Performance Evaluation: Markov Models, revisited

CSCI 8710 E. Kraemer

Working with Markov models

- State space enumeration
- State transition identification
- Parameterization
- Calibration and solution

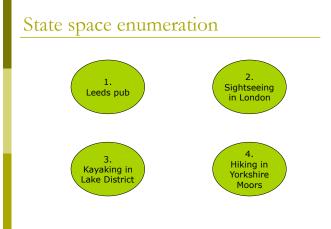
Example 1: Random walk through England

- Young man spending one year in England; checks in with Mom at 3 pm daily
- 1. State space enumeration
- 2. State transition identification
- 3. Parameterization

State space enumeration

Mom detects 4 states:

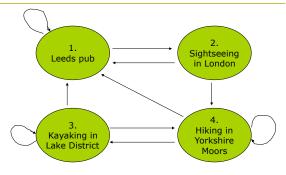
- Drinking in Leeds pub
- Sightseeing in London
- Kayaking in Lake District
- Hiking in Yorkshire moors



State transition identification

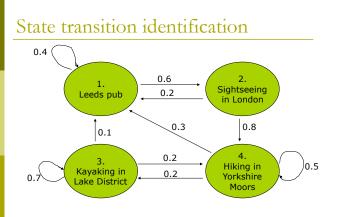
- If in Leeds one day, then next day:
 - Sightseeing in London
 - Again in Leeds pub
- If in London one day, then next day:
 In Leeds pub
 - Hiking in Yorkshire Moors
- □ If kayaking in Lake District one day, then next day:
 - Still kayaking in Lake district
 - Hiking in Yorkshire MoorsIn Leeds pub
- If hiking in Moors one day, then next day:
 - Hiking in Moors
 - In Leeds pub
 - Kayaking in Lake District

State transistion identification



Parameterization

- If in Leeds one day, then next day:
 Sightseeing in London (60%)
 - Again in Leeds pub (40%)
- □ If in London one day, then next day:
 - In Leeds pub (20%)
 Hiking in Yorkshire Moo
- Hiking in Yorkshire Moors (80%)
 If kayaking in Lake District one day, then next day:
 - Still kayaking in Lake district (70%)
 - Hiking in Yorkshire Moors (20%)
 In London with (10%)
- In Leeds pub (10%)If hiking in Moors one day, then next day:
 - Hiking in Moors one day, then next d
 Hiking in Moors (50%)
 - In Leeds pub (30%)
 - Kayaking in Lake District (20%)



Questions to be answered:

- Dad wants to know:
- What percentage of days is son actually not drinking in Leeds?
- Relatives in Lake District want to know:
 - Once he finishes a day of kayaking in the Lake District, how long will it typically be before he returns?
- Policeman wants to know:
 - How many days each month can bobbies expect to see son driving to London after drinking in Leeds?
- Kayak renter wants to know:
 - How many times per month does son typically visit kayak shop?
 - How long does he typically keep kayak checked out?

Model Solution

- steady state probabilities of being in each state
- Independent of initial state
- Solve system of linear equations, each encoding notion that flow in = flow out

Flow in = flow out

P1

- Flow in =
 - □ 0.4 * P1 +
 - □ 0.2 * P2 +
 - □ 0.1 * P3 + □ 0.3 * P4
- Flow out =
- □ 0.4 * P1
- □ 0.6 * P1
- Can subtract out "self loop"
- 0.2*P2 + 0.1*P3 + 0.3 * P4 = 0.6 * P1

Flow in = flow out

P2

- Flow in = 0.6 * P1
- Flow out = 0.8 * P2 + 0.2 * P2
- Since no self-loop, sum of outflows = 1
- Can write:
 - □ 0.6 * P1 = P2

Flow in = flow out

P3:

- Flow in = 0.2* P4
- Flow out = 0.1 * P3 + 0.2 * P3
- 0.2 * P4 = 0.3 * P3

□ P4:

- Flow in = 0.8 * P2 + 0.2 * P3
- Flow out = 0.3 * P4 + 0.2 * P4
- 0.8 * P2 + 0.2 * P3 = 0.5 * P4

To solve:

0.2 * P2 + 0.1 * P3 + 0.3 * P4 = 0.6 * P1
0.6 * P1 = P2
0.2 * P4 = 0.3 * P3
0.8 * P2 + 0.2 * P3 = 0.5 * P4
P1 + P2 + P3 + P4 = 1.0
Drop one of first four (save for a "check"), and solve system of 4 equations in 4 unknowns

Solution

■ P1 = 55/208 = 0.2644 ■ P2 = 33/208 = 0.1586 ■ P3 = 48/208 = 0.2308 ■ P4 = 72/208 = 0.3462

Answering the questions ...

Dad wants to know:

- What percentage of days is son actually not drinking in Leeds?
- P1 = 0.2644
- So, NOT(P1) = 1 0.2644 = 0.74
- 74% of the time not drinking in Leeds

Answering the questions

- Relatives in Lake District want to know:
 - Once he finishes a day of kayaking in the Lake District, how long will it typically be before he returns?
 - Kayaking at Lake is state 3
 - P3 = 0.2308 = steady state probability of being in state 3
 - Mean time between entering state is inverse: 1/0.2308
 = 4.33 days
 - Start to start is 4.33 days
 - Finish to start is 3.33 days
 - 3.33 days

Answering the questions

Policeman wants to know:

- How many days each month can bobbies expect to see son driving to London after drinking in Leeds?
- Drinking in Leeds = P1 = 0.2644
- 30 days * 0.2644 = 7.93 days drinking
- P1 -> P2 = 0.6
- 7.93 * 0.6 = 4.76 days per month

Kayak renter wants to know:

- How many times per month does son typically visit kayak shop?
- How long does he typically keep kayak checked out?
- P3 entered only from P4
- P4 = 0.3462
- 0.3462 * 30 days = 10.39 days/month
- P4 -> P3 = 0.2
- 10.39 * 0.2 = 2.08 times/month

\square P3 = prob kayaking = 0.2308

- □ 30 * 0.2308 = 6.92 days/month
- 6.92 days/2.08 new visits = 3.33 days/ visit

Example #2: Database server support

System with one CPU and two disks

- Users remotely access server: login, perform DB transactions, logout
- Max of 2 simultaneous users; high demand; can assume consistent 2 simultaneous users
- Each transaction alternates between using CPU and disk
- Disks are different speeds: 2X and 1X
- D_cpu = 10 sec
- File access probability is equal across disks
- D_fast = 15 sec
- D_slow = 30 sec

Questions to be answered:

User wants to know:

- Expected response time
- Sys admin wants to know:
 Utilization of each resource
- Company pres wants to know:
 - What happens to performance if number of users doubles?
- Company nay-sayer wants to know:
 - Given that fast disk is about to fail and all files will have to be moved to slow disk, what will the new response time be?

State space enumeration

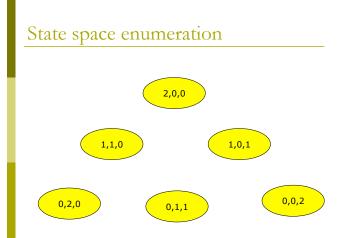
- Two users, each of which can be at any one of three devices
- Notation: (X, Y, Z)
 - X = number of users at CPU
 - Y = number of users at fast disk
 - Z = number of users at slow disk

Other notations?

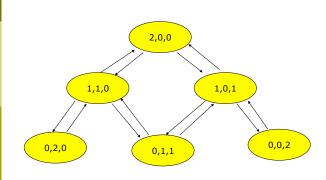
- CPU, CPU)
- (CPU, FD)
- □ (CPU, SD)
- (FD, FD)
 (FD, SD)
- □ (FD, CPU)
- □ (SD, SD)
- □ (SD, CPU)
- □ (SD, FD)
- ... more states, some statistically identical (FD, SD) and (SD, FD), etc. ...
- Model more complex, might be needed for multiclass model, but not for this example ...

State space enumeration

- **(2,0,0**
 - Both users at CPU
- **(1,1,0**
 - One user at CPU, one at fast disk
- **(1,0,1)**
 - One user at cpu, one at slow disk
- (0,2,0) Two users at fast disk
- □ (0,1,1)
 - One user at fast disk, one user at slow disk
- **(0,0,2)**
 - Two users at slow disk



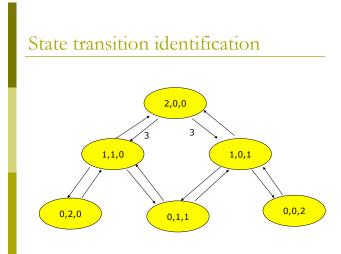
State transition identification



Parameterization

□ Start with (2,0,0):

- CPU is actively working
- D_cpu is 10 seconds : 6 t/m
 Of those at (2,0,0), half go to fast, half to slow

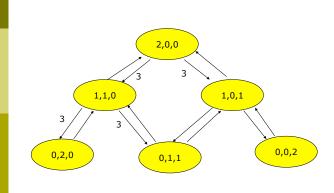


Parameterization

Consider (1,1,0)

- One user executing at CPU
- One user at fast disk
- Still, rate from CPU is 6, with half going to fast(3) and half going to slow (3), so ...

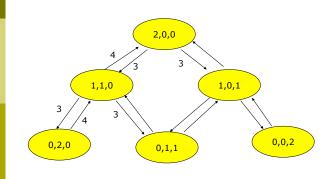
State transition identification



Parameterization

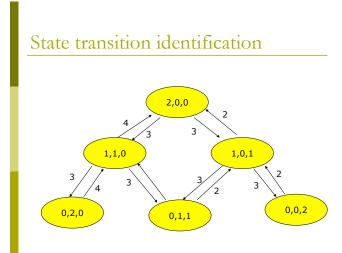
- Fast disk satisfies user requests at rate of 4 t/m (D_fast = 15 sec)
- All users at fast disk next visit CPU, so ...

State transition identification



Parameterization

Similar logic for slow disk side ...



Model Solution

Flow in = Flow out
 P(2,0,0) = 4 * P(1,1,0) + 2*P(1,0,1)
 ... construct remainder as in-class exercise

Solution

□ P(2,0,0) = 16/115 = 0.1391 □ P(1,1,0) = 12/115 = 0.1043 □ P(1,0,1) = 24/115 = 0.2087 □ P(0,2,0) = 9/115 = 0.0783 □ P(0,1,1) = 18/115 = 0.1565 □ P(0,0,2) = 36/115 = 0.3131

Interpreting the model

User wants to know:

Expected response time

Interpreting the model

User wants to know expected response time

$$\blacksquare R = M/X_O - Z$$

- Z = 0
- *M* = users in system = 2 □ So, *R* = *M*/*X*_0
- X = throughput = utilization * service rate
 U_cpu = P(2,0,0) + P(1,1,0) + P(1,0,1)
 - □ U = 0.1391 + 0.1043 _ 0.2087 = 0.4521 □ X = 0.4521 bs/ts * 1 t/10 bs = 0.04521 t/s
 - $\square R = 2/0.04521 = 44.24 t/sec$

Interpreting ...

Sys admin wants to know:

Utilization of each resource

Interpreting the model ...

Sys admin wants to know utilization of each resource

 $\begin{array}{l} \Box \ U_cpu = P(2,0,0) + P(1,1,0) + P(1,0,1) \\ \Box \ U = 0.1391 + 0.1043 _ 0.2087 = 0.4521 \end{array}$

□ U_fast = P(1,1,0) + P(0,2,0) + P(0,1,1) □ U_fast = 0.1043 + 0.0783 + 0.1565 = 0.3391

□ U_slow = P(1,0,1) + P(0,1,1) + P(0,0,2) □ U_slow = 0.2087 + 0.1565 + 0.3131 = 0.6783

Interpreting the model

Company pres wants to know:

• What happens to performance if number of users doubles?

Interpreting the model ...

- Company pres wants to know what happens to performance if number of users doubles?
 - ... build model with 4 active users instead of 2
 - ... now have 15 states in diagram
 - ... solve for throughput based on new utilizations, derived from state probabilities
 - ... calculate response time ..
 X_0 increases from 2.7126 t/min to 3.4768 t/min
 R increases from 44.24 sec to 69.03 sec

Interpreting ...

Company nay-sayer wants to know:

 Given that fast disk is about to fail and all files will have to be moved to slow disk, what will the new response time be? Company nay-sayer wants to know: Given that fast disk is about to fail and all files will have to be moved to slow disk, what will the new response time be?

- ... now, solve model with just two devices ..
 CPU and slow disk .. Only three states ... derive probabilities
 - P(2,0) = 0.0769
 - P(1,1) = 0.2308
 - P(0.2) = 0.6923
 - $X_0 = 1.8462 t/min, R = 65 sec$