two main advantages: (1) they only 
contain realistically exploitable bugs (we treat  all bugs 
equally) and (2) their end-to-end checks can find higher 
level or deeper errors than our checkers. However, they 
also have limitations that  we do not. The most impor- 
tant  is that  they are restricted to errors that  were de- 
tected and diagnosed with testing or field use. Because 
their errors are biased towards modules and paths  that  
workloads happened to exercise, they can give a poten- 
tially misleading view of error properties such as bug 
distributions (one of their main focuses). In contrast, 
we do not suffer these biases since our checkers can de- 
tect all errors of a certain class on all paths,  regardless 
of whether a particular workload triggered them. We 
consider a representative sample of these studies below. 

Gray surveyed outages in Tandem systems between 
1985 and 1990, using manually gathered bug reports 
to classify the causes of outages [10]. In a subsequent 
study, Lee and Iyer [15] looked at 200 memory dumps 
of field software failures in the Tandem GUARDIAN 90 
operating system collected over 1 year. They focused 
on the effectiveness of fault detection and recovery, and 
classifying errors by type (uninitialized variables, race 
conditions). 

Sullivant and Chillarege [23] examined MVS oper- 
ating system failures, classifying error causes and man- 
ifestations. They randomly sampled 250 reports (out 
of a population of 3000) gathered over a five year pe- 
riod. Their main focus was on measuring errors caused 
by memory corruption versus "everything else." They 
found that  the former generated the highest number of 
reported system crashes. They also measured how of- 
ten and why bug fixes introduced other bugs. They did 
similar s tudy for databases [24]. 

More recently, Xu et al. [26] used reboot logs to 

measure the dependabil i ty  of a 503 node Windows NT 
cluster over 4 months (and 2,127 reboots).  They classi- 
fied the causes of failures (hardware, software), t ime to 
recover, and availability measurements.  An interesting 
result is tha t  reboots occur in bursts,  which is similar 
to our finding tha t  errors cluster in source code. 

While the studies above largely ignore the questions 
we address in this paper,  the following two are closer. 

Fenton and Ohlsson [9] examined faults in two con- 
secutive versions of a telecommunication switching sys- 
tem. They found strong support  for the "Pareto prin- 
ciple," the hypothesis tha t  a small number of modules 
accounts for a large fraction of the faults, which is es- 
sentially what we call skew. Specifically, they found 
that  20% of the modules account for 60% of the faults 
discovered during testing. In contrast,  for Linux 2.4.1, 
about 11% of the files accounted for all of the errors we 
found with automatic  checkers. While our numbers are 
different (keep in mind we take files instead of modules 
as our unit),  the basic point of the principle seems to 
be supported by our results. They also found that  an 
even smaller port ion of the modules (10%) account for 
almost all of the operational  failures. 

Basili and Perricone [3] report  on a manually con- 
ducted s tudy of satellite planning software consisting of 
90k LOC spread across 370 modules (functions). They 
found tha t  reusing modules for a new purpose decreased 
initial development cost, but  more effort was required 
to correct errors in them. Thus there was a tradeoff be- 
tween the cost of initial development t ime and the cost 
of adapt ing modules to a new specification. 

A related area are fault injection studies [2, 14], 
which dynamically insert bugs into the system to see 
how it crashes or survives [6]. These focus mostly on 
robustness in the face of artificial errors, whereas we 
are interested more in the features of actual errors. 

Another approach is explicit testing, such as the 
"fuzz" studies tha t  compare how a set of systems utili- 
ties behaved in the face of random inputs  [17, 18]. 

In terms of examining bugs found with automatic  
techniques, the closest work compared to us is a s tudy 
by Koopman et al. tha t  used randomized testing to 
measure the effectiveness of error handling code on 13 
different POSIX implementat ions [13]. They measured 
both the types of errors tha t  resulted (silent, machine 
crash, caught, caught but  misreported) as well as the 
overlap of errors ("diversity") of the different operating 
systems. Their study, like ours, has a measure of ob- 
jectivity in tha t  it  applies its tests uniformly across a 
set of code rather  than being biased by what locations 
programmers have decided to examine. Their s tudy has 
the advantage tha t  it  spans many operating systems. 
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However, they focus only on error handling, rather than 
general rules. They look at a limited portion of the OS 
(e.g., not device drivers, or much of the auxiliary code). 
Finally, their study does not address error behavior over 
time. 

9 Conclusion 
This paper uses roughly 1000 unique, automatically de- 
tected operating system errors to test and spot pat- 
terns in kernel code such as the relative error rate of 
drivers as compared to other kernel code (up to a factor 
of ten worse), how errors cluster (roughly a factor of 
two more tightly than from a random distribution) and 
how long bugs last (an average of about 1.8 years). We 
gathered data from seven years of Linux releases. We 
countered checker specific artifacts by using twelve au- 
tomatic checkers, which found errors more objectively 
than manual inspection could hope to. We view these 
as promising, but initial results. We hope that other 
researchers will find the results of this study useful for 
understanding the nature of errors in systems code. 
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