Chapter 4: Threads: Questions

CSCI [4]6]730
Operating Systems

Threads

1785

Maria Hybinette, UGA

Review: What is a Process?

@ How is a thread different from a process?

® Why are threads useful?

@ How can POSIX threads be useful?

® What are user-level and kernel-level threads?
® What are problems with threads?

Maria Hybinette, UGA

Review: What Makes up a Process?

A process is a program in execution...

A thread have
(1) an execution stream and
(2) a context
o Execution stream
» stream of instructions
» sequential sequence of instructions

» “thread” of control Running on a
@ Process ‘context’ (seen picture of this already) thread
» Everything needed to run (restart) the process ... oefe]]
» Registers =
— program counter, stack pointer, general purpose...
» Address space
— Everything the process can access in memory 2
— Heap, stack, code 3

Maria Hybinette, UGA

What are are problem’s with
Processes?

User Mode
Address
Program code (text) Space
Data heap
» global variables l
» heap (dynamically allocated memory) i
routine1
Process stack vart
. stack varz
» function parameters
» return addresses text main
routine1
» local variables and functions routine2
OS Resources data arrayA
. arrayB
Registers i
» program counter, stack pointer

address space are the shared resources4

of a(ll) thread(s) in a program

Maria Hybinette, UGA

Processes versus Threads

® How do processes (independent memory
space) communicate?
» Not really that simple (seen it, tried it — and you have
too):
— Message passing (send and receive)
— Shared Memory: Set up a shared memory area (easier)?
® Problems:
» Overhead: Both methods add some kernel overhead
lowering performance
» Complicated: IPC is not really that ‘natural’
— increases the complexity of your code

Maria Hybinette, UGA

Solution: A thread is a “lightweight process” (LWP)
@ An execution stream that shares an address space
» Overcome data flow over a file descriptor

» Overcome setting up ‘tighter memory’ space
o Multiple threads within a single process (

fork () ;
// what is i

Examples:
e Two processes (copies of each other) examining memory
address 0xffe84264 see different values (i.e., different

contents)
» same frame of reference
o Two threads examining memory address Oxffe84264 see
same value (i.e., same contents)

Maria Hybinette, UGA

What Makes up a Thread? Single and Multithreaded Process

User Mode

Address
Own stack (necessary?) Space

°
» Own program counter l
» Own stack pointer |r°gi‘“°”‘| | stack | |"°gi’“"’| registers||r
i i tine1 itine1
e State (running, sleeping) I Loulng routine E
e Signal mask stack var2 var2
text main
routine1
routine2
-
arrayB
address space are the shared resources
of a(ll) thread(s) in a program 7
Maria Hybinete, UGA Maria Hybinete, UGA
Why Support Threads?
o Divide large task across several cooperative threads
e Multi-threaded task has many performance benefits ® Any other examples?
e Examples:
» Web Server: create threads to:
— Get network message from client
— Get URL data from disk
— Compose response
— Send a response
» Word processor: create threads to:
— Display graphics
— Read keystrokes from users
— Perform spelling and grammar checking in
background 9
Maria Hybinete, UGA Maria Hybinete, UGA

Why Support Threads? Why Threads instead of a Processes?

o Divide large task across several cooperative threads

® Multi-threaded task has many performance benefits e Advantages of Threads:
» Thread operations cheaper than corresponding
o Adapt to slow devices process operations
» One thread waits for device while other threads computes — Creation, termination, (context) switching
o Defer work » IPC cheap through shared memory
» One thread performs non-critical work in the background, _ No need to invoke kernel to communicate between

when idle threads

o Disadvantages of Threads:
» True Concurrent programming is a challenge (what
does this mean? True concurrency?)

» Synchronization between threads needed to use
shared variables (more on this later - HARD).

o Parallelism
» Each thread runs simultaneously on a multiprocessor

Maria Hybinette, UGA Maria Hybinette, UGA

Why are Threads Challenging?
P-Thread Example: Output? Why are Threads Challenging?

main() o Example: Transfer $50.00 between two

¢ accounts and output the total balance of the
pthread_t tl, t2; .
char *msgl = “Thread 1”; char *msg2 = “Thread 2”; accounts'

int retl, ret2;
retl = pthread_create(&tl, NULL, print_fn, (void *)msgl);

ret2 = pthread create(&t2, NULL, print_fn, (void *)msg2); M = Balance in Maria’s account (begln $100)
if(retl || ret2) . .
{ T = Balance in Tucker’s account (begin $50)
fprintf(stderr, “ERROR: pthread created failed.\n”); -
B — B = Total balance
} o Tasks:
L slern(1, [)5 Idea: on distributing
pthread join(2, NULL); T = 50, M = 100 the tasks:
printf(“Thread 1 and thread 2 complete.\n”); $50 00 (1)One thread debits
} M=M - o and credits
N s s (2) Another Totals
void print_fn(void *ptr)
- = Does that work
: T =T + $50.00
printf(“$s\n”, (char *)ptr); 3 B=M+T 14

Maria Hybinett, L. Maria Hybinette, UGA

Why are Threads Challenging? Common Programming Models

eTasks: T = 50, M = 100 e Manager/worker
M =M - $50.00 One thread debits » Single manager handles input and assigns work to the
& credits worker threads
T =T + $50.00 e Producer/consumer
B=M+ T } One thread totals » Multiple producer threads create data (or work) that is
handled by one of the multiple consumer threads
e Pipeline
=M- $50.00 M=M- $50.00 B =M+ T » Task is divided into series of subtasks, each of which is
handled in series by a different thread
T=T+ $50.00 B=M+ T M =M - $50.00
B=M+ T T=T+ $50.00 T =T + $50.00
B = $150 B = $100 B = $150
M Hybinette, UGA 15 M Hybinette, UGA 16
Thread Support Latencies
P o Comparing user-level threads, kernel threads, and
® Three to provide thread support processes.
» User-level threads o Null fork: the time to create, schedule, execute, and
» Kernel-level threads complete the entity that invokes the null procedure (overhead

of creating a thread)

e Signal-Wait: the time for an entity to signal a waiting entity
and then wait on a condition (overhead of synchronization)

» Hybrid of User-level and Kernel-level threads

Kemer e 17ue | USETLevel [KemelLevel | o o0 .o
i Threads Threads
Null fork 34 948 11,300
Signal-wait 37 441 1,840
17 18

Maria Hybinette, UGA Maria Hybinette, UGA

User-Level Threads

Blocked UL Threads: Jacketing

$3 83835383883

NN

o Many-to-one thread mapping
» Implemented by user-level runtime
libraries

— Create, schedule, synchronize threads at
user-level

» OS is not aware of user-level threads

— OS thinks each process contains only a
single thread of control

o Advantages
» Does not require OS support; Portable

» Can tune scheduling policy to meet application (user level)
demands

» Lower overhead thread operations since no system calls
e Disadvantages

» Cannot leverage multipre s (no true par

» Entire process blocks when one thread blocks 19

Maria

Kernel-Level Threads

e Avoids ‘blocking’ on system calls that block (e.g., 1/0)

e Solution:

» Instead of calling a blocking system call call an
application level I/O jacket routine (nonblocking call)

» Jacket routine provides code that determines whether I/O
device is busy

» Busy:

— Thread enters the ready state and passes control to another
thread

— Control returns to thread it retries
» Idle:
— Thread is allowed to make system call.

Maria Hybinette, UGA

Two-Level Model

20

® One-to-one thread mapping
» OS provides each user-level thread with a
kernel thread D ¢

» Each kernel thread scheduled independently

» Thread operations (creation, scheduling,
synchronization) performed by OS

o Advantages
» Each kernel-level thread can run in parallel on a
multiprocessor

» When one thread blocks, other threads from process can
be scheduled

e Disadvantages
» Higher overhead for thread operations
» OS must scale well with increasing number of threads 21

Maria Hybinette, UGA

Hybrid of Kernel & User -Level Threads

® m - n thread mapping (many to many)
» Application creates m threads
» OS provides pool of n kernel threads

» Few user-level threads mapped to each
kernel-level thread

o Advantages
» Can get best of user-level and kernel-level implementations
» Works well given many short-lived user threads mapped to
constant-size pool
e Disadvantages
» Complicated...
» How to select mappings?
» How to determine the best number of kernel threads?
— User specified
___ — OSdynamically adjusts number depending on system load

23

® one-one & (strict) many-to-many

» OS provides each user-level thread with a
kernel thread

» Supports both bound an unbound threads

— Bound threads - permanently bound to a

single kernel level thread ﬂ n
— Unbound threads may move to other kernel

threads

o Advantages

» Flexible, best of two worlds
e Disadvantages

» More complicated

Maria Hybinette, UGA

Thread Models

22

@ Kernel Level: Windows 95/98/NT/2000, Solaris, Linux
® User Level: POSIX Pthreads, Mach, C-threads, Solaris threads
o Hybrids: IRIX, HP-UX, True 64 UNIX, Older Solaris models

Maria Hybinette, UGA

24

Threading Issues: fork() & exec()

Threading Issues: Cancellation

o fork()
» Duplicate all threads?
» Duplicate only the thread that performs the fork
» Resulting new process is single threaded?
» -> solution provide two different forks
e exec()
» Replaces the process - including all threads?

» If exec is after fork then replacing all threads is
unnecessary.

Maria Hybinette, UGA

Threading Issues: Threads and
Signals

25

@ Example 1: User pushes top button on a web
browsers - while other threads are images
(one thread per image).

o Example 2: Several threads concurrently
searches data base and one thread finds
target data.

@ Asynchronous Cancellation: Inmediate (OS
need to reclaim resources)

e Deferred Cancellation: Thread terminates it

self when notices it is scheduled for
termination.

26

Maria Hybinette, UGA

Other Thread Issues

® Problem: To which thread should OS deliver signal?
Option 1: Require sender to specify thread ID (instead
of process id)

» Sender may not know about individual threads
e Option 2: OS picks destination thread

» POSIX: Each thread has signal mask (disable specified
signals)

» OS delivers signal to all threads without signal masked

» Application determines which thread is most appropriate
for handing signal

® Synchronous - delivered to the same process that
caused the signal

o Asynchronous - event is external to running process.

Maria Hybinette, UGA

Thread Pools

27

o Creating thread is costly...
® No bound of number of threads...

28

Maria Hybinette, UGA

IPC: Shared Memory

e Create a number of threads in a pool where
they await work

o Advantages:

» Usually slightly faster to service a request with an
existing thread than waiting to create a new thread

» Allows the number of threads in the application(s)
to be bound to the size of the pool
® The number of threads can be set
heuristically based on the hardware and can
even be dynamically adjusted taking into
account user statistics.

Maria Hybinette, UGA

29

» Each process has private address space

» Explicitly set up shared memory segment within
each address space

@ Threads

» Always share address space (use heap for shared
data)

o Advantages
» Fast and easy to share data

o Disadvantages
» Must synchronize data accesses; error prone (later)

30

Maria Hybinette, UGA

IPC: Message Passing

IPC: Signals

o Message passing most commonly used between processes

» Explicitly pass data between sender (src) + receiver (destination)

» Example: Unix pipes
o Advantages:

» Makes sharing explicit

» Improves modularity (narrow interface)

» Does not require trust between sender and receiver
o Disadvantages:

» Performance overhead to copy messages

» How to name source and destination?

— One process, set of processes, or mailbox (port)

» Does sending process wait (l.e., block) for receiver?

Maria Hybinette, UGA

— Blocking: Slows down sender
— Non-blocking: Requires buffering between sender and receiver

Scheduler Activations (Read)

31

e Signal
» Software interrupt that notifies a process of an event
» Examples: SIGFPE, SIGKILL, SIGUSR1, SIGSTOP, SIGCONT
o What happens when a signal is received?
» Catch: Specify signal handler to be called
» Ignore: Rely on OS default action
— Example: Abort, memory dump, suspend or resume process
» Mask: Block signal so it is not delivered
— May be temporary (while handling signal of same type)
o Disadvantage
» Does not specify any data to be exchanged
» Complex semantics with threads

32

Maria Hybinette, UGA

Scheduler Activations

o Provides better OS support for user level

Maria Hybinette, UGA

threading

» Dynamic adjustment of number of kernel level
threads to user level threads:

— E.g. Two level and the m:n thread models need to
maintain appropriate ratios

» Key Idea: Kernel notifies thread scheduler of all
kernel events via upcalls

Scheduler Activations

33

e Use an intermediate data structure
between user/kernel level threads.

o Details: User level threads run and are
scheduled (by the user level
scheduler) on ‘virtual processor’

» A data structure or light-weigh process
(LWP) that is between the kernel thread
and the user thread.

» Each LWP is attached to a kernel
thread and kernel threads are what the
OS schedules to run on physical P
processors. Thread

LWP

Kernel

34

Maria Hybinette, UGA

Scheduler Activations

@ An application may require any number of

Maria Hybinette, UGA

LWPs to run efficiently.
» Example: A CPU-bound application on a single
processor.
— Needs only one LWP.
» Example: An 1/0-bound application

— May need many LWPs- one for each concurrent
blocking system since if there are not enough LWPs,
the unassigned threads must wait for one of the
LWPs to return from the kernel.

35

o Why not a user level thread scheduler that spawns a kernel
thread for blocking operations?

» Forget spawning, use a pool of kernel threads.
» But how do we know if an operation will block?
— read might block, or data might be in page cache.
— Any memory reference might cause a page fault to disk.
® Scheduler Activations
o Kernel tells user when a thread is going to block, via an
upcall.
» Kernel can provide a kernel thread to run the user-level
upcall handler (or preempt user thread).
» User-level scheduler suspends blocking thread and can
give back kernel thread it was running on.

36

Maria Hybinette, UGA

