
Maria Hybinette, UGA

CSCI [4|6] 730
 Operating Systems

Synchronization Part 1 : The Basics

Maria Hybinette, UGA
2

Chapter 6: Process Synchronization

!! Why is synchronization needed?

!! Definitions:

»!What are race conditions?

»!What are critical sections?

»!What are atomic operations?

!! How are locks implemented?

Maria Hybinette, UGA
3

Why does cooperation require
synchronization? (Review)

!! Example: Two threads: Maria and Tucker share an
account with shared variable ‘balance’ in memory.

!! Code to deposit():

!! Both Maria & Tucker deposits money into account:

»! Initialization: balance = 100

»!Maria: deposit(200)

»! Tucker: deposit(10)

void deposit(int amount)

{

balance = balance + amount;

}

deposit:

 load RegisterA, balance

 add RegisterA, amount

 store RegisterA, balance

!! Compiled to assembly:

Which variables are

shared? Which private?

Maria Hybinette, UGA
4

Example Execution

1.! Initialization: balance = 100

2.! Maria: deposit(200)

3.! Tucker: deposit(10)

deposit:

 load RegisterA, balance

 add RegisterA, amount

 store RegisterA, balance

deposit (Maria):

 load RegisterA, 100

 add RegisterA, 200

 store RegisterA, balance

deposit (Tucker):

 load RegisterA, 300

 add RegisterA, 10

 store RegisterA, balance
T

im
e

Memory:

 balance = 100

 RegisterA = 0

Memory:

 balance = 100

 RegisterA = 100

Memory:

 balance = 100

 RegisterA = 300

Memory:

 balance = 300

 RegisterA = 300

Memory:

 balance = 300

 RegisterA = 300

Memory:

 balance = 300

 RegisterA = 310

Memory:

 balance = 310

 RegisterA = 310

Maria Hybinette, UGA
5

Concurrency
!! What happens if M & T deposit

“concurrently”?

»! Assume any interleaving is possible

»! No assumption about scheduler

»! Observation: When a thread is interrupted

content of registers are saved (and restored) by
interrupt handlers.

–! Initialization: balance = 100

–! Maria: deposit(200)

–! Tucker: deposit(10)

deposit (Maria):

 load RegisterA, balance

 add RegisterA, 200

 store RegisterA, balance

deposit (Tucker):

 load RegisterA, balance

 add RegisterA, 10

 store RegisterA, balance

T
im

e

1. Memory:

 balance = 100

 RegisterA = 0

1. Memory:

 balance = 100

 RegisterA = 0

2. Memory:

 balance = 100

 RegisterA = 100

2. Memory:

 balance = 100

 RegisterA = 100

3. Memory:

 balance = 100

 RegisterA = 300

3. Memory:

 balance = 100

 RegisterA = 110

4. Memory:

 balance = 300

 RegisterA = 300

4. Memory:

 balance = 110

 RegisterA = 110

deposit:

 load RegisterA, balance

 add RegisterA, amount

 store RegisterA, balance

320?

Maria Hybinette, UGA
6

What program data is shared?

!! Local variables are not shared (private)

»! Each thread has its own stack

»! Local variables are allocated on private stack

»! Weird Bugs: Never pass, share, or store a pointer * to a

local variable on another threads stack

!! Global variables and static objects are shared

»! Stored in the static data segment, accessible by any

threads

!! Dynamic objects and other heap objects are shared

»! Allocated from heap with malloc/free or new/delete

Maria Hybinette, UGA
7

Race Condition

!! Results depends on order of execution

»!Result in non-deterministic bugs, hard to fine!

–! Deterministic : Input alone determines results, i.e., the

same inputs always produce the same results

!! Intermittent –

»!A time dependent `bug’

»! a small change may hide the real bug (e.g., print

statements can hide the real bug because the slow

down processing and impact the timing of the threads).

Maria Hybinette, UGA
8

How to avoid race conditions

!! Idea: Prohibit one or more threads from

reading and writing shared data at the same
time! ! Provide Mutual Exclusion

!! Critical Section: Part of program where

shared memory is accessed

void credit(int amount)

{

int x = 5;

printf(“Adding money”);

balance = balance + amount;

}

void debit(int amount)

{

int i;

balance = balance - amount;

for(i = 0; i < 5; i++);

}

Critical Section

Maria Hybinette, UGA
9

Critical Sections

!! Problem: Avoiding race conditions (i.e.,

provide mutual exclusion) is not sufficient for
having threads cooperate correctly and

efficiently

»!What about if no one gets into the critical section

even if several threads wants to get in?

»!What about if someone waits outside the critical

section and never gets a turn?

Maria Hybinette, UGA
10

What We Want:
 Mutual Exclusion

Process Maria

Process Tucker

Time

Maria enters her critical section

Maria leaves her critical section

Tucker attempts to enter

his critical section

Tucker is blocked,

and waits Tucker enters his

critical section Tucker leaves his

critical section

void deposit(int amount)

{

balance = balance + amount;

}

Maria Hybinette, UGA
11

Critical Section Problem: Properties

Memorize

Required Properties:

!! Mutual Exclusion:

»!Only one thread in critical section at a time

!! Progress (e.g., someone gets the CS):

»!Not block others out: if there are requests to enter the

CS must allow one to proceed (e.g., no deadlocks).

»!Must not depend on threads outside critical section

–! If no one is in CS then must let someone in.

!! Bounded waiting (starvation-free):

»!Must eventually allow each waiting thread

»! to enter

It’s

Available

Maria Hybinette, UGA
12

Critical Section Problem: Properties

Required “Proper”ties :

!! Mutual Exclusion

!! Progress (someone gets the CS)

!! Bounded waiting (starvation-free)

Desirable Properties:

!! Efficient:

»! Don’t consume substantial resources while waiting. Do not
busy wait (i.e., spin wait)

!! Fair:

»! Don’t make some processes wait longer than others

!! Simple: Should be easy to reason about and use

Maria Hybinette, UGA
13

Critical Section Problem: Need
Atomic Operations

!! Basics: Need atomic operations:

»! No other instructions can be interleaved

»! Completed in its entirety without interruption

!! Examples of atomic operations:

»! Loads and stores of words

–! load register1, B

–! store register2, A

»! Code between interrupts on uniprocessors

–! Disable timer interrupts, don’t do any I/O

»! Special hardware instructions (later)

–! “load, store” in one instruction

–! Test&Set

–! Compare&Swap

Maria Hybinette, UGA
14

Disabling Interrupts

!! Kernel provides two system calls:

»! Acquire() and

»! Release()

!! No preemption when interrupts are off!

»! No clock interrupts can occur

!! Disadvantage:

»! unwise to give processes power to turn of
interrupts

–! Never turn interrupts on again!

»! Does not work on multiprocessors

!! When to use?:

»! But it may be good for kernel itself to disable
interrupts for a few instructions while it is
updating variables or lists

void Aquire()

{

disable interrupts

}

void Release()

{

enable interrupts

}

Who do you trust?

Do you trust your kernel?

Do you trust your friend’s kernel?

Do you trust your kernel’s friends?

Maria Hybinette, UGA
15

Software Solutions

!! Assumptions:

»!We have an atomic load operation.

»!We have an atomic store operation.

!! Notation:

»! True: means un-available

»! False: means available (e.g., no one is in CS)

Maria Hybinette, UGA
16

Attempt 1: Shared Lock Variable

!! Single shared lock variable

!! Uses busy waiting

!! Does this work?

»!Are any of the principles violated (i.e, does it ensure

mutual, progress and bounded waiting)?

boolean lock = false; // shared variable

void deposit(int amount)

 {

 while(lock == true) {} /* wait */ ;

 lock = true;

 balance += amount; // critical section

 lock = false;

 }

Entry CS:

CS:

Exit CS:

Maria Hybinette, UGA
17

Attempt 1: Shared Variable

!! M reads lock sees it as false

!! T reads lock sets it as false

!! M sets the lock

!! T sets the lock

!! Two threads in critical section

Process Maria

Process Tucker

boolean lock = false; // shared variable

void deposit(int amount)

 {

 while(lock == true) {} /* wait */ ;

 lock = true;

 balance += amount; // critical section

 lock = false;

 }

Time

Enter CS

Enter CS

Maria Hybinette, UGA
18

Attempt 1: Lock Variable
Problem & Lesson

Mutual

Exclusion

Progress

someone
gets the CS

Bounded

Waiting No
Starvation

Shared Lock

Variable
X

!! Problems:

»! No mutual exclusion: Both processes entered the CS.

!! Lesson learned: Failed because two threads read the
lock variable simultaneously and both thought it was
its ‘turn’ to get into the critical section

Idea: Add a variable that determine if it

is its turn or not!

Maria Hybinette, UGA
19

Attempt 2: Alternate (we want to be
fair)

!! Idea: Take turns. turn determines which

thread can enter (set to thread ID’s: 0 or 1).

!! Does this work?

»!Mutual exclusion?

»! Progress (someone gets the CS if empty, no deadlock)?

»! Bounded waiting… it will become next sometime?

int turn = 0; // shared variable

void deposit(int amount)

 {

 while(turn != 1-tid) {} /* wait */ ;

 balance += amount; // critical section

 turn = 1-tid;

 }

Entry CS:

CS:

Exit CS:

Maria Hybinette, UGA
20

int turn = 0; // shared variable

void deposit(int amount)

 {

 while(turn <> 1-tid) {} /* wait */ ;

 balance += amount; // critical section

 turn = 1-tid;

 }

Attempt 2: Alternate – Does it
work?

!! Initialize: Maria is ‘0’ & Tucker is
‘1’

!! M reads turn sees her turn

!! M done and change turn to other

!! T never requests CS no money!

0: Process Maria

1: Process Tucker

Time

Tucker is not interested in CS

Maria is blocking!

No progress!

Maria Hybinette, UGA
21

Attempt 2: Strict Alternation

!! Problems:

»! No progress:

–! if no one is in a critical section and a thread wants
in -- it should be allowed to enter

»! Also not efficient:

–! Pace of execution: Dictated by the slower of the
two threads. IF Tucker uses its CS only one per
hour while Maria would like to use it at a rate of 1000
times per hour, then Maria has to adapt to Tucker’s
slow speed.

Mutual

Exclusion

Progress

someone
gets the CS

Bounded

Waiting No
Starvation

Shared Lock

Variable
No

Strict Alteration Yes No No Pace limited to slowest

process

Maria Hybinette, UGA
22

Attempt 2: Strict Alternation

!! Problem: Need to fix the problem of progress!

!! Lesson: Why did strict alternation fail?

»! Pragmatically: Problem with the turn variable is that
we need state information about BOTH processes.

–! We should not wait for a thread that does not need if
they don’t need to get to the critical section

!! Idea:

»!We need to know the needs of others!

»!Check to see if other needs it. Don’t get the lock
until the ‘other’ is done with it.

Maria Hybinette, UGA
23

Attempt 3: Check State then Lock

!! Idea: Each thread has its own lock; lock

indexed by tid (0, 1). Check other’s needs

!! Does this work? Mutual exclusion? Progress (someone

gets the CS if empty, no deadlock)? Bounded Waiting
(no starvation)?

boolean lock[2] = {false, false} // shared

void deposit(int amount)

 {

 while(lock[1-tid] == true) {} /* wait */ ;

 lock[tid] = true;

 balance += amount; // critical section

 lock[tid] = false;

 }

Entry CS:

CS:

Exit CS:

Maria Hybinette, UGA
24

boolean lock[2] = {false, false} // shared

void deposit(int amount)

 {

 while(lock[1-tid] == true) {} /* wait */;

 lock[tid] = true;

 balance += amount; // critical section

 lock[tid] = false;

 }

Attempt 3: Check then Lock

!! M checks if Tucker is interested and
he isn’t

!! T checks if Maria is interested and she
isn’t

!! Switch back to Maria she now sets his
lock

!! Switch Back to Tucker he sets his lock

0: Process Maria

1: Process Tucker

Time

Enter CS

Enter CS

Maria Hybinette, UGA
25

Attempt 3: Check then Lock

!! Problems:

»! No Mutual Exclusion

!! Lesson: Process locks the critical section
AFTER the process has checked it is available
but before it enters the section.

!! Idea: Lock the section first! then lock…

Mutual

Exclusion

Progress

someone
gets the CS

Bounded

Waiting No
Starvation

Shared Lock

Variable
No

Strict Alteration Yes No No

Check then Lock No

Pace limited to slowest

process

Maria Hybinette, UGA
26

Attempt 4: Lock then Check

!! Idea: Each thread has its own lock; lock

indexed by tid (0, 1). Check other’s needs

!! Does this work? Mutual exclusion? Progress (someone

gets the CS if empty, no deadlock)? Bounded Waiting
(no starvation)?

boolean lock[2] = {false, false} // shared

void deposit(int amount)

 {

 lock[tid] = true;

 while(lock[1-tid] == true) {} /* wait */ ;

 balance += amount; // critical section

 lock[tid] = false;

 }

Entry CS:

CS:

Exit CS:

Maria Hybinette, UGA
27

boolean lock[2] = {false, false} // shared

void deposit(int amount)

 {

 lock[tid] = true;

 while(lock[1-tid] == true) {} /* wait */;

 balance += amount; // critical section

 lock[tid] = false;

 }

Attempt 4: Lock then Check

Mutual Exclusion?

!! Maria’s View: Once Maria sets her
lock:

»! Tucker cannot enter until Maria is done

»! Tucker already in CS, then Maria
blocks until Tucker leaves the CS

!! Tucker’s View: Same thing

!! So yes Mutual Exclusion

Time

0: Process Maria

1: Process Tucker

Maria Hybinette, UGA
28

boolean lock[2] = {false, false} // shared

void deposit(int amount)

 {

 lock[tid] = true;

 while(lock[1-tid] == true) {} /* wait */;

 balance += amount; // critical section

 lock[tid] = false;

 }

Attempt 4: Lock then Check

!! Mutual Exclusion: Yes

!! Deadlock: Each thread waits for the
other. Each one thinks that the other
is in the critical section

Time

0: Process Maria

1: Process Tucker

Maria waits for Tucker

Tucker waits for Maria

Maria Hybinette, UGA
29

Attempt 4: Lock then Check

!! Problems:

»! No one gets the critical section!

»! Each thread ‘insisted’ on its right to get the CS and did
not back off from this position.

!! Lesson: Again a ‘state’ problem, a thread
misunderstood the state of the other thread

!! Idea: Allow a thread to back off to give the other a
chance to enter its critical section.

Mutual

Exclusion

Progress

someone gets
the CS

Bounded Waiting

No Starvation

Shared Lock

Variable
No

Strict Alteration Yes No No

Check then Lock No

Lock then Check Yes No (deadlock)

Pace limited to slowest

process

Maria Hybinette, UGA
30

Attempt 5: Defer, back-off lock

!! Idea: Add an delay

boolean lock[2] = {false, false} // shared

void deposit(int amount)

 {

 lock[tid] = true;

 while(lock[1-tid] == true)

 {

 lock[tid] = false;

 delay;

 lock[tid] = true;

 }

 balance += amount; // critical section

 lock[tid] = false;

 }

Entry CS:

CS:

Exit CS:

Maria Hybinette, UGA
31

boolean lock[2] = {false, false}

void deposit(int amount)

 {

 lock[tid] = true;

 while(lock[1-tid] == true)

 lock[tid] = false;

 delay;

 lock[tid] = true;

 balance += amount; //critical section

 lock[tid] = false;

 }

Attempt 5: Deferral

!! Mutual Exclusion: Yes

!! Live Lock: sequence can be broken if
you are lucky!

»! Not really a deadlock (guaranteed not
to be able to proceed)

»! Not starvation - threads starves when a
process repeatedly loose to the other
threads, here both loose

Time

0: Process Maria

1: Process Tucker

OK: after you OK I go!

OK I go!

You go!

OK: after you OK: after you

Maria Hybinette, UGA
32

Attempt 5: Deferral

!! Problems:

Mutual

Exclusion

Progress

someone gets
the CS

Bounded Waiting

No Starvation

Shared Lock

Variable
No

Strict Alteration Yes No No

Check then Lock No

Lock then Check Yes No (deadlock)

Deferral Yes
No

(not deadlock)
Not really

Pace limited to slowest

process

Maria Hybinette, UGA
33

Lessons

!! We need to be able to observe the state of

both processes

»! Lock not enough

!! We most impose an order to avoid this

‘mutual courtesy’; i.e., after you-after you

!! Idea:

»! use turn variable to avoid mutual courtesy

–! Indicates who has the right to insist on entering his

critical section.

Maria Hybinette, UGA
34

Attempt 6: Careful Turns

boolean lock[2] = {false, false} // shared

int turn = 0; // shared variable

void deposit(int amount)

 {

 lock[tid] = true; // I am interested in the lock

 while(lock[1-tid] == true) // *IS* the other interested? If not get in!

 { //* WE know he is interested! (we both are)

 if(turn == 1-tid) // is it his turn to insist to get a turn?

 // NOTE if it is MY turn keep the lock

 lock[tid] = false; // it is – so I will LET him get the lock.

 while(turn == 1 - tid) {}; // wait to my turn

 lock[tid] = true; // my turn – still wants the lock

 }

 balance += amount; // critical section

 turn = 1 - tid;

 lock[tid] = false;

 }

Maria Hybinette, UGA
35

Quiz

!! Does it work?

!! Why does it work

Maria Hybinette, UGA
36

Attempt 7: Peterson’s Simpler
Lock Algorithm

!! Idea: also combines turn and separate locks (turn
taking avoids the deadlock)

!! When 2 processes enters simultaneously, setting turn
to the other releases the ‘other’ process from the while
loop (one write will be last).

!! Mutual Exclusion: Why does it work? Key Observation:
turn cannot be both 0 and 1 at the same time.

boolean lock[2] = {false, false} // shared

int turn = 0; // shared variable

void deposit(int amount)

 {

 lock[tid] = true;

 turn = 1-tid; // set turn to other process

 while(lock[1-tid] == true && turn == 1-tid) {};

 balance += amount; // critical section

 lock[tid] = false;

 }

Maria Hybinette, UGA
37

Peterson’s Algorithm Intuition

!! Mutual exclusion: Enter critical section if and only if

»! Other thread does not want to enter

»! Other thread wants to enter, but your turn

!! Progress: Both threads cannot wait forever at while() loop

»! Completes if other process does not want to enter

»! Other process (matching turn) will eventually finish

!! Bounded waiting

»! Each process waits at most one critical section

boolean lock[2] = {false, false} // shared

int turn = 0; // shared variable

void deposit(int amount)

 {

 lock[tid] = true;

 turn = 1-tid;

 while(lock[1-tid] == true && turn == 1-tid) {};

 balance += amount; // critical section

 lock[tid] = false;

 }
Maria Hybinette, UGA

38

Summary: Software Solutions

Mutual

Exclusion

Progress

someone gets
the CS

Bounded Waiting

No Starvation

Shared Lock

Variable
No

Strict Alteration Yes No No

Check then Lock No

Lock then Check Yes No (deadlock)

Deferral Yes
No

(not deadlock)
Not really

Dekker Yes Yes Yes

Peterson Yes Yes Yes

Pace limited to slowest

process

Simpler

Maria Hybinette, UGA
39

Lamport’s Bakery Algorithm

!! Idea: Bakery -- each thread picks next highest ticket
(may have ties)

!! A thread enters the critical section when it has the
lowest ticket.

!! Data Structures (size N):

»! choosing[i] : true iff Pi in the entry protocol

»! number[i] : value of ‘ticket’, one more than max

»! Threads may share the same number

!! Ticket is a pair: (number[tid], i)!

!! Lexicographical order: !

»! (a, b) < (c, d) : !

if(a < c) or if(a == c AND b < d)!

»! (number[j],j) < (number[tid],tid))

Maria Hybinette, UGA
40

Bakery Algorithm

choosing[tid] = true; // Enter bakery shop and get a number

number[tid] = max(number[0], … , number[n-1]) + 1;

choosing[tid] = false;

for(j = 0; j < n; j++)

 {

 while(choosing[j]){}; // wait until j receives its number

 // wait until number[j] = 0 (not interested) or

 // my number is the lowest

 while(number[j]!= 0 && ((number[j],j) < (number[tid],tid)));

 }

balance += amount;

number[tid] = 0; / //* unlocks

!! Pick next highest ticket (may have ties)

!! Enter CS when my ticket is the lowest

Maria Hybinette, UGA
41

Baker’s Algorithm Intuition

!! Mutual exclusion:

»! Only enters CS if thread has smallest number

!! Progress:

»! Entry is guaranteed, so deadlock is not possible

!! Bounded waiting

»! Threads that re-enter CS will have a higher number than threads
that are already waiting, so fairness is ensured (no starvation)

choosing[tid] = true;

number[tid] = max(number[0], … , number[n-1]) + 1;

choosing[tid] = false;

for(j = 0; j < n; j++)

 while(choosing[j]){}; // wait until j is done choosing

 // wait until number[j] = 0 (not interested) or me smallest number

 while(number[j]!= 0 && ((number[j],j) < (number[tid],tid)));

balance += amount;

number[tid] = 0;

