
Maria Hybinette, UGA

CSCI 6730/ 4730
 Operating Systems

Processes

Maria Hybinette, UGA
2

Review

!! Operating System Fundamentals

»!What is an OS?

»!What does it do?

»!How and when is it invoked?

!! Structures

»!Monolithic

»! Layered

»!Microkernels

»! Virtual Machines

»!Modular

Maria Hybinette, UGA
3

Chapter 3: Processes: Outline

!! Process Concept: views of a process

!! Process Scheduling

!! Operations on Processes

!! Cooperating Processes

!! Interprocess Communication

!! Communication in Client-Server Systems

Maria Hybinette, UGA
4

What is a Process?

!! A process is a program in execution (an

active entity, i.e. it is a running program)

»!Basic unit of work on a computer, a job, a task.

»!A container of instructions with some resources:

–! e.g. CPU time (CPU carries out the instructions),

memory, files, I/O devices to accomplish its task

»! Examples: compilation process, word processing

process, scheduler (sched, swapper) process or

daemon processes: ftpd, httpd

!! System view…

Maria Hybinette, UGA
5

What are Processes?

!! Multiple processes:

»! Several distinct processes can execute the SAME
program

!! Time sharing systems run several processes by
multiplexing between them

!! ALL “runnables” including the OS are organized into a
number of “sequential processes”

Scheduler

…
n-1

Processes

Maria Hybinette, UGA
6

Our Process Definition

A process is a ‘program in execution’, a

sequential execution characterized by trace. It
has a context (the information or data) and

this ‘context’ is maintained as the process
progresses through the system.

Maria Hybinette, UGA
7

Activity of a Process

Process A

Process B

Process C

A

B

C

Time
Multiprogramming:

!! Solution: provide a programming counter.

!! One processor (CPU).

1 CPU

Maria Hybinette, UGA
8

Activity of a Process: Time Sharing

Process A

Time

Process B

Process C

B A C

Maria Hybinette, UGA
9

What Does the Process Do?

!! Created

!! Runs

!! Does not run (but ready to run)

!! Runs

!! Does not run (but ready to run)

!! ….

!! Terminates

Maria Hybinette, UGA
10

‘States’ of a Process

!! As a process executes, it changes state

»! New: The process is being created.

»! Running: Instructions are being executed.

»! Ready: The process is waiting to be assigned to a
processor (CPU).

»! Terminated: The process has finished execution.

»! Waiting: The process is waiting for some event to occur.

Ready

New

Running

Waiting

Terminated

Maria Hybinette, UGA
11

State Transitions

!! A process may change state as a result:

»! Program action (system call)

»!OS action (scheduling decision)

»! External action (interrupts)

Ready

New

Running

Waiting

Terminated

Scheduler pick

I/O or event wait

exit

Interrupt (time) and

scheduler picks

another process

admitted

I/O or event

completion

Maria Hybinette, UGA
12

OS Designer’s Questions?

!! How is process state represented?

»!What information is needed to represent a process?

!! How are processes selected to transition

between states?

!! What mechanism is needed for a process to

run on the CPU?

Maria Hybinette, UGA
13

What Makes up a Process?

User resources/OS Resources:

!! Program code (text)

!! Data

»! global variables

»! heap (dynamically allocated memory)

!! Process stack

»! function parameters

»! return addresses

»! local variables and functions

!! OS Resources, environment

»! open files, sockets

»! Credential for security

!! Registers

»! program counter, stack pointer

User Mode
Address

Space

heap

stack

data

routine1
var1

var2

main
 routine1

 routine2

arrayA
arrayB

text

address space are the shared resources
of a(ll) thread(s) in a program

Maria Hybinette, UGA
14

What is needed to keep track of a Process?

!! Memory information:

»! Pointer to memory segments needed
to run a process, i.e., pointers to the
address space -- text, data, stack
segments.

!! Process management information:

»! Process state, ID

»! Content of registers:

–! Program counter, stack pointer,
process state, priority, process ID,
CPU time used

!! File management & I/O information:

»! Working directory, file descriptors
open, I/O devices allocated

!! Accounting: amount of CPU used.

Process Number

Program Counter

Registers

Process State

Memory Limits

Page tables

List of opened files

I/O Devices allocated

Accounting

Process control

Block (PCB)

Maria Hybinette, UGA
15

Process Representation

Initial P0

Process P1

Process P2

Process P3

Memory mappings

Pending requests

…

Memory base

Program counter

…

Process P2 Information System Memory

Kernel Process Table

P2 : HW state: resources

P0 : HW state: resources

P3 : HW state: resources

P1 : HW state: resources

…

Maria Hybinette, UGA
16

OS View: Process Control Block
(PCB)

!! How does an OS keep track of the state of a

process?

»!Keep track of ‘some information’ in a structure.

–! Example: In Linux a process’ information is kept in a

structure called struct task_struct declared in
#include/linux/sched.h!

–! What is in the structure?!

struct task_struct

 pid_t pid; /* process identifier */

 long state; /* state for the process */

 unsigned int time_slice /* scheduling information */

 struct mm_struct *mm /* address space of this process */

Maria Hybinette, UGA
17

State in Linux

volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */!

#define TASK_RUNNING 0!
#define TASK_INTERRUPTIBLE 1!
#define TASK_UNINTERRUPTIBLE 2!
#define TASK_ZOMBIE 4!
#define TASK_STOPPED 8!
#define TASK_EXCLUSIVE 32!

•! traditionally ‘zombies’ are child processes of parents that have not
processed a wait() instruction.

•! Note: processes that have been ‘adopted’ by init are not zombies (these
are children of parents that terminates before the child). Init
automatically calls wait() on these children when they terminate.

•! this is true in LINUX.
•!What to do: 1) Kill the parent 2) Fix the parent (make it issue a wait) 2)
Don’t care

Maria Hybinette, UGA
18

Running Processes

Running

Ready

Waiting Process A

Process B

Process C

Scheduler

Time

1 CPU

Maria Hybinette, UGA
19

Why is Scheduling important?

!! Goals:

»!Maximize the ‘usage’ of the computer system

»!Maximize CPU usage (utilization)

»!Maximize I/O device usage

»!Meet as many task deadlines as possible (maximize

throughput).

Maria Hybinette, UGA
20

Scheduling

!! Approach: Divide up scheduling into task levels:

»! Select process who gets the CPU (from main memory).

»! Admit processes into memory

–! Sub problem: How?

!! Short-term scheduler (CPU scheduler):

»! selects which process should be executed next and

allocates CPU.

»! invoked frequently (ms) ! (must be fast).

!! Long-term scheduler (look at first):

»! selects which processes should be brought into the

memory (and into the ready state)

»! invoked infrequently (seconds, minutes)

»! controls the degree of multiprogramming.

Maria Hybinette, UGA
21

Process Characteristics

!!Processes can be described as either:

»!I/O-bound process – spends more time doing I/

O than computations, many short CPU bursts.

»!CPU-bound process – spends more time doing

computations; few very long CPU bursts.

Maria Hybinette, UGA
22

Observations

!! If all processes are I/O bound, the ready

queue will almost always be empty (little
scheduling)

!! If all processes are CPU bound the I/O

devices are underutilized

!! Approach (long term scheduler): ‘Admit’ a

good mix of CPU bound and I/O bound

processes.

Maria Hybinette, UGA
23

Big Picture (so far)

CPU

Main

Memory

Arriving Job

Input Queue

Long term
scheduler

Short term
scheduler

Maria Hybinette, UGA
24

Exhaust Memory?

!! Problem: What happens when the number of

processes is so large that there is not enough
room for all of them in memory?

!! Solution: Medium-level scheduler:

»! Introduce another level of scheduling that removes

processes from memory; at some later time, the
process can be reintroduced into memory and its

execution can be continued where it left off

»!Also affect degree of multi-programming.

Maria Hybinette, UGA
25

Disk

CPU

Main

Memory

Arriving Job

Input Queue

Long term
scheduler

Short term
scheduler

Medium term
scheduler

Maria Hybinette, UGA
26

Which processes should be
selected?

!!Processor (CPU) is faster than I/O so
all processes could be waiting for I/O

»!Swap these processes to disk to free up
more memory

!!Blocked state becomes suspend state
when swapped to disk

»!Two new states

–!waiting, suspend

–!Ready, suspend

Maria Hybinette, UGA
27

Suspending a Process

Ready

New

Running

Waiting

Terminated

Waiting,
Suspended

Ready,
Suspended

!! Which to suspend?

!! Others?

Suspended Processes (possibly on backing store)

Main memory

Maria Hybinette, UGA
28

Possible Scheduling Criteria

!! How long since process was swapped in our

out?

!! How much CPU time has the process had

recently?

!! How big is the process (small ones do not get

in the way)?

!! How important is the process (high priority)?

Maria Hybinette, UGA
29

OS Implementation: Process
Scheduling Queues

!! Job queue – set of all processes in the system.

!! Ready queue – set of all processes residing in

main memory, ready and waiting to execute on
CPU

!! Device queues – set of processes waiting for an I/O

device.

!! Process migration between the various queues.

Maria Hybinette, UGA
30

Representation of Process
Scheduling

Maria Hybinette, UGA
31

Ready Queue, I/O Device Queues

Maria Hybinette, UGA
32

Context Switch

!!When CPU switches to another

process, the system must save the

state of the old process and load the

saved state for the new process.

!!Context-switch time is overhead; the

system does no useful work while

switching.

!!Time dependent on hardware support.

Maria Hybinette, UGA
33

CPU Context Switches

Maria Hybinette, UGA
34

Process Creation

!! Process Cycle: Parents create children; results

in a tree of processes.

!! Address space models:

»!Child duplicate of parent.

»!Child has a program loaded into it.

!! Execution models:

»! Parent and children execute concurrently.

»! Parent waits until children terminate.

!! Examples

Maria Hybinette, UGA
35

Continuing the Boot Sequence…

!! After loading in the Kernel and it does a

number of system checks it creates a number
of ‘dummy processes’ -- processes that

cannot be killed -- to handle system tasks.

!! Usually ….

Maria Hybinette, UGA
36

Process Life Cycle: UNIX (cont)

!! PID 0 is usually the scheduler process (often called
swapper)

»! is a system process -- it is part of the kernel

»! the grandmother of all processes).

!! init - Mother of all user processes, init is started at
boot time (at end of the boot strap procedure) and is
responsible for starting other processes

»! It is a user process (not a system process that runs
within the kernel like swapper) with PID 1 (but runs with
root privileges)

»! init uses file inittab and directory /etc/rc?.d

»! brings the user to a certain specified state (e.g., multiuser
mode)

!! getty - login process that manages login sessions

Maria Hybinette, UGA
37

Processes Tree on a UNIX System

Process 1
(init)

OS Kernel

Process 0
(sched - ATT, swapper - BSD)

Process 2 (BSD)
pagedaemon

deamon (e.g. httpd) getty

login

bash

getty

login

ksh

mother of all user processes

Maria Hybinette, UGA
38

Other Systems

HP-UX 10.20!

UID PID PPID C STIME TTY TIME COMMAND!
 root 0 0 0 Apr 20 ? 0:17 swapper!
 root 1 0 0 Apr 20 ? 0:00 init!
 root 2 0 0 Apr 20 ? 1:02 vhand!

Solaris:!

 UID PID PPID C STIME TTY TIME CMD!
 root 0 0 0 Apr 19 ? 0:00 sched!
 root 1 0 0 Apr 19 ? 0:22 /etc/init -!
 root 2 0 0 Apr 19 ? 0:00 pageout!

* sched - dummy process which provides swapping services!
* pageout - dummy process which provides virtual memory (paging)
services!

Linux RedHat 6.0:!

 UID PID PPID C STIME TTY TIME CMD!
 root 1 0 0 09:59 ? 00:00:07 init!
 root 2 1 0 09:59 ? 00:00:00 [kflushd]!
 root 3 1 0 09:59 ? 00:00:00 [kpiod]!
 root 4 1 0 09:59 ? 00:00:00 [kswapd]!
 root 5 1 0 10:00 ? 00:00:00 [mdrecoveryd]!

Page handler

Process spawner

Scheduler

Buffering/Flushing I/O

Maria Hybinette, UGA
39

Running Processes

 {atlas:maria} ps -efjc | sort -k 2 -n | more
 UID PID PPID PGID SID CLS PRI STIME TTY TIME CMD
 root 0 0 0 0 SYS 96 Mar 03 ? 0:01 sched
 root 1 0 0 0 TS 59 Mar 03 ? 1:13 /etc/init -r
 root 2 0 0 0 SYS 98 Mar 03 ? 0:00 pageout
 root 3 0 0 0 SYS 60 Mar 03 ? 4786:00 fsflush
 root 61 1 61 61 TS 59 Mar 03 ? 0:00 /usr/lib/sysevent/syseventd
 root 64 1 64 64 TS 59 Mar 03 ? 0:08 devfsadmd
 root 73 1 73 73 TS 59 Mar 03 ? 30:29 /usr/lib/picl/picld
 root 256 1 256 256 TS 59 Mar 03 ? 2:56 /usr/sbin/rpcbind
 root 259 1 259 259 TS 59 Mar 03 ? 2:05 /usr/sbin/keyserv
 root 284 1 284 284 TS 59 Mar 03 ? 0:38 /usr/sbin/inetd -s
 daemon 300 1 300 300 TS 59 Mar 03 ? 0:02 /usr/lib/nfs/statd
 root 302 1 302 302 TS 59 Mar 03 ? 0:05 /usr/lib/nfs/lockd
 root 308 1 308 308 TS 59 Mar 03 ? 377:42 /usr/lib/autofs/automountd
 root 319 1 319 319 TS 59 Mar 03 ? 6:33 /usr/sbin/syslogd

!! Print out status information of various processes in the system:
ps -axj (BSD) , ps -efjc (SVR4)

!! Daemons (background processes) with root privileges, no
controlling terminal, parent process is init

Maria Hybinette, UGA
40

Process Creation: Execution &
Address Space in UNIX

!! In UNIX process fork()-exec()

mechanisms handles process creation and its
behavior:

»!fork() creates an exact copy of itself (the parent)
and the new process is called the child process

»!exec() system call places the image of a new

program over the newly copied program of the

parent

Maria Hybinette, UGA
41

fork() a child

Shared

 Program

(read only)

Copied

Data, heap

& stack

Data, heap,

& stack

Parent

pid = fork()

pid == 0 pid == 5

Child (can only
have 1 parent) Parent

Maria Hybinette, UGA
42

Example: parent-child.c

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main()

 {

 int i;

 pid_t pid;

 pid = fork();

 if(pid > 0)

 { /* parent */

 for(i = 0; i < 1000; i++)

 printf(“\tPARENT %d\n”, i);

}

 else

 { /* child */

 for(i = 0; i < 1000; i++)

 printf(“\t\tCHILD %d\n”, i);

}

 }

{saffron} parent-child
 PARENT 0
 PARENT 1
 PARENT 2
 CHILD 0
 CHILD 1
 PARENT 3
 PARENT 4
 CHILD 2
 .
 .

Maria Hybinette, UGA
43

Things to Note

!! i is copied between parent and child

!! The switching between parent and child

depends on many factors:

»!Machine load, system process scheduling, …

!! I/O buffering effects the output shown

»!Output interleaving is non-deterministic

–! Cannot determine output by looking at code

Maria Hybinette, UGA
44

Process Creation: Windows

!! Processes created via 10 params CreateProcess()

!! Child process requires loading a specific program into

the address space.

BOOL WINAPI CreateProcess(

 LPCTSTR lpApplicationName,

 LPTSTR lpCommandLine,

 LPSECURITY_ATTRIBUTES lpProcessAttributes,

 LPSECURITY_ATTRIBUTES lpThreadAttributes,

 BOOL bInheritHandles,

 DWORD dwCreationFlags,

 LPVOID lpEnvironment,

 LPCTSTR lpCurrentDirectory,

 LPSTARTUPINFO lpStartupInfo,

 LPPROCESS_INFORMATION lpProcessInformation);

Maria Hybinette, UGA
45

Process Termination

!! Process executes last statement and asks the operating
system to delete it by using the exit() system call.

»! Output data from child to parent (via wait).

»! Process’ resources are deallocated by operating system.

!! Parent may terminate execution of children processes
(abort).

»! Child has exceeded allocated resources.

»! Task assigned to child is no longer required.

»! Parent is exiting.

–! Some Operating system does not allow child to continue if its
parent terminates.

!! Cascading termination (initiated by system to kill of children of
parents that exited).

–! If a parents terminates children are adopted by init() - so they
still have a parent to collect their status and statistics

Maria Hybinette, UGA
46

Cooperating Processes

!! Independent process cannot affect or be affected by
the execution of another process.

!! Cooperating process can affect or be affected by
the execution of another process

»!Advantages of process cooperation

–! Information sharing

–! Computation speed-up

–! Modularity

–! Convenience

»!Requirement: Inter-process communication (IPC)
mechanism.

Maria Hybinette, UGA
47

Two Communicating Processes

!! Concept that we want to implement

Process

Chat

Maria

“A”

Process

Chat

Gunnar

“B”

Hello Gunnar!

Hi Nice to Hear
from you!

Maria Hybinette, UGA
48

On the path to communication…

!! Want: A communicating processes

!! Have so far: Forking – to create processes

!! Problem:

»!After fork() is called we end up with two independent

processes.

»! Separate Address Spaces

!! Solution? How do we communicate?

Maria Hybinette, UGA
49

File: The Unix Way

!! One easy way to communicate is to use files.

»! Process A writes to a file and process B reads from
it

!! File descriptors

»!Mechanism to work with files

»!Used by low level I/O

–! Open(), close(), read(), write()

»! file descriptors generalize to other communication

devices such as pipes and sockets

Maria Hybinette, UGA
50

File Descriptor Table

Big Picture

Stack Pointer

Program Counter

fd 0

fd 1

fd 2

fd 3

File status flags

offet

Vnode pointer

File Table Entry

PCB

Maria Hybinette, UGA
51

Producer Consumer Problems

!! Simple example: who | sort

»!Both the writing process (who) and the reading
process (sort) of a pipeline execute concurrently.

!! A pipe is usually implemented as an internal

OS buffer with 2 file descriptors.

»! It is a resource that is concurrently accessed

–! by the reader and the writer, so it must be managed

carefully (by the Kernel)

Maria Hybinette, UGA
52

Producer / Consumer: Buffering

!! Un-buffered – output appears immediately

stderr is not buffered

!! Line buffered – output appears when a full

line has been written.

»! stdout is line buffered when going to the screen

!! Block buffered – output appears when a

buffer is filled or a buffer is flushed (on close
or explicit flush).

»! normally output to a file is block buffered

»! stdout is block buffered when redirected to a file.

Maria Hybinette, UGA
53

Producer / Consumer: Buffering

!! Consumer blocks when buffer is empty

!! Producer blocks when buffer is full

!! Producer and Consumer should run

independently as far as buffer capacity and
contents permit

!! They should never be updating the buffer at

the same instant (otherwise data integrity

cannot be guaranteed)

!! Harder problem if there is more than one

consumer and/or more than one producer

Maria Hybinette, UGA
54

Buffering: Programming with Pipes

#include <unistd.h>

int pipe(int fd[2]);

!! pipe() binds fd[]with two file descriptors:

»!fds[0] used to read from pipe

»!fds[1] used to write to pipe

!! Half-Duplex (one way) Communication

!! Returns 0 if OK and -1 on error. fd[0] fd[1]

pipe

User process

Kernel

Maria Hybinette, UGA
55

Example: pipe-yourself.c

#include <stdio.h>

#include <unistd.h>

#define MSGSIZE 16 /* null */

char *msg1=“hello, world #1”;

char *msg2=“hello, world #2”;

char *msg3=“hello, world #3”;

int main()
{

 char inbuf[MSGSIZE];
int p[2], i;

 if(pipe(p) < 0)

 { /* open pipe */
 perror(“pipe”);
 exit(1);
 }

write(p[1], msg1, MSGSIZE);

write(p[1], msg2, MSGSIZE);

write(p[1], msg3, MSGSIZE);

for(i=0; i < 3; i++)

 { /* read pipe */
read(p[0], inbuf, MSGSIZE);
printf(“%s\n”, inbuf);
}

return 0;

}

{saffron:ingrid:4} pipe-yourself
hello, world #1
hello, world #2
hello, world #3

process

p[0] (read)

p[1] (write)

pipe p

Maria Hybinette, UGA
56

Things to Note

!! Pipes uses FIFO ordering: first-in first-out.

!! Read / write amounts do not need to be the

same, but then text will be split differently.

!! Pipes are most useful with fork() which

creates an IPC connection between the parent

and the child (or between the parents children)

Maria Hybinette, UGA
57

What Happens After Fork?

!! Decide on : Direction of Data Flow – then

close appropriate ends of pipe (at both parent
and child)

fd[0] fd[1]

User Process (Parent)

Pipe

After Fork

fd[0] fd[1]

User Process (Child)

fd[0] fd[1]

User Process (Parent)

Pipe

Before Fork

Maria Hybinette, UGA
58

!! A forked child inherits file descriptors from its

parent

!! pipe() creates an internal system buffer and

two file descriptors, one for reading and one

for writing.

!! After the pipe call, the parent and child

should close the file descriptors for the

opposite direction. Leaving them open does
not permit full-duplex communication.

Maria Hybinette, UGA
59

Example: pipe-fork-close.c

#include <stdio.h>

#include <sys/wait.h>

#include <unistd.h>

#define MSGSIZE 16

char *msg1=“hello, world #1”;

char *msg2=“hello, world #2”;

char *msg3=“hello, world #3”;

int main()
{

 char inbuf[MSGSIZE];
int p[2], i, pid;

 if(pipe(p) < 0)

 { /* open pipe */
 perror(“pipe”);
 exit(1);
 }

 if((pid = fork()) < 0)

 {

 perror(“fork”);
 exit(2);

 }

if(pid > 0) /* parent */

 {

 close(p[0]); /* read link */

 write(p[1], msg1, MSGSIZE);

 write(p[1], msg2, MSGSIZE);

 write(p[1], msg3, MSGSIZE);

 wait((int *) 0);

 }
if(pid == 0) /* child */

 {

 close(p[1]); /* write link */

 for(i=0; i < 3; i++)

 {

 read(p[0], inbuf, MSGSIZE);
 printf(“%s\n”, inbuf);
 }

 } return 0;

}

parent

p[0] (read)

p[1] (write)

child

Maria Hybinette, UGA
60

Some Rules of Pipes

!! Every pipe has a size limit

»! POSIX minimum is 512 bytes -- most systems makes this
figure larger

!! read() blocks if pipe is empty and there is a a write
link open to that pipe

!! read() from a pipe whose write() end is closed and
is empty returns 0 (indicates EOF)

»! Close write links or read() will never return

!! write() to a pipe with no read() ends returns -1 and
generates SIGPIPE and errno is set to EPIPE

!! write() blocks if the pipe is full or there is not enough
room to support the write().

»! May block in the middle of a write()

Maria Hybinette, UGA
61

Pipes and exec()

How can we code who | sort ?

1.! Use exec() to start two processes (one

runs who the other sort) which share a

pipe.

2.! Connect the pipe to stdin and stdout

using dup2().

Maria Hybinette, UGA
62

Duplicate File Descriptors

#include <unistd.h>

int dup2(int old-fd, int new-fd);

!! Set one FD to the value of another.

!! new-fd and old-fd now refer to the

same file

!! if new-fd is open, it is first

automatically closed

!! Note that dup2() refer to fds not

streams

new-fd
old fd

File

Maria Hybinette, UGA
63

Example : “sort < file1 | uniq”

!! What does this look like?

»! Parent

»!Child

Maria Hybinette, UGA
64

Want: “sort < file1 | uniq”

!! Want: How do we get there?

Parent uniq

stdin fd[0]
stdout fd[1]

Child sort

stdin fd[0]
stdout fd[1]

Pipe

File 1

Maria Hybinette, UGA
65

Want: “sort < file1 | uniq”

fileDES = open("myfile.txt", O_RDONLY);!

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File 1

Maria Hybinette, UGA
66

Want: “sort < file1 | uniq”

fileDES = open("myfile.txt", O_RDONLY);!

dup2(fileDES, fileno(stdin));!

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File 1

Maria Hybinette, UGA
67

Want: “sort < file1 | uniq”

fileDES = open("myfile.txt", O_RDONLY);!

dup2(fileDES, fileno(stdin));!

close(fileDES);!

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File 1

Maria Hybinette, UGA
68

Want: “sort < file1 | uniq”

pipe(fd);!

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File 1

Pipe

Maria Hybinette, UGA
69

Want: “sort < file1 | uniq”

fork();!

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File 1

Pipe

Child sort

stdin fd[0]
stdout fd[1]

Maria Hybinette, UGA
70

Want: “sort < file1 | uniq”

dup2(fd[1], fileno(stdout)); /* in green */!

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File 1

Pipe

Child sort

stdin fd[0]
stdout fd[1]

Maria Hybinette, UGA
71

Want: “sort < file1 | uniq”

close(fd[0]); close(fd[1]); /* child */!

/* leaving the ---- connections for child */!

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File 1

Pipe

Child sort

stdin fd[0]
stdout fd[1]

Maria Hybinette, UGA
72

Want: “sort < file1 | uniq”

dup2(fd[0], fileno(stdin)); /* parent */!

/* parent reads from pipe */!

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File 1

Pipe

Child sort

stdin fd[0]
stdout fd[1]

Maria Hybinette, UGA
73

Want: “sort < file1 | uniq”

close(fd[1]); close(fd[0]); /* parent */!

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File 1

Pipe

Child sort

stdin fd[0]
stdout fd[1]

Maria Hybinette, UGA
74

Example : “sort < file1 | uniq”

pid = fork();!

if(pid < 0)!

 {!

 perror("fork");!

 exit(1);!

 }!

else if(pid == 0) // child!

 {!

 close(pipeDES[0]);!

 dup2(pipeDES[1], fileno(stdout));!

 close(pipeDES[1]);!

 execl("/usr/bin/sort", "sort", (char *) 0);!

 }!

else if(pid > 0) // parent!

 {!

 close(pipeDES[1]);!

 dup2(pipeDES[0], fileno(stdin)); !

 close(pipeDES[0]);!

 execl("/usr/bin/uniq", "uniq", (char *) 0);!

 }!

}!

include <stdio.h>!

include <stdlib.h>!

include <unistd.h>!

include <fcntl.h>!

/* child | parent */!

/* sort < file1.txt | uniq */!

int main()!

{!

int status;!

int fileDES;!

int pipeDES[2];!

pid_t pid;!

fileDES = open("myfile.txt", O_RDONLY);!

dup2(fileDES, fileno(stdin));!

/* don't need to read via this one anymore */!

close(fileDES) ; !

/* create a child that communicate via a pipe */!

/* parent reads from pipe, child writes to pipe */!

pipe(pipeDES);!

Maria Hybinette, UGA
75

Communication Models

!! Shared memory model

»! Share memory region for communication

»!Read and write data to shared region

»!Requires synchronization (e.g., locks)

»! faster

»! Setup time

!! Message Passing model

»!Communication via exchanging messages

Maria Hybinette, UGA
76

Communication Models

…

Kernel

Process A M

Process B M

M

1

2

…

Kernel

Process A

Process B

1

2
Shared memory

Message Passing Shared Memory

Maria Hybinette, UGA
77

Producer-Consumer Problem

!! Paradigm for cooperating processes,

producer process produces information that
is consumed by a consumer process.

»! Example: Network processes (retrieval and
analyzer) - one process takes stuff from the network

and produce a package to be processed by another

process (consumer)

»! unbounded-buffer places no practical limit on the

size of the buffer.

»! bounded-buffer assumes that there is a fixed buffer

size.

Maria Hybinette, UGA
78

!! Shared data:

!! If in == out empty

!! If (in + 1) % BUFFER_SIZE full

#define BUFFER_SIZE 5

typedef struct

{

…

} item;

item buffer[BUFFER_SIZE];

int in = 0; /* first free item */

int out = 0; /* first full */

Bounded Buffer: Shared
Memory

Maria Hybinette, UGA
79

#define BUFFER_SIZE 5

typedef struct

{

…

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

Producer: Insert()

item nextProduced;

while (1)

 {

 while(((in + 1) % BUFFER_SIZE) == out)

 ; /* while full do nothing - wait */

 buffer[in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

 }

Maria Hybinette, UGA
80

#define BUFFER_SIZE 5

typedef struct

{

…

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

Consumer Remove()

item nextConsumed;

while(1)

 {

 while(in == out)

 ; /* do nothing */

 // remove an item from buffer/consume

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE

 }

item nextProduced;

while (1)

 {

 while(((in + 1) % BUFFER_SIZE) == out)

 ; /* do nothing */

 buffer[in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

 }

item nextConsumed;

while(1)

 {

 while(in == out)

 ; /* do nothing */

 // remove an item from buffer/consume

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE

 }

#define BUFFER_SIZE 5

typedef struct

{

…

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

Maria Hybinette, UGA
82

Message Passing Systems

!! NO shared state

!! send() & receive() primitives

!! Processes communicate over links

Maria Hybinette, UGA
83

Implementation Questions

!! How are links established?

»! Direct (explicitly name each other) or

»! Indirect (mailboxes, ports)

!! Can a link be associated with more than two

processes?

»! Symmetric/Asymmetric connections?

!! Is a link unidirectional or bi-directional?

!! Other Limits and Constraints:

»! How many links can there be between every pair of

communicating processes?

»! What is the capacity of a link?

–! Zero, bounded, unbounded: Explicit, or Automatic Buffering

»! Can messages be of fixed or variable size ?

Maria Hybinette, UGA
84

Direct Communication

!! Processes must name each other explicitly:

»!send (P, message) – send a message to process P

»!receive(Q, message) – receive a message from
process Q

!! Properties of communication link

»! Links are established automatically.

»!A link is associated with exactly one pair of
communicating processes.

»!Between each pair there exists exactly one link.

»! The link may be unidirectional, but is usually bi-
directional.

Maria Hybinette, UGA
85

Indirect Communication

!! Messages are sent and received from mailboxes (also
referred to as ports).

»! Each mailbox has a unique id.

»! Processes can communicate only if they share a mailbox.

!! Properties of communication link

»! Link established only if processes share a common
mailbox

»! A link may be associated with many processes.

»! Each pair of processes may share several
communication links.

»! Link may be unidirectional or bi-directional.

Maria Hybinette, UGA
86

Indirect Communication

!! Operations

»! create a new mailbox

»! send and receive messages through mailbox

»! destroy a mailbox

!! Primitives are defined as:

 send(A, message) – send a message to

mailbox A

 receive(A, message) – receive a message

from mailbox A

Maria Hybinette, UGA
87

Indirect Communication

!! Mailbox sharing

»! P1, P2, and P3 share mailbox A.

»! P1, sends; P2 and P3 receive.

»!Who gets the message?

!! Solutions

»!Allow a link to be associated with at most two
processes.

»!Allow only one process at a time to execute a
receive operation.

»!Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

Maria Hybinette, UGA
88

Ownership of ports and mailboxes

!! A port is usually own and created by the

receiving process.

!! The port is destroyed when the receiver

terminates.

!! The OS creates a mailbox on behalf of a

process (which becomes the owner).

!! The mailbox is destroyed at the owner’s

request or when the owner terminates.

Maria Hybinette, UGA
89

Mailboxes and Ports

!! A mailbox can be private to one
sender/receiver pair.

!! The same mailbox can be shared
among several senders and
receivers:

»! the OS may then allow the use
of message types (for
selection).

!! Port: is a mailbox associated with
one receiver and multiple senders

»! used for client/server
applications: the receiver is
the server.

Maria Hybinette, UGA
90

Message format

!! Consists of header and body of
message.

!! In Unix: no ID, only message
type.

!! Control info:

»! what to do if run out of buffer
space.

»! sequence numbers.

»! priority.

!! Queuing discipline: usually FIFO
but can also include priorities.

Maria Hybinette, UGA
91

Communication: Asynchronous or
Synchronous

!! Concerns the timing of corresponding operations

»! e.g., in message passing how the timing of send and receives

are coordinated.

!! Synchronous Communication

»! Sender does not return until the matching receive has been

posted on the destinations process.

!! Asynchronous Communication

»! No coordination between sender and receiver, a message can

be sent or received at any time without waiting for the receiver
program to receive.

»! Allows more concurrency

»! No synchronization between the sender and the receiver

»! Example: sender gets control back before the message has
been copied or sent.

Maria Hybinette, UGA
92

Communication: Blocking or Non-
Blocking

!! Pertains to the behavior of the operation itself (e.g. send

and receives)

!! Blocking operations: the completion of the call is
dependent on certain events.

!! Non-blocking operations: the call return without waiting

for any event to complete (such as copying a message

from user memory to system memory).

!! Synchronous communication is often implemented using

blocking operators and asynchronous communication
using non-blocking operators.

Maria Hybinette, UGA
93

Buffering

!! Queue of messages attached to link:

»! Zero capacity

–! 0 message - link cannot have any messages waiting

–! Sender must wait for receiver (rendezvous)

»!Bounded capacity

–! n messages - finite capacity of n messages

–! Sender must wait if link is full

»!Unbounded capacity

–! infinite messages -

–! Sender never waits

Maria Hybinette, UGA
94

Client-Server Communication

!! Remote Procedure Calls

!! Remote Method Invocation (Java)

!! Socket communication

Maria Hybinette, UGA
95

Remote Procedure Calls (RPC)

!! Inter-machine process to process

communication

»!Abstract procedure calls over a network:

»! Rusers, rstat, rlogin, rup => deamons

»!Hide message passing I/O from programmer

!! Looks (almost) like a procedure call -- but

client invokes a procedure on a server.

»! Pass arguments – get results

»! Fits into high-level programming languages

»!Well understood

Maria Hybinette, UGA
96

Remote Procedure Calls (RPC)

!! RPC High level view:

»! Calling process (client) is suspended

»! Parameters are passed across network to a process
server

»! Server executes procedure

»! Return results across network

»! Calling process resumes

Maria Hybinette, UGA
97

Remote Procedure Calls

!! Usually built on top sockets (IPC)

!! stubs – client-side proxy for the actual procedure on the
server.

!! The client-side stub locates the server and marshalls the
parameters.

!! The server-side stub receives this message, unpacks
the marshalled parameters, and performs the procedure
on the server.

Maria Hybinette, UGA
98

Client/Server Model Using RPC

!! The server stub uses the message to generate a local procedure call to
the server

!! If the local procedure call returns a value, the server stub builds a
message and sends it to the client stub, which receives it and returns the
result(s) to the client

client

call

return

server

call

return

kernel kernel

network

client

stub

 unpack

results

unpack

parameters

pack

results

server

stub

Each RPC

invocation by a

client process calls

a client stub,

which builds a

message and

sends it to a server

stub

pack

parameters

Maria Hybinette, UGA
99

Execution of RPC

Maria Hybinette, UGA
100

Remote Procedure Calls

!! Machine independent representation of data:

»! Differ if most/least significant byte is in the high memory
address

»! External data representation (XDR)

!! Fixed or dynamic address binding

»! Dynamic: Matchmaker daemon at a fixed address (given
name of RPC returns port of requested daemon)

Maria Hybinette, UGA
101

Remote Method Invocation

!! Remote Method Invocation (RMI) is a Java mechanism
similar to RPCs.

!! RMI allows a Java program on one machine to invoke a
method on a remote object.

!! Possible to Pass Objects(remote, local) as parameters
to remote methods (via serialization).

Maria Hybinette, UGA
102

Marshalling Parameters

!! Client invoke method: someMethod on a

remote object Server

