
An Empirical Study of Operating Systems Errors

A n d y C h o u , J u n f e n g Y a n g , B e n j a m i n Che l f , S e t h H a l l e m , a n d D a w s o n E n g l e r

C o m p u t e r S y s t e m s L a b o r a t o r y

S t a n f o r d U n i v e r s i t y

S t a n f o r d , C A 94305

{acc , j u n f e n g , bch e l f , s h a l l e m , e n g l e r) @ c s . s t a n f o r d . e d u

Abstract
We present a s tudy of operating system errors found by
automatic, static, compiler analysis applied to the Linux
and OpenBSD kernels. Our approach differs from previ-
ous studies tha t consider errors found by manual inspec-
tion of logs, testing, and surveys because static analysis
is applied uniformly to the entire kernel source, though
our approach necessarily considers a less comprehensive
variety of errors than previous studies. In addition, au-
tomation allows us to track errors over multiple versions
of the kernel source to est imate how long errors remain
in the system before they are fixed.

We found tha t device drivers have error rates up
to three to seven times higher than the rest of the ker-
nel. We found tha t the largest quartile of functions
have error rates two to six times higher than the small-
est quartile. We found tha t the newest quartile of files
have error rates up to twice tha t of the oldest quartile,
which provides evidence tha t code "hardens" over time.
Finally, we found tha t bugs remain in the Linux kernel
an average of 1.8 years before being fixed.

1 Introduction

This paper examines features of operating system er-
rors found automatical ly by compiler extensions. We
a t t empt to address questions like: Do drivers account
for most errors? How are bugs distr ibuted? How long
do bugs last? Do bugs cluster? How do different oper-
ating system kernels compare in terms of code quality?

We derive initial answers to these questions by ex-
amining bugs in 21 snapshots of Linux spanning seven
years. We cross check these results against a recent
OpenBSD snapshot. The bugs that we examine were
found in previous work, which used compiler extensions
to automatical ly find violations of system-specific rules
in kernel code [8]. These bugs fall into several categories
including: not releasing acquired locks, calling blocking
operations with interrupts disabled, using freed mem-
ory, and dereferencing potential ly null pointers.

Basing our analysis on compiler-found errors has
two nice properties. First , the compiler applies a given

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial adval;-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a foe.
SOSP01 Banff, Canada
© 2001 ACM ISBN 1-58113-389-8-1/01/10.. .$5.00

extension uniformly across the entire kernel. This even-
handed error slice allows us to do a mostly "apples-to-
apples" comparison across different par ts of the kernel.
Likewise, we can compare two different kernels by run-
ning the same checks over both. These comparisons
would be difficult to make with manual error reports
because they tend to overrepresent errors where skilled
developers happened to look or where bugs happened
to be triggered most often. Second, automat ic analysis
lets us easily track errors over many versions, making it
possible to apply the same analysis to trends over time.

The scope of errors used in this study, though, is
limited to those found by our automat ic tools. These
bugs are mostly straightforward source-level errors. We
do not directly track problems with performance, high-
level design, user space programs, or other facets of a
complete system. Whether or not our conclusions will
apply to these types of issues is an open question.

The paper revolves around five central questions:

1. Where are the errors? Section 3 compares the dif-
ferent subsections of the kernel and shows tha t
driver code has error rates three to seven times
higher for certain types of errors than code in the
rest of the kernel.

2. How are bugs distr ibuted? Section 4 shows that
the error distr ibution is readily matched to a loga-
r i thmic series distr ibution whose properties could
yield some insight into how bugs are generated.

3. How long do bugs live? Section 5 calculates in-
formation about bug lifetimes across all 21 kernel
snapshots and shows tha t the average bug lifetime
for certain types of bugs is about 1.8 years.

4. How do bugs cluster? We would expect tha t if
a function, file, or directory has one error, it is
more likely tha t it has others. Section 6 shows
that clustering tends to occur most heavily where
programmer ignorance of interface or system rules
combines with copy-and-paste. For the most heav-
ily clustered error type, less than 10% of the files
tha t were checked contained all of the errors.

5. How do operating system kernels compare? Sec-
tion 7 shows tha t OpenBSD has a higher error rate
than Linux on each of the four checkers we used
to compare them. OpenBSD's error rates range
from 1.2 to six times higher.

The paper is laid out as follows. Section 2 describes
the kernels we check and how we gather da ta from them.
Section 3 examines where bugs are. Section 4 discusses
the distr ibution of error counts and matches it to a the-
oretical distribution. Section 5 addresses how long bugs

73

live. Section 6 describes how bugs cluster. Section 7
compares OpenBSD and Linux. Finally, Section 8 sum-
marizes related work.

2 Methodology

This section discusses the versions of Linux that we use
for our study and the system that we use to gather our
results.

2.1 Where the data comes from
Our data comes from 21 different snapshots of the Linux
kernel spanning seven years. We use Linux for several
reasons. First, the source code is freely available. With-
out this feature, a compiler-driven study could not work.
Release snapshots dating back to the early nineties are
readily accessible, allowing us to look for trends in time
and allowing others to get these same releases to check
our results. Second, Linux is widely used. As a re-
sult, relative to other systems, its code has been heavily
tested, meaning that many of the bugs that are easy
to find have already been removed. Finally, many pro-
grammers have developed Linux code. In aggregate,
this effect should reduce the degree to which our results
are skewed because of individual idiosyncrasies.

Structurally, the Linux kernel is split into 7 main
sub-directories: ke rne l (main kernel), mm (memory man-
agement), ±pc (inter-process communication), arch (ar-
chitecture specific code), ne t (networking code), f s (file
system code), and d r i v e r s (device drivers). Figure 1
shows the size of the code that we check across time.
The size is measured in millions of lines of code (LOC),
including newlines and comments. Each of the 21 dif-
ferent releases that we check are marked with a point.
The graph ignores all parts of the kernel specific to ar-
chitectures other than x86.

The graph shows several interesting features:

• The checked snapshots have grown by a factor of
roughly 16 (from 105K lines at version 1.0 to 1.6
million lines in version 2.4.1).

• The bulk of the code we check comes from the
drivers. At the extreme ends of the graph, versions
1.0 and 2.4.1, driver code accounts for about 70%
of the code size; in the middle of the graph, this
percentage drops to slightly over 50%.

• In the two years between 2.3.0 and 2.4.1 the size
of the OS almost doubles, growing as much as it
did in the previous 5 years. Most of this growth
comes from drivers. Secondary contributors are
the file systems and network code.

2.2 Measurements
Most of the graphs in this paper are built upon four
different measurements. The first three are computed
directly from the code, while the last is calculated from
the other metrics:

I n s p e c t e d errors: these were errors we manually re-
viewed.

P r o j e c t e d errors: these were unreviewed errors found
by low false positive checkers.

N o t e s : these count the number of times a check was
applied. If there are no notes there can be no
errors.

Linux Code Base Growth

2 1 ' ;l'otal

.... *---- drivers 2.4.1

. m.. . - , f s
- ' -=- - net 2.3.50 "x~

1.5 other 2 . 3 . 2 Q L . / '

2.3.0~#t ~z'e j~

1 2.1.80 2.~.~/ j . /~ 21,0 /7
1.~.0 2

0.5 11.3.0 ~ , ~ ' ' - "

10=_
L ~ ~ . . . ~ m ,-.- ,=~z : , . =,. . 7 , 1 r . - p - . 7 , p - , p4~ , . T - . * : - ~ l l

01/94 01/95 01/96 01/97 01/98 01/99 01/00 01/01
Time

Figure 1: The size of the Linux tree that we check over
time. Versions 1.1.13, 2.1.{20,60,100,120}, 2.3.{10, 30,
40}, 2.3.99-pre6, and 2.4.0 have a "+" mark but are
not labelled. Most of the growth comes from drivers;
secondary contributors are the file system and network
code. The growth of the rest of the kernel is significantly
smaller. The growth rate changes at 2.3.0 where the rate
of new driver code increases.

R e l a t i v e error rate: this metric is the number of er-
rors, either inspected or projected, divided by the
number of notes for that error type: e r r_ra t e =
e r r o r s / n o t e s . For example, if one kernel has one
error and ten notes, its average error rate will be
1/10 = 10%. We use this to normalize results
when comparing different code bases or checkers.

2.3 Gathering the Errors
Our errors were found by the twelve system-specific
checkers listed in Table 1. These come from previous
work on the xgcc compiler [8]. Whereas this past work
demonstrated the effectiveness of system-specific static
analysis, it was relatively unreflective about how and
why the errors arose. This paper takes the approach as
a given and focuses solely on the errors.

To get the inspected errors, we manually examined
the error logs produced by the checkers for a small num-
ber of kernel versions and determined which reports
were bugs and which were false positives. These se-
lected error logs were annotated with this information
and propagated to all other versions. The propaga-
tion process used the inspected error logs for one kernel
version to automatically annotate any errors that also
appear in other, uninspected error logs. For example,
for the Null checker, we manually inspected the errors
for Linux 2.4.1. Each error report was annotated, and
then the annotated results were propagated backwards
through each version back to 1.0. If a bug in 2.4.1 was
also reported for an earlier version, these versions au-
tomatically got the bug annotation. We did this back
propagation for all bugs found in the 2.4.1 kernel. In ad-
dition to inspecting error logs ourselves, we distributed
them to system implementors for external confirmation.

To get the projected errors, we ran checkers with low
false positive rates over all Linux versions and treated
their unexamined results as errors. We primarily use
three low false positive checkers in this paper: Vat,

74

] Check I N b u g s
Block 206 + 87
Null 124 + 267
Vat 33 + 69
Inull 69
Range 54
Lock 26
Intr 27
Free 17
Float 10 + 15
Real 10 + 1
Param 7
Size 3

Rule checked

To avoid deadlock, do not call blocking functions with interrupts disabled or a spinlock held.
Check potentially NULL pointers returned from routines.
Do not allocate large stack variables (> 1K) on the fixed-size kernel stack.
Do not make inconsistent assumptions about whether a pointer is NULL.
Always check bounds of array indices and loop bounds derived from user data.
Release acquired locks; do not double-acquire locks.
Restore disabled interrupts.
Do not use freed memory.
Do not use floating point in the kernel.
Do not leak memory by updating pointers with potentially NULL realloc return values.
Do not dereference user pointers.
Allocate enough memory to hold the type for which you are allocating.

Table 1: The twelve checkers used in this paper. If the checker has few false positives, we report the number of bugs
as inspected +projected. In total there are 1025 bugs. The top three are the primary projected checkers: we assume
all potential errors reported by these checkers are real bugs. The middle set of checkers are used throughout the
paper, but we only count manually inspected errors from 2.4.1 as real bugs. The bottom set of checkers are used only
occasionally throughout the paper.

250

200

150

100
Z

50

0
01/94

Total Number of Projected Bugs Through Time
. 1.8

I Code Base Growth 2.~.
---*--- Block-projected 2.3.9~-pre6 ~ 1.6
........... Null-projected \ / ~
- - - ~ Var-projected 2.3.40,, ~ , L / 1.4
.......... Float-projected ~ .
......... Real-projected 2 .p .0~J 1.2

/ ~ / .~

2.].
. 0.8 ~;

° . °

1. .o _J :o.4
b . . ~ /; ," i---"--0.2

01/95 01/96 01/97 01/98 01/99 01/00 01/01

Figure 2: The absolute number of projected errors in
this study. We believe 1000 is a conservative estimate
of the number of unique bugs we have. The errors found
by the three projected checkers are usually a function of
code size, though the block checker has an unusual dip
from version 2.1.60 to 2.3.0. The number of projected
errors goes down at 2.3.40 for Block and Null because
about 30 Block errors and 40 Null errors were fixed in
that version.

Block, and Null. The Var checker produces almost
no false positives, Block less than three percent, and
Null less than ten percent. While the projected results
have more noise, they are fairly representative of the
inspected results.

Raw error counts alone cannot answer questions re-
lating to error rates, which require some notion of the
number of times a programmer has correctly obeyed a
given restriction. Thus, we also use notes, which are
emitted whenever an extension encounters an event that
it checks. For example, the Null checker notes every call
to kmalloc or other routines that can return NULL; the
B l o c k checker the number of critical sections it encoun-
ters, the Free checker the number of deaUocation calls it
sees, etc. Notes are the number of places a programmer

could make a mistake relevant to a given check. Thus,
for a given checker, dividing the number of errors by the
number of notes gives the relative error rate.

Figure 2 graphs all the projected errors we use. We
have approximately 1000 unique bugs in total, counting
both projected and inspected errors. There are several
features to note about the graph:

• The number of errors for the unsupervised check-
ers generally rises over time, especially after the
release of version 2.3.0.

• The Block checker accounts for an unexpectedly
large number of the errors. Many developers seem
unaware of the restriction that it checks.

• The Null checker also accounts for a large num-
ber of errors. This is caused by careless slips, ig-
norance of exactly which functions might return
NULL, and the ubiquitous use of NULL pointers to
indicate special cases.

2 . 4 S c a l i n g
A key feature of our experimental infrastructure is that
it is almost completely automatic. The main manual
parts are actually writing checkers and, for inspected
bugs, auditing their output for a single run. Running
a checker over all versions of Linux requires typing a
single command. These results are then automatically
entered in a database and cross-correlated with previous
runs. A common pattern is inspecting errors from the
most recent release and then having the system auto-
matically calculate over all releases how long each error
lasts, where it dies, how many checks were done, and
the relative error rate. Further, with the exception of
some axis labeling, all the graphs in this paper are gen-
erated from scripts. Thus, adding new results and even
new checkers or operating systems requires very little
work.

2 .5 C a v e a t s
There are several caveats to keep in mind with our re-
sults. First, while we have approximately a thousand
errors, they were all found through automatic compiler

75

analysis. It is unknown whether this set of bugs is rep-
resentative of all errors. We at tempt to compensate for
this by (1) using results from a collection of checkers
that find a variety of different types of errors and (2)
comparing our results with those of manually conducted
studies (§ 8).

The second caveat is that we treat bugs equally.
This paper shows patterns in all bugs. An interesting
improvement would be to find patterns only in impor-
tant bugs. Potential future work could use more so-
phisticated ranking algorithms (as with Intrinsa [11])
or supplement static results with dynamic traces.

The third caveat is that we only check along very
narrow axes. A potential problem is that poor quality
code can masquerade as good code if it does not happen
to contain the errors for which we check. We try to
correct for this problem by examining bugs across time,
presenting distributions, and aggregating samples. One
argument against the possibility of extreme bias is that
bad programmers will be consistently bad. They are not
likely to produce perfectly error-free code on one axis
while busily adding other types of errors. The clustering
results in Section 6 provide some empirical evidence for
this intuition.

A final, related, caveat is that our checks could mis-
represent code quality because they are biased toward
low-level bookkeeping operations. Ideally they could
count the number of times an operation was eliminated,
along with how often it was done correctly (as the notes
do). The result of this low-level focus is that good code
may fare poorly under our metrics. As a concrete exam-
ple, consider several thousand lines of code structured so
that it only performs two potentially failing allocations
but misses a check on one. On the other hand, consider
another several thousand lines of code that perform the
same operation, but have 100 allocation operations that
can fail, 90 of which are checked. By our metrics, the
first code would have a 50% error rate, the second a 10%
e r r o r rate, even though the former had an arguably bet-
ter structure.

3 Where Are The Bugs?

Given the set of errors we found using the methodology
of the previous section, we want to answer the following
questions: Where are the errors? Do drivers actually
account for most of the bugs? Can we identify certain
types of functions that have higher error rates?

3.1 Drivers
Figure 3 gives a breakdown of the absolute count of
inspected bugs for Linux 2.4.1. At first glance, our in-
tuitions are confirmed: the vast majority of bugs are in
drivers. This effect is especially dramatic for the Block
and Null checkers. While not always as striking, this
trend holds across all checkers. Drivers account for over
90% of the Block, Free, and I n t r bugs, and over 70%
of the Lock, Null , and Var bugs.

Since drivers account for the majority of the code
(over 70% in this release), they should also have the
most bugs. However, this effect is even more pronounced
when we correct for code size. Figure 4 does so by plot-
ting the ratio of the relative error rate for drivers versus
the rest of the kernel using the formula:

err-ratedrivers/err-ratenon-drivers

100
8O

~ 6o
Z 40

20
0

Number of Errors per Directory in Linux
i i I 200 Block t~

180 Free •
160 Inull
140 Intr
120 Lock

Null m
Range

V a r m

.

other arch/i386 net fs drivers

Figure 3: This graph gives the total number of bugs for
each checker across each main sub-directory in Linux
2.4.1. We combine the kerne l , r~, and £pc sub-
directories because they had very few bugs. Most errors
are in the driver directory, which is unsurprising since it
accounts for the most code. Currently we only compile
axch/£386. The Float, Param, Real, and Size checkers
are not shown.

Rate of Errors compared to Other Directories

'Block ~
Free •
Inull '~
Intr

Null ~
R~ge ~

v a r

, s , ,
other arch/i386 net fs drivers

Figure 4: This graph shows drivers have an error
rate up to 7 times higher than the rest of the ker-
nel. The a rch / i386 directory has a high error rate for
the Null checker because we found 3 identical errors in
arch/±386, and arch/±386 has relatively few notes.

If drivers have a relative error rate (err_ratedri )
identical to the rest of kernel, the above ratio will be
one. If they have a lower rate, the ratio will be less
than one. The actual ratio, though, is far greater than
one. For four of our checkers, the error rate in driver
code is almost three times greater than the rest of the
kernel. The Lock checker is the most extreme case: the
error rate for drivers is almost seven t imes higher than
the error rate for the rest of the kernel.

The only checker that has a disproportionate num-
ber of bugs in a different part of the kernel is the Null
checker. We found three identical errors in arch/J386,
and, since there were so few notes in the a rch / i386 di-
rectory, the error rate was relatively high.

These graphs show that driver code is the most
buggy, both in terms of absolute number of bugs (as
we would suspect from its size) and in terms of error
rate. There are a few possible explanations for these re-
sults, two of which we list here. First, drivers in Linux
and other systems are developed by a wide range of pro-
grammers who tend to be more familiar with the device

76

Correlation between Error-Rate and Function Size

0.03

Block , °
Inull ----* p

0.025 Intr /
~¢ Lock ---= /

Null - - ~ - - / 0.02 /
" ' 0.015 * ' ~ ' ~ . . ~ / ~

0.01
.=p . . .

0.005

0 =~ : :=~ - - ' : "

10 100

Average Function Size (Lines)

Figure 5: This graph shows the correlation between
function sizes and error rates. It is drawn by sorting the
functions that have notes by size, dividing them equally
into four buckets, and computing the aggregated error
rate per bucket for each checker. For all of the checkers
except Inull, large functions are correlated with higher
error rates.

rather than the OS the driver is embedded in. These
developers are more likely to make mistakes using OS
interfaces they do not fully understand. Second, most
drivers are not as heavily tested as the rest of the kernel.
Only a few sites may have a given device, whereas all
sites run the kernel proper.

3.2 Large Functions
Figure 5 shows that as functions grow bigger, error rates
increase for most checkers. For the Null checker, the
largest quartile of functions had an average error rate
almost twice as high as the smallest quartile, and for the
Block checker the error rate was about six times higher
for larger functions. Function size is often used as a
measure of code complexity, so these results confirm our
intuition that more complex code is more error-prone.
Some of our most memorable experiences examining er-
ror reports were in large, highly complex functions with
contorted control flow. The higher error rate for large
functions makes a case for decomposition into smaller,
more understandable functions.

4 How are bugs distributed?

When we report the errors found by checkers, we also
provide a summary of the errors sorted by the number of
errors found per file. A common pattern always emerges
from these summaries: a few files have several errors
in them, and a much longer tail of files have just one
or two errors. In this section we consider the bugs in
2.4.1 and show that this phenomena can be described
by the log series distribution [12]. Fit t ing a theoretical
distribution is useful because it (1) compactly describes
the basic characteristics of the error data we have, (2)
makes quantitative, testable predictions, and (3) allows
us to derive a theoretical metric of kernel-wide error
clustering behavior (§ 6). The log series distribution
implies these high-level properties:

1. The mode (most common value) of the number of
errors per unit (i.e. files or chunks of attempts) is

All bugs in 2.4.1 except Block

o o

0~

"6

15

LL
o.
o

(~ ® ® ® ® x

2 4 6 8

Error Count
(Total 243 files, 380 errors)

Figure 6: This graph shows a histogram of the number
of files with a given number of bugs for all checkers
except for Block. The O's are the actual data points;
the X's are the theoretical log series distribution that
best fits the data. The theoretical distribution has a
parameter 8. For this data set, the maximum likelihood
value is ~ = 0.567, which gives the density formula for
the distribution: P r [X = k] = 1"2°×°'~67~ k

1.

2. The probability of seeing a unit with E errors is
a monotonically decreasing function of E. Infor-
mally, "In few files, many bugs; in many files, a
few bugs."

3. The distribution is completely determined by a
single parameter, 8, which can be estimated di-
rectly from the data.

4.1 The Data
Figure 6 shows the distribution of errors in files using a
histogram-like representation. The "O" points are the
actual data points, and the "X" points are the theoret-
ical distribution, described in the next section. Note
that over 60% of the files contain only one error, about
20% contain two, and the distribution rapidly drops off
for files with three or more errors. Also note that while
there are files with a large number of errors, they get
sparser as the number of errors increases (the "O" points
are sparser in the tail of the distribution). This implies
that there will likely be several files each with a unique
(and large) number of errors.

4.2 Fitting a Distribution
To fit a distribution to the graph, we start with a set of
distributions to test. Each distribution has one or more
parameters that change the shape of the curve. We
estimate these parameters using the method of maxi-
mum likelihood, a well-established statistical technique
for such estimations [12, 22]. This technique finds the
value of the parameters that is most likely to give rise
to the observed data. Once we have the parameters, we
can determine how well the data fits the distribution us-
ing the X 2 (Chi-squared) goodness-of-fit test [22]. The
specific details of these calculations will be postponed
to the next subsection. After performing the statisti-
cal analysis, we discovered that the data is best fit by

77

D i s t r i b u t i o n P a r a m e t e r (s) X ~ p - va lue

BLOCK 2.4.1

O~
~=

._~
U-

o.
0

®

ee~xeQgxxxxgxxxxxxxgxxxx~xxxxxxx~
; 17 ;s 2'0 2's 3'o 3's

Error Count
(Total 53 files, 206 errors)

Figure 7: This graph shows a histogram of the num-
ber of files with a given number of bugs for the Block
checker. The O's are the actual data points; the X's
are the theoretical Yule distribution that best fits the
data. The Yule distribution has parameter p which has
a maximum likelihood value of p -- 1.09 for this data.

a logarithmic series distribution if we omit the Block
checker.

It is not possible to prove that a data set is drawn
from a particular distribution; the data set could always
be an anomaly. However, it is possible to show that a
data set is m o r e l ike ly to come from a particular distri-
bution than another one. Table 2 shows the other distri-
butions we tried, their maximum likelihood parameters
for the non-Block errors, and the X 2 p-value obtained.
The p-value can be roughly interpreted as the proba-
bility of seeing the data obtained if it actually came
from the theoretical distribution. Standard statistical
convention requires a p-value of 5% or lower before re-
jecting a distribution (sometimes a more stringent value
of 2% is used). Only the Yule, geometric, and log se-
ries distributions are not rejected by the X 2 test: these
distributions have p-values of 23%, 24%, and 79~o, re-
spectively. We chose the log series distribution because
it provided the better fit and because it is relatively easy
to analyze and describe.

The Block checker's errors do not fit the log series
distribution as well as the results from other checkers.
The main cause is that too many files have a large num-
ber of Block errors; there is simply more clustering (§ 6)
than the log series distribution predicts. We discuss the
distribution of Block checker bugs later in this section.

4.3 The Logarithmic Series Distribution
This subsection describes the statistical methods we
used for fitting and testing a distribution for the data.
A logarithmic series distribution gives the probability of
seeing any value k as:

ct6 ~
e r [x = k l = k (1)

where k > 0 is the number of bugs, 8 is the parameter
for the curve (0 < 8 < 1), and c~ is a normalization
constant chosen such that the probabilities will add up
to 1. Once we have determined 8, we have a curve.
For the bugs in 2.4.1 except for the Block checker, we
calculated a maximum likelihood value of 8 --- 0.567

Binomial
Geometric
Log series
Poisson
Yule
Zipf

n = 7, p = 0.234
p = 0.639
0 = 0.567
A = 0.564
p = 2.57
p = 1.46

< 2.2 x 10 -I~
0.24
0.79
1.4 x I0 -s
0.23
7.3 x 10 -3

Table 2: The distributions we at tempted to fit to all of
the errors we found in 2.4.1 except for Block. The ge-
ometric and Poisson distributions were shifted to make
the first value 1 (we only model the distribution of files
with at least one error). The parameter values are the
maximum likelihood values (some were derived numer-
ically). In the statistical literature a p-value of 0.05 or
lower is required to "reject" a distribution. Sometimes
a more stringent value of 0.02 is used. By either of
these criteria, we cannot reject the log series, geomet-
ric, or Yule distributions; however, the log series gives
a distinctly better fit.

B in1 B i n 2 B i n 3 B i n 4
Observed 164 50 14 15
Expected 164.7 46.7 17.6 14.1

Table 3: X 2 calculation for all errors in 2.4.1 except for
Block bugs, using 4 bins.

using the techniques found in Johnson and Kotz [12].
Visually, the distribution appears to be a good fit for
the data, but a statistical test is more precise than the
human eye. If this distribution passes the X 2 goodness-
of-fit test, then we have some assurance that the data
could really have come from that distribution. To apply
the test, the data is partit ioned into a small number of
bins such that the number of errors in each bin is as
equal as possible. For example, with three bins: all files
with 1 error are typically in bin 1, then all files with 2
errors in bin 2, and all other files are in bin 3. These
bins are picked to put a reasonable number of points in
each 2 bin (the X test usually requires that each bin has
at least 5 expected errors). The X 2 value is calculated
a s :

b
~ ' ~ (Oi - E i) 2

X 2 ~,~ (2)
i=l

where b is the number of bins, and Oi, Ei are the number
of errors observed and predicted for bin i respectively.

2 Once this X value is calculated the probability of seeing
2 such a data set can be looked up in a table of X values,

with the "degrees of freedom" parameter equal to b - 1.
Table 3 shows the observed and expected number of

errors in each bin, when testing the logarithmic series
distribution with parameter /~ ---- 0.567. For this 8 we
obtained X 2 -- 1.05, which corresponds to a p-value of
79%. This means that about 79% of the time a random
sample that actually came from a log series distribution
would be as different from the theoretical distribution
as our bug sample is.

4.4 Some Properties of the Distribution
We give a useful approximation for the maximum like-
lihood 0 [12]. Let x be the average number of errors
per file, for files with errors (this implies x >---- 1). If

78

x < 25 (our data typically has 1 < x < 2), then 8 can
be approximated as:

1
8 ~ 1 - 1 + [(5 - ~ log x)(x--1) + 21 Iogx (3)

Once we have calculated O, we can use it in various
formulas that follow from the distribution. For example,
we can predict the total number of files with errors of a
given type, given only the number of files that contain

exactly one bug (F):= - ~ l o g (1 - O) (4)

We can also predict the total number of errors found:
E -- nz

i - e (5)
After calculating 8 for all non-Block bugs in 2.4.1, we
used our data set to check these approximations. Given
that n l -- 164 files contained one bug, the formulas
predicted that there would be F = 242 total files with
bugs, and E -- 378 bugs in total. The actual number of
files with errors was 243, and the total number of bugs
was 380. Note that since we derived 8 from the data,
this is not a rigorous evaluation, but it does give a feel
for how well the "best" curve from this distribution fits
our data set.

There are also explicit formulas for the mean num-
ber of errors per file (#) and the variance (a2):

a0
= i - o (6)

= ~(i i_--~ - ~) (7) 2

In Section 6 we use these equations to derive a theoret-
ical measure of kernel-wide clustering.

The log series distribution not only fit the data for
all the bugs that we found, but also fit for each indi-
vidual checker's bugs separated from the others (with
different O's). However, for the Block checker, the Yule
distribution [12] fit better than the log series distribu-
tion. We omit the details of the Yule distribution, but at
a high level it is similar to the log series distribution in
that it is a monotonically decreasing distribution with
a single parameter. Qualitatively, the primary differ-
ence is that it has a longer tail: there is more proba-
bility of seeing large numbers of bugs in a file, which is
in accord with our finding that the Block bugs exhibit
significantly more clustering (§ 6). Figure 7 shows the
distribution of Block bugs in 2.4.1 with the maximum
likelihood Yule distribution, which had a X 2 p-value of
99%.

4.5 Discussion
One potential pitfall with our method is that we rely on
files as appropriate units for aggregating error counts.
Relying on files is appealing because programmers who
introduce errors also group related code into files, mak-
ing them a natural unit for such aggregation. The disad-
vantage of using files is that they are not equal in terms
of size, complexity, and especially number of chances for
making an error that our checkers can find. As a result,
it is possible that the distribution of file sizes or notes
is influencing the distribution of bugs that we observe.

To counter this possibility of bias, we also com-
puted the distribution of bugs over equal-sized chunks
of notes. The distribution of errors over these chunks

was essentially equivalent both qualitatively and with
respect to fitting the theoretical distribution. To form
these chunks, we order all of the notes by the full path-
name of the file in which they occur. Then, we take
consecutive chunks of N notes and count the number of
errors among those notes. The distribution of chunks
with at least one error are then plotted as described
above. The choice of N is somewhat arbitrary, but one
natural choice is the average number of notes per file
(excluding the Var, F loa t , and I n u l l checkers, whose
notes are somewhat misleading due to the nature of the
checks), which is about 35. We tried many possible
values for N, and for most of them the log series distri-
bution fit, both qualitatively and also by passing the X 2
test (for non-Block 2.4.1 errors, the p-value was 78% for
chunks of size 35, almost the same as it was for files).

Clearly, more data needs to be collected on differ-
ent types of systems before general conclusions can be
drawn about the distribution of bugs in all systems.
However, from our initial results analyzing the distribu-
tion of bugs in Linux, we believe that there is significant
evidence that recognizable patterns do exist.

5 How long do bugs live?
The last two sections looked at how bugs were dis-
tr ibuted through space. This section looks at their dis-
tr ibution through time by examining bug lifetimes. A
lifetime spans the time a bug is introduced (born) to
the time it is eliminated (killed). If we sample a system
at time t, the lifetime of the bugs in the system at t are
controlled by birth rate, which is determined by how
many of the current bugs were born at each point in
the past, and death rate, which is symmetrically deter-
mined by how many of the current bugs will die at each
point in the future. In aggregate, these control how old
the bugs in the system are, and how many, on average,
will be killed in a given time span. We show four views
of this data:

1. The lifetime of all bugs in this study. The life-
time of bugs is an indication of the effectiveness
of the testing and inspection process for a system.
In an ideal situation, all bugs would be fixed in-
stantly, and bug lifetimes would be zero. In gen-
eral, shorter bug lifetimes are better.

2. A back-projection of the bugs alive in the most re-
cent release (2.4.1) showing when they were born,
the birth rate, and the percentage of the bugs in
2.4.1 present in each of the past releases used in
this study.

3. A magnification of all bug births and deaths for
the unsupervised checkers across all releases that
shows birth and death rates across many different
points in time as well as the number of bugs shared
by each release.

4. An estimation of bug lifetimes. This calculation is
difficult because many bugs we examine are still
alive. The problem is analogous to measuring the
lifetime of patients in a medical study: patients
enter at different times (as with our bugs) and typ-
ically some number are still alive when the study
ends. We can use the Kaplan-Meier (KM) estima-
tor [7] to estimate bug lifetime within some confi-
dence range.

79

Lifetime of All Bugs

1000

E 800
Z
== 600

4 0 0

0 2 0 0

0 t_~
01/94

2.4.111

p°l
2 . 3 . 9 9 - p r e 6 J ~ I

2.3.30

2,3.20

01/95 01196 01/97 01/98 01199 01/00 01/01

Time
Figure 8: This graph shows the lifetimes of all bugs.
Each horizontal line represents a bug's lifetime, sorted
first by bir th date, then by death date. Bugs found in
2.4.1 appear to 'die ' at 2.4.1 but are really censored.

Where errors in Linux 2.4.1 are from, broken down by checker

100 Beck ' " ; / . ~
~. Free ~///~.'l i

Inull ~/'/~s~!/~
80 Intr ~ - Y / : / / /

Lock ~t:l .//
Null ~."]

60 Range]J~?/f

, 0

"6 20

o

01194 01195 01/96 01/97 01/98 01/99 01/00 01/01

Date

Figure 9: This graph shows the origin of 2.4.1 bugs for
each bug type by calculating the percentage of bugs that
came from before a given date.

5.1 A bug's life
Figure 8 gives the raw lifetime da ta of all bugs in this
study. Each bug has its own unique horizontal line rep-
resenting its lifetime. The left endpoint denotes when
the bug was introduced into the kernel (born). The right
denotes when the bug was fixed (died). Bugs tha t are
still alive in the last release have an artificially t runcated
right endpoint, since we cannot follow them into the fu-
ture. This t runcat ion is called "censoring" in the statis-
tical l i terature [7] and must be handled when explicitly
calculating bug lifetimes (we return to this point at the
end of the section). Left and right endpoints are trun-
cated to version releases, since this is the granularity at
which we sample the kernel. We sort the da ta within a
release by the lifetime of the bugs so that the shortest-
lived bugs are at the top of the band and the longest at
the bot tom. This gives a dist inct "lip" to each version,
which corresponds to the bugs that we only detected
in tha t version. Notice tha t some bugs were detected
in just one version but others lasted many years and
through many versions.

5.2 Magnification: birth rates of 2.4.1 bugs
We magnify the da ta in Figure 8 by taking all bugs
alive in 2.4.1 and following them back in t ime ("back
propagation") to see when they were introduced. Fig-
ure 9 shows this information by plot t ing the percent-
age of 2.4.1 bugs alive at each release broken down by
checker (some checkers are omit ted from this graph to
simplify it). The back propagation lets us compare the
age of bugs in 2.4.1 across many checkers. While back
propagation only shows "half" of a bug 's life, it gives a
feel for the shape of the bir th distr ibution. The distri-
butions for all of the checkers have a similar shape: a
sharp dropoff followed by a somewhat longer tail.

5.3 Magnification: births and deaths through time
The previous figure focused on known, inspected bugs
for a single release. For a more complete picture we
would like to answer: (1) what are the bir th and death
rates? (2) how do these rates fluctuate over time? To
answer these questions we use three of our projected
checkers, Block, Null , and Var, to obtain errors for all
releases. Because these checkers give few or no false
positives, they allow us to automatical ly extract an ac-
curate picture of the actual number of errors, as well as
when they were born and when they died.

Figure 10 shows both the bug bir th and death rates
across all kernel releases. The left side of each curve's
peak corresponds to the back-propagat ion bir th-rate curve
of Figure 9, while the right side shows the morta l i ty
rate (by propagat ing bugs forward to later releases to
see how long before they are fixed).

The pr imary feature of the graph is tha t the curves
have a sharp dropoff in both directions, which is similar
to the back-propagation shape of 2.4.1 errors. The rapid
falloff going backward in t ime (to the left) from any peak
means tha t typical ly around 40%-60% of the bugs in a
given version are introduced during the previous year;
the rest are carried over from code older than a year.

For example, consider the peak on the curve labeled
2.3.20. The peak appears at version 2.3.20 because it is
the only version containing all of 2.3.20's bugs. For each
version both forwards and backwards we plot the num-
ber of 2.3.20's bugs tha t still appear in tha t version. The
graph decreases forward in t ime (to the right) as more
and more bugs die and backwards in t ime as we con-
sider releases before a bug was introduced. The graph
shows a sharp dropoff in both directions; approximately
125 errors in 2.3.20 were carried over from 2.3.0, while
about 110 errors survived until 2.4.1. A similar peak
appears for other versions, though usually they are not
quite as sharp.

The non-centered version of the graph encodes sev-
eral interesting properties. Connecting the peaks gives a
curve showing the absolute number of errors over time.
The graph allows one to estimate:

1. How many bugs two versions share: take the peak
for version A, and follow its curve either forwards
or backwards to version B's position on the x axis.
The height of A's curve at tha t point is the number
of bugs tha t A and B have in common.

2. The number of bugs introduced and fixed between
two versions: take the peak for version A, and
follow its curve to version B. The number fixed is
A's peak minus the height of its curve at version

80

Lifetime of Bugs Across Selected Versions

350 " 2.4.'1 " , .

2.3.20 ----* 2.4.1
300 2.3.0

2 1 80 --~-- .^ / ' " . . 2 3 z u / 250 2.1.40 " ;/' ,
2.1.0 /'~ /

200 1.3.0] ~, / 1.2.o I v
= 150 1.1.1310 :23~ A

216o ;..7...../:. ' " \
1oo 2. y .

50 1.1.1312 0 2 : ~ ~
,.~-_-:.~.:~.:3o : ~ : 7 . : : : ~ ' : ~ _ - - :

0 ~ s = : . : ~ ~ ~ ~ : , . - . ~ y . ? ~ . : . . ; . . ~ ,
01/94 01/95 01/96 01/97 01198 01/99 01/00 01/01

Date
Ages of Bugs Across Selected Versions

350 2.4.~ , '
2.3.20 ----*

300 13.0 -.---" /T
2.1.80 --=' - - / I

250 2.1.40]
2.1.0-'-.~- J
1.3.0 I /]

.~ 200 1.2.0 f !I
oo 1.1.13 J Jl
"5 150 ~ , ~

lOO

50 ' "

0 " " ~L I..

-80 -60 -40 -20 0 20 40 60 80
of Months away

Figure 10: The upper graph shows the forward and
backward lifetimes of bugs in low false positive checkers
(Block, Nul l and Vat) for selected major release snap-
shots. Symmetrically, all snapshots have sharp dropoffs
both forward and backwards in time, giving further ev-
idence that most bugs die quickly. The lower graph
shows this symmetry by centering all lifetime distribu-
tions around the same point.

B. The number of bugs introduced between A and
B is the height of B's peak minus A's value at B.

3. For a given version, the distr ibution of how old its
bugs are: take the peak for version A and consider
all the peaks before it in time. Follow all of their
curves to version A; the relative distances between
these curves indicate how many errors are from
each version in the past.

5 .4 C a l c u l a t i n g average b u g l i f e t ime

Some of the most natural questions to ask about ag-
gregated da ta are what its average and median values
are. Extract ing these from the type of da ta we have
has three main problems: quantization error, censor-
ing, and interference. First , the granularity of the ver-
sions we check limits our precision. Most of the ver-
sions are separated by about four months, but the gap
ranges from about one month (between 2.4.0 and 2.4.1)
to about one year (between 1.1.13 and 1.2.0). Another
effect of this quantization is tha t we will completely miss
bugs whose lifespan falls between the versions we check,
which tends to make the average lifetime we calculate
artificially long. We deal with quantization by assum-
ing tha t the bir th date (i.e., the first version in which

o ,

u)

2°
~d

"6 d

u_
o
o

Kaplan-Meier Estimator for Block, Null and Var

. e - _ i

o ~ ~ ~ ~ ~ ~ 7
Years

Figure 11: A Kaplan-Meier survival curve tha t shows
the probabil i ty of a bug living longer than a given num-
ber of years. The dot ted curves show the 95% confi-
dence band. This est imator was computed using only
bugs from low false positive checkers (Block, Null , and
Vat).

the bug appears) and death date (i.e., the last version
in which the bug appears) are exact, which underesti-
mates the lifetime of the bugs we find. We also ignore
the bugs we don ' t find because their lifetimes fall be-
tween versions. Because these two effects have bias in
different directions, they will part ial ly cancel each other
out.

Second, as we mentioned above, we have no exact
death da ta for many bugs since they are still alive at
2.4.1 (i.e., right censoring). Naively averaging their ob-
served lifespan (treating t runcat ion as death) will sig-
nificantly underest imate real lifetime. Fortunately, this
is a well-studied problem with a s tandard statistical
solution: the Kaplan-Meier (KM) est imator [7]. The
Kaplan-Meier est imator gives a maximum-likelihood dis-
t r ibution of bug lifetimes by taking bugs censored at
age X (i.e. their age at 2.4.1) to mean "lives at least
as long as X." Thus, the Kaplan-Meier est imator takes
both censored and uncensored da ta into account. For
a meaningful estimate, however, some uncensored da ta
must be available to serve as the basis for extrapolation.
We use the bugs whose real bir th and real death were
observed in the unsupervised runs (i.e. Block, Var, and
Null) described in the previous subsection.

Another problem with calculating lifetimes is our
own interference: by providing bug logs we may have
shortened overall bug lifetimes. In previous work [8] we
found several hundred errors in 2.3.99 and released them
to kernel developers. We cannot be sure exactly how
many errors were fixed because of our error reporting,
but we do have evidence tha t our efforts did shorten
bug lifetime. In Figure 8, there is a noticeable vertical
"edge" at 2.3.99, but not at most other versions. This
edge corresponds to a significant number of bugs having
their last appearance at 2.3.99. Specifically, 95 bugs
died at 2.3.99, while only 14-76 died in each previous
2.3.x release, and only 4 died at 2.4.0. We can finesse
this problem by treat ing bugs tha t die at 2.3.99 as right
censored; doing this results in a longer lifetime (average
2.5 years, median 1.7 years if we censor at 2.3.99, as

81

I C h e c k e r I D i e d [C e n s o r e d I M e a n (y r) I M e d i a n (y r)
! Block 87 206 2.52 4- 0.15 (1.93, 2.26, -)

Nul l 267 124 1.27 4- 0.10 (0.64, 0.98, 1.01)
Vat 69 33 1.43 4- 0.23 (0.26, 0.29, 0.79)
All 423 363 1.85 4- 0.13 (1.11, 1.25, 1.42)

Table 4: Average bug lifetimes predicted by the Kaplan-Meier estimator. D i e d is the number of bugs for which we
observed the entire lifetime, while C e n s o r e d is how many were still present in 2.4.1 and are therefore right-censored.
The M e a n is presented with the s tandard error (the s tandard deviation of random samples of this size from the true
mean). The M e d i a n is presented as a triple (LB, M, UB) where LB is the lower 95% confidence level, M is the
median, and UB is the upper 95% confidence level. An "-" means the statist ic is not derivable from the da ta we have.

opposed to average 1.8 years, median 1.25 years if we
censor at 2.4.1). However, this est imate will err on the
long side since an unknown number of those 95 bugs
may have been removed without our interference. We
do not consider the problem of interference further in
the rest of this section.

Finally, any calculation of bug lifetimes should take
into account the nature and purpose of development
during the period measured. Traditionally the odd re-
leases (1.3.x, 2.1.x, 2.3.x) are development versions tha t
incorporate new features and fix bugs, whereas the even
versions (1.2.x, 2.2.x, 2.4.x) are more stable release ver-
sions, with most changes being bug fixes (though there
are exceptions). Development on odd versions proceeds
in parallel with the stabilization of even versions. We
have chosen to model mostly the development path,
picking up many minor releases of odd versions but only
the major releases of even versions (except for 2.4.1).
This choice also allows us to linearly order the versions
in time, which we could not have done if we also exam-
ined the minor releases of even versions.

Given a set of da ta points representing bug lifetimes,
the Kaplan-Meier (KM) est imator derives a maximum-
likelihood survivor function, which is defined as follows.
Let X be a random variable representing the lifetime of
a bug. The survivor function F x (t) gives the probabil i ty
tha t a bug lives at least as long as t:

t
dl

f x (t) = P r i X > = t I = H (1 - 77.) (8)
i = 0

In this function, di is the number of bugs tha t die at
t ime i, and ri is the number of bugs still alive at t ime i
(including censored bugs).

Figure 11 shows the KM survival curve for all of
the low false positive checkers combined. The two dot-
ted curves surrounding the curve show the 95% con-
fidence band. Notice tha t this band grows rapidly as
the bug lifetime increases. This increase is due to the
small number of bugs in our da ta tha t have extremely
long lifetimes. For each possible bug lifetime up to the
maximum lifetime observed, the KM curve gives us the
probabil i ty tha t a random bug will live that long. For
example, this curve shows us that there is approximately
a 50-60% chance tha t a bug will last for over one year,
but tha t percentage drops to 30-40% for lifetimes over
two years. Notice tha t the upper-left hand corner of
the curve does not begin at 1.0 because of our sampling
granularity. There are a significant number of errors
tha t only show up in a single version, and we count
these as having a lifetime of zero.

The graph can also be used to est imate the max-

imum error bir th rate tha t can be tolerated without
increasing the total number of bugs. If the bir th rate
exceeds the death rate then kernel will tend to accrue er-
rors over time, and if the converse holds then errors will
gradually be purged. Assuming KM is a good approxi-
mation of the errors we did not manually inspect, then
the figure can also be used as a crude metric for how
well the system is tested and audited: a sharp down-
ward slope indicates a rapid rate of bug fixing; a more
horizontal slope indicates tha t fewer bugs are being re-
moved in a given time, with the implication tha t bug
lifetimes will be longer.

We were surprised to find tha t errors tend to live
quite a long t ime before being extinguished. The av-
erage bug lifetime we calculated is around 1.8 years,
with the median around 1.25 years. Table 4 breaks this
number down by checker. Note the much shorter me-
dian lifetime for Var compared with Block and Null .
This perhaps indicates the relative importance of these
errors to kernel developers, or could be due to the fact
tha t given one Vat bug it is easy to find all other bugs
tha t use the same type using a string search. On the
other hand, the relatively long average lifetime for Vat
may mean tha t once the easy errors were removed, the
rest were more difficult to find, perhaps because they
didn ' t cause many stack overflows in practice.

A v e r a g e A g e . If we compute the average age of
bugs in any one part icular version, it is always relatively
small. For example in 2.4.1 the average age of a bug is
about 1 year. How does this mesh with our est imate of
1.8 years for the average bug lifetime? A simple analogy
with human lifetimes clarifies the situation. Suppose an
average person has a life expectancy of 77 years. If at
any t ime we take a sample of the ages of people and
find the mean, it will always be far less than 77 years.
Every sample point in a given version is right-censored,
so we will always get a much shorter average age than
the average lifetime.

C o d e H a r d e n i n g . A widely held systems belief is
tha t as code ages, it becomes less buggy, presumably
because testing and inspection will gradually weed out
more errors. In order to test this hypothesis, we calcu-
lated the average number of bugs in each file as a func-
tion of file age. We ordered all files in 2.4.1 tha t have
notes by their ages, equally divided them into four buck-
ets and computed the aggregated error rate per bucket
for each checker. Figure 12 shows tha t older files tend
to have lower error rates. For all of the checkers shown,
the newest quartile of files have an average error rate
about twice as high as the oldest quartile of files.

82

Correlation between Error-Rate and File Age
0.04 . • ,

. Block ,
0.035 ~ Inull

.... - \ lntr
"~ 0.03 r . .~ - I ' ' ~ ' ~ \ Lock - - i - -

0.015

0.01

o.oo5

o
1 O0 1000

Average File Age (Days)

Figure 12: Older files tend to have lower error rates.

6 H o w do bugs c lus te r?

Many errors are not independent: if a type of bug ap-
pears once in a function, file, or directory, another bug
is much more likely to appear within that unit than in
another random unit. Two reasons for dependence are
incompetence and ignorance. As programmer compe-
tence degrades, error rates increase. Similarly, if a pro-
grammer is ignorant of system restrictions, he/she will
tend to make more errors than a programmer that is
not. Thus, for large systems with many programmers,
dependent errors will cause error "clustering," where
parts of the OS have much higher error rates than the
global error rate. This section:

1. Graphically shows clustering in Linux, both in raw
form and compared to the clustering that would
be measured from random events.

2. Presents and applies an intuitive measurement of
clustering for subsystems. This measurement can
be used to rank subsystems for auditing: subsys-
tems with strong clustering on one rule will rea-
sonably have clustering on others and be the most
profitable candidates for auditing.

3. Presents and applies a global measure of clustering
that can be used to compare the system-wide clus-
tering of different types of errors. If a particular
type of error exhibits system-wide clustering, then
programmers are probably ignorant of the partic-
ular rule or interface involved. This implies that
the rule or interface should be abolished or pro-
grammers should be educated to prevent future
errors.

5.1 Views of clustering
Figures 13 shows a graphical demonstration of cluster-
ing for the Block checker. We sort the files by the num-
ber of notes and then plot the number of errors in each
file. For a random distribution, we would expect the
number of errors to be a relatively stable fraction of the
number of notes with few deviations far above the ex-
pected curve. Instead, we see several unlikely spikes and
a relatively weak correlation with the number of notes,
which together indicate clustering.

Another way to look at clustering is to consider the
skew caused by clustered bugs. We use "skew" to de-

Number of Errors vs Number of Notes (Block Checker)

35 600

30 5OO

25 400 ¢o

20 o
Z m 300 ~6

~6 15 "6

10 200 ~=

5 100

0 0
0 100 200 300 400 500 600

Files Ordered by Increasing Number of Notes

Figure 13: A view of the Block errors found in the entire
Linux 2.4.1 kernel. Files are numbered by the number of
notes and placed in sorted order on the x-axis. For ran-
dom coin tosses one would expect the number of errors
to be a relatively stable fraction of the number of notes.
The absolute number of notes in each file is plotted on
the right y-axis, while the absolute number of errors in
each file is plotted on the left y-axis.

scribe a situation where a small portion of the popu-
lation (e.g., files, directories, and notes) accounts for a
large portion of the interesting cases. Figure 14 shows
how clustering can be viewed as skew in a distribution
by considering the Block checker. On the x-axis we
place the files ordered by number of bugs, with the files
with the most bugs on the far left. On the y-axis we
plot how many bugs remain in files to the right of the
point. For the Block checker (the far left curve), ap-
proximately 80% of the total errors are accounted for
by 50% of the files that contain errors (point A). (Note
that all errors from the Block checker occur in 8% of
all files, so 4% of the total files account for 50% of the
errors from the Block checker.)

Of course, even if we threw bugs into the source at
random, there would be some "clustering" since the er-
rors would sometimes fall together even though they are
really independently placed. Thus, for comparison, we
plot the results of a random experiment run 1,000 times
over the distribution of notes and plot the maximum and
minimum results (the two far right curves). Two things
are immediately apparent: the random experiment pre-
dicts that 60%-100%+ more files will have errors than
actually do, and, unlike the observed results, 80% of the
errors would be accounted for by between 75% (point
B) and 80% (point C) of the files.

6 . 2 C l u s t e r i n g in S u b s y s t e m s

In this subsection we calculate approximately how likely
an observed cluster is due to chance using Chernoff
bounds for independent Poisson trials [19]. This met-
ric is useful for ranking subsystems for auditing, but it
does not provide a whole-kernel metric; we present a
global metric in the next section.

Suppose we model each call to a function that can
return a NULL pointer as a coin flip, and with some
probability Pb~g the caller forgets to check the return
value along some path that later uses that pointer. Tak-

83

DIR Notes NBugs Expect P
Block Checke r
ne t / a tm 152 22 1.94 3.1 × 10 -1~
drivers/i2o 692 35 8.81 2.6 × 10 - l °
drivers/isdn/hisax 956 41 12.17 7.9 × 10 -1°
drivers/usb/serial 94 9 1.20 3.2 × 10 -5
drivers/isdn/icn 86 8 1.10 1.2 × 10 -4
drivers/net/pcmcia 240 12 3.06 5.7 × 10 -4
dr ivers /net /wan/ lmc 146 9 1.86 8.7 × 10 -a
drivers/isdn/act2000 24 3 0.31 1.6 × 10 -2
drivers/atm 317 6 4.04 6.6 × 10 -1
N u l l Checke r
fs/udf 88 11 1.97 5.0 × 10 -~
drivers/net/ tokenring 22 6 0.49 7.5 x 10 -5
drivers/char/drm 69 9 1.54 2.2 x 10 -a
drivers/net/pcmcia 39 6 0.87 1.6 × 10 -3
drivers/pcmcia 28 5 0.63 2.4 x 10 -3
drivers/scsi 253 13 5.65 3.1 x 10 -2
drivers/char/rio 19 3 0.42 3.7 × 10 -2
drivers/telephony 7 2 0.16 3.9 × 10 -2
drivers/ide 56 5 1.25 4.2 x 10 -2

Table 5: The number of notes and bugs found in Linux 2.4.1 for the top 9 most clustered leaf directories. E x p e c t is
the expected number of errors that we would find if errors were distributed as coin flips, i.e. E x p e c t = N o t e s * Pbug,
where ['bug is the total number of bugs found divided by the total number of notes for the entire kernel for that
checker. There were 206 errors / 16176 notes for Block, and 124 errors / 5550 notes for Null . We use the Chernoff
bound for independent Poisson trials to calculate P, an upper bound on the probability that the number of bugs would
exceed the expected number by as much as we observed. As expected, errors for Block (a rule that programmers
seem relatively ignorant of) cluster significantly more than Null errors.

ing Pb~g to be the measured average rate of such errors
over the entire Linux kernel, sometimes a single function
or directory will have no errors, sometimes one error,
and sometimes many.

To test this model, we compute the likelihood that
randomly distributed errors cluster in the same way as
our observations for each directory in the Linux 2.4.1
distribution. Table 5 lists leaf directories with signif-
icantly more bugs than the expected number for the
Block and Null checkers. We apply the Chernoff bound
for Poisson trials to bound the probability P that a di-
rectory has many more bugs N than the expected num-
ber of errors E:

e6] E
P = Pr[N > (1 -I- ~)E] < (1 -{- ~)(1+~) (9)

Here N is the number of bugs in the directory, E the
expected number of errors for the directory, and 5 is the
fraction by which the actual number of bugs exceeds
the expected number. If clustering did not exist, then
the probability P for each directory would be expected
to have reasonably large values (close to 1), especially
since the number of directories (samples) is relatively
small. However, the extremely low bounds are strong
evidence that the errors are not randomly distributed
and that clustering exists. At the most extreme, the
likelihood of seeing the results found in the ne t / a rm
directory is less than 3.1 out of 1,000,000,000,000,000!
This clustering turned out to be caused primarily by
one file that called a blocking function 22 times with
a spin lock held. Another example was a single file in

the d r i v e r s / i 2 o directory. Within this file, 34 of the
errors were caused by cut-and-paste: one of the errors
was copied in 10 places and another in 24!

5.3 A Global Clustering Metric
While equation 9 gives a simple way to rank clustering
in subsystems by how much they deviate from a coin flip
process, it does not provide a single summary metric for
how much clustering exists in the entire kernel. The rea-
son is that the bound depends on the global error rate
being different from the error rate in particular subsys-
tems; when applied to the whole kernel this difference
in error rates disappears and the bound becomes mean-
ingless. For example, it cannot be used to compare how
errors from different checkers cluster across the entire
kernel.

We propose a simple metric that provides a global
quantitative measure of clustering. To provide some
intuition for our metric, consider the possible arrange-
ments of four errors in four files, shown in Table 6. The
value of this metric can be seen from this example: given
a system with a number of known errors, it provides a
quantitative way of describing how closely the errors are
grouped together.

Intuitively, the first row has the least clustering, and
the last row has the most. A natural way to formalize
this intuition is to note that clustering is an aggregate
measure of how far the distribution of errors deviates
from the average for each file.

Consider a system with N units (files, for exam-
ple). Let E = {el, e2, ...eN} denote the number of errors

84

Clustering as Skew - Block Checker

100 ~. 'Real -
90 ~".. Random-Min
80 t ~"""" Random-Max
70

,ot -...[..........
0 5 10 15 20 25 30

% of Files

Figure 14: A plot of clustering as skew: 50% of the
files account for 80% of the errors. The maximum and
the minimum are shown by the curves Random-Flax and
Random-Flirt. The curve for Real represents the observed
results. If the bugs were thrown into files randomly, we
would expect that the curve for Real would fall some-
where between Random-Max and Random-Flin.

Arrangement Clustering
el e2 [e3 e4 c

X X X X 0

xx x x 0.5
xx xx 1
xxx x 1.5
xxxx 3

Table 6: The possible arrangements of four errors in
four files and the clustering value assigned to the ar-
rangement by the clustering metric. Permutations of
these arrangements result in identical amounts of clus-
tering and are not shown.

1 N found in each unit. Let p = ~ ~i=i ei be the average
number of errors per unit. Then our clustering metric
c is defined as:

c = ~-J,':z (e, - p)2 (10)
N

E i = l e i
The clustering formula is very similar to the formula for
the variance of the el's, except that the denominator
is the total number of errors, not the total number of
units. The problem with directly using a measure such
as standard deviation or variance as the metric for clus-
tering is that the number of units is rather arbitrary.
Using either of those metrics, it would be difficult to
compare two different clustering values if their number
of units were different. However, notice that the vari-
ance, a 2 is related to c by:

if2
e = - - (1 1)

tt
Thus our clustering metric is simply the ratio of the
variance to the mean. In the statistical literature, this
is called the dispersion index. It is often used in bio-
logical applications to measure the clustering tendency
of populations, and it has also been used in modeling
the burstiness of network traffic [16]. The main feature

of c is that it predicts if the distribution is clustered as
much as random (c = 1), less clustering than random
(c < 1), or more clustered than random (c > 1), where
"random" is taken to mean a Poisson distribution. If
c = 0, then the distribution is uniform and there is no
clustering at all.

Table 7 shows the value of c for Linux version 2.4.1
broken down by checker (for now, only the value of c
matters; Ceheo~et~cal will be explained in the next sec-
tion). The clustering metric is computed twice: once
by us ingchunks of notes as the units (as described in
§ 4) and once by using files as the units. Using chunks
is a more accurate measure of clustering because each
chunk has an equal number of notes, and each note rep-
resents an opportunity for an error. In contrast, using
files ignores the fact that different files will contain a dif-
ferent number of notes. In the remainder of this section
we focus on the clustering results for chunks.

The most striking thing about the clustering data
is that, with the exception of Block, all of the checkers
show clustering less than random. For the Param, and
Size checkers, this is easy to explain: there are simply
too few bugs to show much clustering. For chunks, the
Free, I n t r , and Lock checkers show clustering near uni-
form (i.e. almost no clustering at all). We hypothesize
that this is due to the level of understanding of the pro-
grammers. For example, anyone who calls c1£ to dis-
able interrupts should know the meaning of disabling
interrupts and therefore should know not to leave them
disabled. By using part of this interface, the program-
mer demonstrates knowledge of what the interface does
and knowledge of how to use it. As a result, the bugs
that we find are mostly isolated mistakes.

The I n u l l and Null checkers show higher clustering
values, though they still cluster less than random. For
the Null checker, some programmers might not have
known all of the functions that can return NULL. For
the I n u l l checker, we believe the clustering was largely
caused by cut-and-paste of incorrect code.

Clustering values greater than one potentially demon-
strate that the programmer did not understand what
they were doing in the places with all the bugs. Only
the Block checker falls into this category. It is very
likely that a programmer does not realize that he can-
not call a blocking function when interrupts are disabled
or a spin lock is held. Or perhaps he knows this rule,
but fails to know every single function that can block.
In either case, the programmer's understanding of the
interface is incorrect, and he is therefore more likely to
make the same mistake repeatedly.

It is important to note that the clustering values
are calculated without including the chunks that have
no bugs. In other words, these numbers only represent
the clustering among chunks that have bugs. If we were
to include all chunks, these numbers would be higher,
so we use them as an underestimate of the clustering.
We ignore the zero-bug chunks so that we can compare
these numbers to the theoretical distribution that we
calculated in Section 4.

We can relate the above clustering metric to the
distribution of errors in the following way. As we have
seen, by fitting a logarithmic series curve to the data, we
obtain a value for 8 that in tu rn determines a theoretical
approximation for the variance a 2 (Equation 7). Divid-

85

ing the approximation by # derives an approximation
for c:

a ~ P'(i--'-~ - ~) 1 - c~O
Cth~o , . e t i~a - - - - = - - (12)

/z # 1 - O

where a = - [l o g (1 - ~)]-1. Using the log series dis-
tr ibution, we can not only derive good approximations
for the mean and s tandard deviation, we can also use
the value of 8 to est imate the clustering of that data.
Table 7 shows some values of Ceh~o,.eti~a~ for compari-
son with the actual clustering values. The closer the
distr ibution of errors follows the log series distribution,
the more likely the theoretical clustering will be close to
the actual clustering. For example, for all of the check-
ers except for Block (the distr ibution shown in Figure 6)
the actual clustering value by file is 0 . 7 6 6 , while the the-
oretical value is 0.755. Since the theoretical clustering
value in this case is derived from 8, which was in turn
derived from the data, this cannot be used to judge the
predictive value of Equation 12; however it does give a
sense for how well the "best" est imate of the cluster-
ing according to the log series distr ibution matches the
actual value.

6.4 Discussion
So far we have not discussed how clustering comes about.
One simple hypothesis is that programmers have dif-
ferent abilities and tha t poor programmers are more
likely to produce many errors in a single place. How-
ever, from our experience, this is probably only the
second most impor tant cause of clustering. The most
important cause is probably ignorance: many program-
mers appear to be ignorant of the relevant system rules,
and they produce highly concentrated clusters of errors
without even being aware of it. In addit ion to ignorance,
the prevalence of cut-and-paste error clustering among
different device drivers and versions suggests tha t pro:
grammers believe tha t "working" code is correct code.
Unfortunately, if the copied code is incorrect, or it is
placed into a context it was not intended for, the as-
sumption of goodness is violated. Finally, some code is
simply not executed as often, making it less well tested
and therefore more likely to contain clusters of errors.

7 Initial Cross-Validation with OpenBSD

If Linux is simply a "bad" system, then studying its
errors would not be part icularly useful. To provide an
initial examination of this possibility, we compare re-
cent Linux (2.4.1) and OpenBSD (2.8) releases using
four checkers: In%r, Free, Null, and Param. We used
older versions of these checkers than was used in the rest
of this paper, but we controlled for checker variation by
using identical checker versions for both kernels. The
only difference between them was the text file used to
specify the names of the routines to check (e.g., what
routines disable interrupts, free memory, return poten-
tially NULL pointers, or manipulate user pointers). As
such, these checkers provide a roughly uniform compar-
ison in that they will be vulnerable to the same types
of false positives and miss the same kinds of errors.

OpenBSD had far a factor of 2-4 fewer checked loca-
tions (notes) but a higher error rate for the four check-
ers we compared. The closest result was for the Null
checker. Here OpenBSD had an error rate of 2.148% (1
error in 50 possibly failing calls), which was roughly 20%

Checker

Block
Free
INull
Intr
Lock
Null
Parma
Realloc
Size

All ex. Block
All

C h u n k s I F i l e s
c [C theor C "] Ceaeo,.

3.26 2.51 10.92 6.03
0.0551 0.0651 0.220 0.145

0.778 0.595 0.224 0.238
0.217 0.259 0.0356 0.0394

0.0705 0.0879 0.0369 0.0411
0.770 1.51 0.394 0.420
0.167 0.644 0.457 0.495

0.533 0.912
0.167 0.644 0.167 0.644
0.385 0.455 0.766 0.755

1.61 0.958 5.80 1.75

Table 7: This table shows the clustering values, c, for
bugs in 2.4.1 computed by chunks (35 notes / chunk)
and by file. Values e < 1 imply a more uniform distri-
bution, c = 1 a random distr ibution (frequencies follow
a Poisson distr ibution), and c > 1 indicate more clus-
tering than random. The values of cth~or are computed
from equation 12 using the maximum likelihood value
of 8 for each checker. Considering chunks, Block bugs
cluster more than any other type, with Nul l a distant
second. The F l o a t , Range, and Vat checkers were omit-
ted because their notes do not always correspond well
to the number of t imes the rule was checked.

worse than Linux's rate of 1.786%. The I n t r checker
was next (.617% versus .465%). The Free checker had
an error rate two times worse than Linux (one call site
out of 200 was incorrect) whereas the Param checker,
arguably the most important , was almost a factor of six
worse.

In fact, these numbers may be biased towards un-
derstat ing the difference in the kernels. The OpenBSD
errors were all hand verified by an OpenBSD implemen-
tor (to the point tha t many were fixed and checked into
the main kernel tree during this diagnosis). In contrast,
the bugs found in Linux were diagnosed by us and are,
therefore, more likely to be over-reported.

This being said, the numbers in Table 8 do not give
a full picture of code quality. Two generic problems are
that (1) they are only for a l imited number of check-
ers and (2), as discussed in Section 2, the checkers only
examine low-level operations, and thus give no direct
measurement of design quality. More specific to the ac-
tual measurements, par t of OpenBSD's high error rate
comes from a very small number of files tha t see little
to no use on most sites. This skew was especially true
for the errors found by the Parma checker tha t mostly
resided in the "System 4" compatibi l i ty layer, which
sees l imited use. The checkers found significantly fewer
errors in the rest of the kernel.

8 Related Work
Numerous projects have used stat ic analysis to find er-
rors [1, 4, 11, 25]. While these indirectly contrast differ-
ent code bases, they primari ly focus on the machinery
and methods used to find the errors. In contrast, we
assume some way of automatical ly getting errors and
concentrate on the errors themselves.

System reliability studies have focused on: (1) in-

86

C h e c k e r
Null
Intr
Free
Param

P e r c e n t a g e B u g s N o t e s
L i n u x O p e n B S D R a t i o L i n u x O p e n B S D L i n u x O p e n B S D
1.786% 2.148% 1.203 120 27 6718 1257
0.465% 0.617% 1.328 27 22 5810 3566
0.297% 0.596% 2.006 14 13 4716 2183
0.183% 1.094% 5.964 9 18 4905 1645

Table 8: Comparison of the most recent shipping versions of Linux (2.4.1) and OpenBSD (2.8) on four checkers. For
these checkers, OpenBSD is always worse than Linux, ranging from about 20% worse to almost a factor of six.

spection of error logs, (2) analysis of system behavior
under fault injection, and (3) testing. We consider each
below.

While there have been many performance studies
of operating systems [5, 21, 20], there have been rela-
tively few tha t look at code quality from within the OS
community. Most defect studies come from the soft-
ware engineering or fanlt-tolerant fields, and almost all
are based on da ta gathered from post-mortem inspec-
tion of error logs or "defect reports," typically for high
availability systems.

These studies are largely complementary to our work.
Their focus natural ly leads to different questions than
those we consider, such as (1) what causes faults, (2)
what their effects are, (3) if they can be predicted, and
(4) how well the system (mis)handled them. Further,
their error populations and ours have different implica-
tions. They have two main advantages: (1) they only
contain realistically exploitable bugs (we treat all bugs
equally) and (2) their end-to-end checks can find higher
level or deeper errors than our checkers. However, they
also have limitations that we do not. The most impor-
tant is that they are restricted to errors that were de-
tected and diagnosed with testing or field use. Because
their errors are biased towards modules and paths that
workloads happened to exercise, they can give a poten-
tially misleading view of error properties such as bug
distributions (one of their main focuses). In contrast,
we do not suffer these biases since our checkers can de-
tect all errors of a certain class on all paths, regardless
of whether a particular workload triggered them. We
consider a representative sample of these studies below.

Gray surveyed outages in Tandem systems between
1985 and 1990, using manually gathered bug reports
to classify the causes of outages [10]. In a subsequent
study, Lee and Iyer [15] looked at 200 memory dumps
of field software failures in the Tandem GUARDIAN 90
operating system collected over 1 year. They focused
on the effectiveness of fault detection and recovery, and
classifying errors by type (uninitialized variables, race
conditions).

Sullivant and Chillarege [23] examined MVS oper-
ating system failures, classifying error causes and man-
ifestations. They randomly sampled 250 reports (out
of a population of 3000) gathered over a five year pe-
riod. Their main focus was on measuring errors caused
by memory corruption versus "everything else." They
found that the former generated the highest number of
reported system crashes. They also measured how of-
ten and why bug fixes introduced other bugs. They did
similar s tudy for databases [24].

More recently, Xu et al. [26] used reboot logs to

measure the dependabil i ty of a 503 node Windows NT
cluster over 4 months (and 2,127 reboots). They classi-
fied the causes of failures (hardware, software), t ime to
recover, and availability measurements. An interesting
result is tha t reboots occur in bursts, which is similar
to our finding tha t errors cluster in source code.

While the studies above largely ignore the questions
we address in this paper, the following two are closer.

Fenton and Ohlsson [9] examined faults in two con-
secutive versions of a telecommunication switching sys-
tem. They found strong support for the "Pareto prin-
ciple," the hypothesis tha t a small number of modules
accounts for a large fraction of the faults, which is es-
sentially what we call skew. Specifically, they found
that 20% of the modules account for 60% of the faults
discovered during testing. In contrast, for Linux 2.4.1,
about 11% of the files accounted for all of the errors we
found with automatic checkers. While our numbers are
different (keep in mind we take files instead of modules
as our unit), the basic point of the principle seems to
be supported by our results. They also found that an
even smaller port ion of the modules (10%) account for
almost all of the operational failures.

Basili and Perricone [3] report on a manually con-
ducted s tudy of satellite planning software consisting of
90k LOC spread across 370 modules (functions). They
found tha t reusing modules for a new purpose decreased
initial development cost, but more effort was required
to correct errors in them. Thus there was a tradeoff be-
tween the cost of initial development t ime and the cost
of adapt ing modules to a new specification.

A related area are fault injection studies [2, 14],
which dynamically insert bugs into the system to see
how it crashes or survives [6]. These focus mostly on
robustness in the face of artificial errors, whereas we
are interested more in the features of actual errors.

Another approach is explicit testing, such as the
"fuzz" studies tha t compare how a set of systems utili-
ties behaved in the face of random inputs [17, 18].

In terms of examining bugs found with automatic
techniques, the closest work compared to us is a s tudy
by Koopman et al. tha t used randomized testing to
measure the effectiveness of error handling code on 13
different POSIX implementat ions [13]. They measured
both the types of errors tha t resulted (silent, machine
crash, caught, caught but misreported) as well as the
overlap of errors ("diversity") of the different operating
systems. Their study, like ours, has a measure of ob-
jectivity in tha t it applies its tests uniformly across a
set of code rather than being biased by what locations
programmers have decided to examine. Their s tudy has
the advantage tha t it spans many operating systems.

87

However, they focus only on error handling, rather than
general rules. They look at a limited portion of the OS
(e.g., not device drivers, or much of the auxiliary code).
Finally, their study does not address error behavior over
time.

9 Conclusion
This paper uses roughly 1000 unique, automatically de-
tected operating system errors to test and spot pat-
terns in kernel code such as the relative error rate of
drivers as compared to other kernel code (up to a factor
of ten worse), how errors cluster (roughly a factor of
two more tightly than from a random distribution) and
how long bugs last (an average of about 1.8 years). We
gathered data from seven years of Linux releases. We
countered checker specific artifacts by using twelve au-
tomatic checkers, which found errors more objectively
than manual inspection could hope to. We view these
as promising, but initial results. We hope that other
researchers will find the results of this study useful for
understanding the nature of errors in systems code.

10 Acknowledgements
Peter Glynn and Peter Salzman suggested discrete dis-
tributions, maximum likelihood techniques, the X 2 test,
and the Kaplan Meier estimator. The consulting staff
at Stanford's Depart of Statistics were also helpful in
guiding our statistical analysis. Diane Tang's critical
reading greatly improved the presentation, clarity, and
structure of this paper. We thank Ken Ashcraft and
Evan Parker for contributing the Range and I n u l l check-
ers and inspecting the results. We thank the readers of
l i n u x - k e r n e l for their generous feedback and support.
Alan Cox verified and fixed many of the errors we re-
ported to l i n u x - k e r n e l . Costa Sapuntzakis inspected
error logs for OpenBSD and committed fixes to the CVS
repository. Linus Torvalds inspected a near-final draft
and provided helpful comments on clustering. We thank
our shepherd, Mike Jones, for his careful reading and
valuable feedback. This work was supported by NSF
award 0086160 and by DARPA contract MDA904-98-
C-A933.

References

[1] A. Aiken, M. Fahndrich, and Z. Su. Detecting Races in
Relay Ladder Logic Programs. In Proceedings of the I s t
International Conference on Tools and Algorithms for the
Construct ion and Analysis of Systems, April 1998.

[2] J. Arlat, M. Aguera, L. Amat , Y. Crouzet, J.-C. Fabre, J.-
C. Laprie, E. Martins, and D. Powell. Fault Injection for
Dependabil i ty Validation - A Methodology and Some Ap-
plications. IEEE Transactions on Software Engineering,
16(2), February 1990.

[3] V. Basili and B. Perricone. Software Errors and Complex-
ity: an Empirical Investigation. Communicat ions of the
Association for Comput ing Machinery, 27(1):42-52, 1984.

[4] M. Bishop and M. Dilger. Checking for Race Conditions in
File Accesses. Computing systems, pages 131-152, Spring
1996.

[5] B. Chen, Y. Endo, K. Chan, D. Mazires, A. Dias, M. Smith,
and M. Seltzer. The Measured Performance of Personal
Computer Operat ing Systems. A C M Transactions on
Computer Sy s t ems (T OC S) , February 1996.

[6] R. Chillarege and N. Bowen. Unders tanding Large System
Failures - A Fault Injection Experiment . In The lg th Inter-
national Sympos ium on Fault Tolerant Computing, June
1989.

[7] D.R. Cox and D. Oakes. Analysis of Survival Data. Chap-
man and Hall, London, UK, 1984.

[8] D.R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
System Rules Using System-Specific, Programmer-Wri t ten
Compiler Extensions. In Proceedings of Operating Sys tems
Design and Implementa t ion (OSDI), September 2000.

[9] N. E. Fenton and N. Ohlsson. Quant i ta t ive Analysis of
Faults and Failures in a Complex Software System. IEEE
Transactions on Software Engineering, 26(8):797-814, Au-
gust 2000.

[10] J. Gray. A Census of Tandem System Availability Between
1985 and 1990. IEEE Transactions on Software Engineer-
ing, 39(4), October 1990.

[11] Intrinsa. A Technical Introduct ion to PREfix/Enterpr ise .
Technical report, Intr insa Corporation, 1998.

[12] N.L. Johnson and S. Kotz. Discrete Distributions. John
Wiley & Sons, New York, NY, 1969.

[13] Philip J. Koopman Jr., John Sung, Chris topher P. Ding-
man, Daniel P. Siewiorek, and Ted Marz. Compar ing Op-
erating Systems Using Robustness Benchmarks. In Sympo-
s ium on Reliable Distributed Systems, pages 72-79, 1997.

[14] A. Kanawati , N. Kanawati , and J. Abraham. FERRARI:
A Flexible Software-Based Fault and Error Injection Sys-
tem. IEEE Transactions on Software Engineering, 44(2),
February 1995.

[15] I. Lee, R. Iyer, and F. Symptoms. Faults, Symptoms, and
Software Fault Tolerance in the Tandem GUARDIAN Op-
erating System. In International Sympos ium on Fault-
Tolerant Comput ing (FTCS) , 1993.

[16] W.E. Leland, M.S. Taqq, W. Willinger, and D.V. Wil-
son. On the Self-Similar Nature of Ethernet Traffic. In
A C M S IGCOMM, pages 183-193, San Francisco, Califor-
nia, 1993.

[17] B.P. Miller, L. Fredriksen, and B. So. An Empirical Study
of the Reliability of UNIX Utilities. Communicat ions of
the Associat ion for Comput ing Machinery, 33(12):32-44,
1990.

[18] B.P. Miller, D. Koski, C.P. Lee, V. Maganty, R. Murthy,
A. Natara jan , and J. Steidl. Fuzz Revisited: A Re-
examinat ion of the Reliability of UNIX Utilities and Ser-
vices. Technical Report CS-TR-1995-1268, University of
Wisconsin, 1995.

[19] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, Cambridge, UK, 1995.

[20] S.E. Perl and R.L. Sites. Studies of Windows NT Perfor-
mance Using Dynamic Execut ion Traces. In Operating Sys-
tems Design and Implementat ion, pages 169-183, 1996.

[21] M. Rosenblum, E. Bugnion, S.A. Herrod, E. Witchel, and
A. Gupta. The Impact of Architectural Trends on Operat ing
System Performance. In Sympos ium on Operating Sys tems
Principles, pages 285-298, 1995.

[22] S.D. Silvey. Statistical Inference. C h a p m a n and Hall, Lon-
don, UK, 1975.

[23] M. Sullivan and R. Chillarege. Software Defects and Their
Impact on Sys tem 118 Availability - A Study of Field Fail-
ures in Operat ing Systems. In Pls t International Sympo-
s ium on Fault Tolerant Computing, June 1991.

[24] M. Sullivan and R. Chillarege. A Comparison of Software
Defects in Database Management Systems and Opera t ing
Systems. In P~nd International Sympos ium on Fault-
Tolerant Computing, July 1992.

[25] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A First
Step Towards Automated Detection of Buffer Overrun Vul-
nerabilities. In The $000 Network and Distributed Sys tems
Security Conference. San Diego, CA, February 2000.

[26] Z. Xu, R. Kalbarczyk, and Iyer. Networked Windows NT
System Filed Failure Data Analysis. In Proc. of Pacific
R im International Sympos ium on Dependable Computing,
1999.

88

