
Maria Hybinette, UGA

CSCI 4730
 Operating Systems

Structures & System Design

Maria Hybinette, UGA
2

Review last time: Key Questions
in System Design

!! What does the OS look like? to the user?

!! What services does an operating system
provide?

An operating system is a complex collection of software – too

complex to be designed, implemented and/or understood as a

single entity.

System and Application

Programs

compiler assembler text editor …

Operating System

Computer

Hardware

user!

1!

user!

2!

…
user!

3!

•! Memory Management

•! Process Management

•! File Management

•! I/O System Management

•! Protection & Security

Maria Hybinette, UGA
3

Review: Operating System Role

!! Operating System

»! A machine that emulates the

hardware and provides a nice
programming environment for
[multiple] ‘activities’ (processes)

in the system.

!! Definition: A process is an

activity in the system – a

running program.

System and Application Programs

compiler assembler text editor …

Operating System

Computer

Hardware

user!

1!

user!

2!

user!

n!
…!

Maria Hybinette, UGA
4

Operating System Design Criteria

!! How do you hide the complexity and

limitations of hardware from application
programmers?

»!What is the hardware interface? (the physical
reality)

»!What is the application interface? (the nicer

abstraction)

In terms of particular hardware (i.e., CPU,
Memory, Network) what criteria does your
system need to address (solve).

Maria Hybinette, UGA
5

Example Design Questions

!! How to make multiple CPU appear as one CPU but faster?

!! How to make limited memory appear as infinite (e.g., a

large array may not fit into memory).

!! How to make a mechanical disk appear to be as fast as

electronic memory?

!! How to make insecure, unreliable network transmissions

appear to be reliable and secure?

!! How to make many physical machines appear to be a

single machine?

Maria Hybinette, UGA
6

Summary of OS Roles

!!Provide standard services or

resources:

»! Screen, CPU, I/O, disk, mouse

»! resource abstraction.

!!Provide for sharing of resources:

»! coordinate between multiple applications to work

together in

–!safe, efficient, and fair ways

»! resource sharing.

Maria Hybinette, UGA
7

Coordination: Resource Abstraction

!! Example: Accessing a raw disk involves

»! specifying the data, the length of data, the disk drive, the
track location(s), and the sector location(s) within the

corresponding track(s).

!! Problem: Applications don’t want to worry about the

complexity of a disk.

!"#$%&'(%

!"#$%)*&++,'#%

-%+'&.$%

lseek(file, file_size, SEEK_SET);
write(file, text, len);

write(block, len, device, track, sector);

System Calls

Maria Hybinette, UGA
8

Coordination: Resource Sharing

!! Example Goal: Protect the OS protection from other

activities and provide protection across activities.

!! Problem: Activities can crash each other (and crash the OS)
unless there is coordination between them.

!! General Solution: Constrain an activity so it only runs in its

own memory environment (e.g., its own sandbox), and make

sure the activity cannot access other sandboxes.

»! Sandbox: Address Space (memory space)

–! It’s others memory spaces that the activity can’t touch

including the Operating System’s address space

Maria Hybinette, UGA
9

Protection Implementation: Dual
Mode Operations

!! Idea: The OS is omnipotent everything else isn’t.

»! Two modes CPU operation:

–! Kernel Mode – Anything goes – access everywhere
(unrestricted access) to the underlying hardware.

!! Execute any CPU instruction and reference any memory access

–! User Mode – Activity can only access state within its own

address space (for example - web browsers, calculators,
compilers, JVM, word from microsoft, power point, etc run in
user mode).

How does the OS is to prevent arbitrary programs (run by arbitrary

users) from invoking accidental or malicious calls to halt the operating

system or modify memory such as the master boot sector?

Maria Hybinette, UGA
10

Hardware: Dual-Mode Operation

!! Mode bit (0 or 1) provided by
hardware

»! Provides ability to distinguish
when system is running user
code or kernel code

kernel" user"

Interrupt/fault"

set user mode"

•! Question: What is the mechanism from the point of

view of a process to access kernel functions (e.g., it

wants to write to disk)?

Maria Hybinette, UGA
11

System Calls

!! Mechanism for user activities (user

processes) to access kernel functions.

!! Example: UNIX implements system calls via

the trap instruction (system call contains the

trap instruction).

!! When the control returns to the user code the

CPU is switched back to User Mode.

trap

/#,'%012,% 3,'4,*567),'8"#1'%012,%

6,+%3,'4,*%012,%

9'7#+,2%:12,%

;'&4.<%9&=*,%
!"

2

>%

Maria Hybinette, UGA
12

Example: I/O Protection

!! All I/O instructions are

privileged instructions.

!! Must ensure that a user

program could never gain

control of the computer in
kernel mode

»!Avoid a user program that, as

part of its execution, stores a
new address in the interrupt

vector.

System call to perform I/O

Read

read

System Call n

1

Case n

2

3

Execute
System Call

Perform I/O

Return
to user

Calls System
Call

Trap to
 kernel

User
level

Kernel
level

Time

Maria Hybinette, UGA
13

UNIX – details - Steps in Making
a System Call

!! Consider the UNIX read system call
»! count = read(fd, buffer, nbytes)

»! reads nbytes of data from a file
(given a file descriptor fd) into a
buffer

!! 11 steps:

»! 1-3: push parameters onto stack

»! 4: calls routine

»! 5: code for read placed in register

»! 6: trap to OS

»! 7-8: OS saves state, calls the
appropriate handler

»! 9-10: return control back to user
program

»! 11: pop parameters off stack

Return to caller

Trap to the kernel

Put code for read in register

Increment stack pointer

Call read

Push fd

Push nbytes

Push & buffer

Dispatch
Sys call
handlers

User Space

Kernel Space

Address
0xFFFFFFFF

0x0

Read

User
Program
Read

1

2

3

7 8

11
6 4

9

10 5

Maria Hybinette, UGA
14

Types of System Calls

!! Process control

»! fork, execv, waitpid, exit, abort

!! File management

»! open, close, read, write

!! Device management

»! request device, read, write

!! Information maintenance

»! get time, get date, get process attributes

!! Communications

»! message passing: send and receive messages,

–! create/delete communication connections

»! Shared memory map memory segments

Maria Hybinette, UGA
15

Library Routines: Higher Level
of Abstraction to System Calls

!! Provide another level of

abstraction to system calls
to

»! improve portability and

»! easy of programming

!! Standard POSIX C-Library

(UNIX) (stdlib, stdio):
»! C program invoking printf() library

call, which calls write() system call

!! Win 32 API for Windows

!! JVM

Maria Hybinette, UGA
16

Types Hardware Protection

!! Dual-Mode Operation (Privileged Operations)

»! Example: Provides: I/O Protection

!! Memory Protection (Space)

!! CPU Protection (Time)

Maria Hybinette, UGA
17

Example: Memory Protection

!! Must provide memory protection

»! The interrupt vector and the interrupt

service routines.

!! In order to have memory
protection, add two registers that

determine the range of legal

addresses a program may access:

»! Base register – holds the smallest

legal physical memory address.

»! Limit register – contains the size

of the range

!! Memory outside the defined range

is protected.

Maria Hybinette, UGA
18

CPU Protection

!! Timer – interrupts computer after specified

period to ensure operating system maintains
control.

»! Timer is decremented every clock tick.

»!When timer reaches the value 0, an interrupt

occurs.

!! Timer commonly used to implement time

sharing.

!! Time also used to compute the current time.

!! Load-timer is a privileged instruction.

Maria Hybinette, UGA
19

OS Evolution

!! Phase 1: Hardware Expensive, Humans

Cheap

»!Goal: Use computer time & space efficiently

»!Maximize throughput while minimize the use of

space

!! Phase 2: Hardware Cheap, Humans

Expensive

»!Goal: Use people’s time efficiently

»!Minimize response time

Maria Hybinette, UGA
20

Phase 1: Hardware Expensive
Simple Structure: MS-DOS

!! Goal: Minimize space -
written to provide the
most functionality in the
least amount of space

»! Simple layered structure

»!Not divided into modules
carefully

»! Interfaces and levels of
functionality are not well
separated

–! High level routine access
to low level I/O routines

•! Current hardware:

•! No dual-mode and no

hardware protection -

Maria Hybinette, UGA
21

Process Control: MS-DOS

Kernel

Command

interpreter

Free

memory

At Startup

Process

Kernel

Command

interpreter

Free memory

Running a Program

!! Command interpreter is

invoked when the computer is

started

!! To run a program, that

program is loaded into

memory – overwriting some of

the command interpreter

!! Upon program termination
control is returned to the

command interpreter which

reloads its overwritten parts

MS-DOS is a single-tasking OS (single user, single process)

can get some of benefits of multiprogramming via "terminate & stay resident”

system call (forces reserves space so that process code remains in memory)
Maria Hybinette, UGA

22

Phase 1: Hardware Expensive
Multi-programming

!! Goal: Better throughput and utilization

»! Provide a pool of ready jobs

»!OS can always run a job

»!Keep multiple jobs ready in memory

»!When the job waits for I/O, switch to another job

–!Keep both CPU and I/O is busy

Maria Hybinette, UGA
23

Example: Process Control: UNIX

Running Multiple

Programs

Process B

Kernel

interpreter

Free memory

Process D

Process C

!! Each user runs their own shell (command interpreter),
e.g., sh, csh, bash, …

!! To start a process, the shell executes a fork system
call, the selected program is loaded into memory via
an exec system call, and the new process executes

!! depending on the command, the shell may wait for the
process to finish or else continue as the process runs
in the "background"

!! when a process is done, it executes an exit system call
to terminate, returning a status code that can be
accessed by the shell

UNIX is a multi-programming OS (multiple users, multiple processes)!

Recall: most UNIX commands are implemented by system

programs

Maria Hybinette, UGA
24

Phase b2: People time becomes
more valuable

!! Some hardware is becoming less expensive,

e.g., keyboard, monitors (per user),
mainframes still expensive.

!! Time sharing system

!! Goal: Improve user response time

!! Approach:

»! Switch between jobs to give appearance of

dedicated machine

»!More complex scheduling needed, concurrency

control and synchronization.

Maria Hybinette, UGA
25

Phase 2a: Inexpensive Personal
Computers

!! 1980 Hardware (software more expensive)

»! Entire machine is inexpensive

»!One dedicated machine per user

!! Goal: Give user control over machine

!! Approach:

»!Remove time sharing between users

»!Work with little main memory

Maria Hybinette, UGA
26

Phase 2b: Inexpensive Powerful
Computers

!! 1990s Hardware

»! PCs with increasing computation and storage

»!User connect via the web

!! Goal of OS

»!Allow single user to run several application

simultaneously

»! Provide security from malicious attacks

»! Efficiently support web servers

!! Approach:

»!Add back time-sharing, protection and virtual

memory

Maria Hybinette, UGA
27

Current Systems Trends

!! OS changes due to both hardware and users

!! Current trends:

»! Multiprocessors

»! Network systems

»! Virtual machines

!! OS Code base is LARGE

»! Millions lines of code

»! 1000 person-years of work

!! Code is complex and poorly understood

»! System outlives any of its builder

»! System will ALWAYS contain bugs

»! Behavior hard to predict, tuning is done by guessing

Maria Hybinette, UGA
28

Review

!! How do devices communicate?

!! What is multiprogramming?

!! What is time-sharing?

!! What is a process?

!! What type of ‘protection’ does hardware

provide?

Maria Hybinette, UGA
29

Review OS Core Components

!! Processor Scheduler

»!When a process executes

!! Memory Manager

»!When and how memory is located to a process

!! File System

»!Organize data in persistent storage

!! Communication (e.g., networking)

»! Enables processes to communicate with each

other, and how.

Maria Hybinette, UGA
30

Evolution of the Structure the OS

!! Monolithic Kernel

»! 2 (3) Layers

–!Hardware

–!System

–!User

!! More layers & provide interface between them

!! Keep only the essential layer in the kernel

»!Micro Kernel

Maria Hybinette, UGA
31

Monolithic Kernels

!! Earliest and most common OS architecture (UNIX,

MS-DOS)

!! Every component of the OS is contained in the
Kernel

!! Examples: OS/360, VMS and Linux

Hardware

I/O Managers File System

Device

Drivers

Network

Drivers

Graphics

Drivers

Graphics

Subsystem

File System

Application Application Application

Memory

Protection

Monolithic

Kernel

Maria Hybinette, UGA
32

Monolithic Kernels

!! Advantages:

»! Highly efficient because of direct communication
between components

»! Susceptible to malicious code - all code execute with
unrestricted access to the system.

!! Disadvantages:

»! Difficult to isolate source of bugs and other errors

»! Hard to modify and maintain

»! Kernel gets bigger as the OS develops.

Hardware

I/O Managers File System

Device

Drivers

Network

Drivers

Graphics

Drivers

Graphics

Subsystem

File System

Application Application Application

Memory

Protection

Monolithic

Kernel

Maria Hybinette, UGA
33

Layered Approach

!! Divides the OS into a number of layers

(levels).

»! each built on top of lower layers.

»! bottom layer 0 is the hardware;

highest the UI.

!! With modularity:

»! layers are selected such that each uses

functions (operations) and services of
only lower-level layers

application application

system services

file system

memory management

hardware

process scheduling

kernel

user

I/O management

Maria Hybinette, UGA
34

Layered Approach

!! Approach: Higher level layers access
services of lower level functions:

»! Example: Device driver for backing store (disk
space used by virtual memory) must be lower
than memory managers because memory
management ‘uses’ the ability of the device
driver.

!! Problem: Which level should be lower a
device driver for backing store of scheduler?

»! Example:

–! Backing store need the scheduler because the
driver may need to wait for I/O and the CPU can
be rescheduled at that time.

–! CPU scheduler need to use backing store
because it may need to keep more space in
memory than is physically available.

application application

system services

file system

backing store

hardware

process scheduling

kernel

user

memory management

Maria Hybinette, UGA
35

Layered Approach

!! Problem: Efficiency?

»! I/O layer, memory layer, scheduler layer,
hardware

»! I/O operations triggers may call three
layers.

»! Each layer passes parameters, modifies
data etc.

»! Lots of layers, adds overhead

application application

system services

file system

memory layer

hardware

process scheduling

kernel

user

I/O layer

Maria Hybinette, UGA
36

Layered Approach

!! Examples: THE, Windows XP and LINUX have
some level of layering.

!! Advantages:

»! Modular, Reuse

!! Disadvantages:

»! Hard to define layers

–! Example: CPU scheduler is lower than virtual
memory driver (driver may need to wait for I/O)
yet the scheduler may have more info than can
fit in memory

»! Efficiency - slower each layer adds overheads

application application

system services

file system

memory and I/O devices

hardware

process scheduling

kernel

user

Maria Hybinette, UGA
37

Layered OS’s Trend

!! Trend is towards fewer

layers, i.e. OS/2

Maria Hybinette, UGA
38

Microkernel System Structure

!! Approach: Separate kernel
programs into system and user
level programs (or libraries)

»! Moves as much from the kernel
into “user” space

»! Minimal kernel only essential
components

–! Kernel: process, memory and
communication management
(main function of kernel)

–! Communication takes place
between user modules using
message passing.

User processes

paging

System processes

micro-
kernel

user
mode

kernel
mode

communication protection
low-level VM processor control

file
system

thread
system

network
support

CPU
scheduling

Maria Hybinette, UGA
39

Microkernel System Structure

User processes

paging

System processes

micro-
kernel

user
mode

kernel
mode

communication protection
low-level VM processor control

file
system

thread
system

network
support

CPU
scheduling

!! Advantages:

»! Easier to extend a microkernel

–! add functionality does not
need to modify kernel

»! Easier to port the operating
system to new architectures

»! More reliable (less code is
running in kernel mode)

»! Less points of failures.

»! More secure

!! Disadvantages:

»! Slow: Performance overhead of
user space to kernel space
communication

Examples: Mach, MacOS X, Windows NT"

Maria Hybinette, UGA
40

Microkernel System Structure

!! Windows NT first version

that used pure layered
microkernel approach

and moved code into
higher layers but later

moved them back to
kernel space for

performance reasons.

User processes

paging

System processes

micro-
kernel

user
mode

kernel
mode

communication protection
low-level VM processor control

file
system

thread
system

network
support

CPU
scheduling

Examples: Mach, MacOS X, Windows NT"

Maria Hybinette, UGA
41

Monolithic Kernel: Modules

!! Most modern operating systems implement

kernel modules: dynamically loadable
modules.

»!Uses object-oriented approach

»! Each core component is separate

»! Each talks to the others over known interfaces

»! Each is loadable as needed within the kernel

!! Overall, similar to layers but with more

flexible

»!module can call any other module

Maria Hybinette, UGA
42

Solaris Modular Approach

Maria Hybinette, UGA
43

Mac OS X Structure

!! Hybrid structure using a layered
structure.

!! Kernel environment at one level.

»! Mach micro kernel provides

–! memory management

–! support for RPC & IPC

–! message passing

–! thread scheduling

»! BSD provides BSD command

line interface

»! support for networking and file

system

»! Posix API’s pthreads

»! I/O Kit

»! Dynamically loadedable

modules (extensions)

Maria Hybinette, UGA
44

Virtual Machines

!! A virtual machine takes the

layered approach to its logical

conclusion.

»! It treats hardware and the

operating system kernel as

though they were all hardware

!! A virtual machine provides an

interface identical to the

underlying bare hardware

!! The operating system creates the

illusion of multiple processes,

each executing on its own

processor with its own (virtual)

memory

Maria Hybinette, UGA
45

Virtual Machines (Cont.)

!! The resources of the physical computer are

shared to create the virtual machines

»!CPU scheduling can create the appearance that

users have their own processor

»! Spooling and a file system can provide virtual card

readers and virtual line printers

»!A normal user time-sharing terminal serves as the

virtual machine operator’s console

»! Limitation: disk drives -> solution -> minidisks

Maria Hybinette, UGA
46

Virtual Machines (Cont.)

 (a) Nonvirtual machine (b) virtual machine

Non-virtual Machine" Virtual Machine"

Maria Hybinette, UGA
47

Virtual Machines (Cont.)

!! The virtual-machine concept provides complete protection

of system resources since each virtual machine is isolated

from all other virtual machines. This isolation, however,
permits no direct sharing of resources.

!! A virtual-machine system is a perfect vehicle for operating-

systems research and development. System development

is done on the virtual machine, instead of on a physical

machine and so does not disrupt normal system operation.

!! The virtual machine concept is difficult to implement due to

the effort required to provide an exact duplicate to the

underlying machine

Maria Hybinette, UGA
48

Virtual Machines

!! Advantages:

»! The virtual-machine concept provides complete protection of

system resources since each virtual machine is isolated from
all other virtual machines. This isolation, however, permits
no direct sharing of resources.

»! A virtual-machine system is a perfect vehicle for operating-

systems research and development. System development is
done on the virtual machine, instead of on a physical machine
and so does not disrupt normal system operation.

!! Disadvantages:

»! The virtual machine concept is difficult to implement due to

the effort required to provide an exact duplicate to the
underlying machine.

Maria Hybinette, UGA
49

VMware Architecture

!! Abstracts Intel 80X86 hardware into isolated virtual
machines

!! Runs as an application on a host operating system

!! Run guest OSs as independent virtual machines

Maria Hybinette, UGA
50

Java Virtual Machine

!! Used to run Java programs

!! JVM is a specification for an
abstract computer (not a
physical machine)

!! Compiled Java programs
are platform-neutral byte
codes executed by a Java
Virtual Machine (JVM).

!! JVM consists of

»! class loader

»! class verifier

»! runtime interpreter

Maria Hybinette, UGA
51

The Java Virtual Machine

1. ! source code (.java) is compiled into platform-neutral
bytecodes (.class)

2. ! class loader: loads compiled files and Java API

3. ! class verifier: checks validity/security of code

4. ! code is executed by java interpreter (running on JVM)

