Performance Evaluation: Markov Models, revisited

CSCI 8710
E. Kraemer

Working with Markov models

\square State space enumeration
\square State transition identification

- Parameterization
- Calibration and solution

Example 1: Random walk through
England

- Young man spending one year in England; checks in with Mom at 3 pm daily

1. State space enumeration
2. State transition identification
3. Parameterization

State space enumeration

Mom detects 4 states:

- Drinking in Leeds pub
- Sightseeing in London
- Kayaking in Lake District
- Hiking in Yorkshire moors

State space enumeration

State transition identification

- If in Leeds one day, then next day:
- Sightseeing in London
- Again in Leeds pub
- If in London one day, then next day:
- In Leeds pub
- Hiking in Yorkshire Moors
- If kayaking in Lake District one day, then next day:
- Still kayaking in Lake district
- Hiking in Yorkshire Moors
- In Leeds pub

ㅁ If hiking in Moors one day, then next day:

- Hiking in Moors
- In Leeds pub
- Kayaking in Lake District

State transistion identification

Parameterization

- If in Leeds one day, then next day:
- Sightseeing in London (60\%)
- Again in Leeds pub (40\%)
- If in London one day, then next day:
- In Leeds pub (20\%)
- Hiking in Yorkshire Moors (80\%)
- If kayaking in Lake District one day, then next day:
- Still kayaking in Lake district (70\%)
- Hiking in Yorkshire Moors (20\%)
- In Leeds pub (10\%)
- If hiking in Moors one day, then next day:
- Hiking in Moors (50\%)
- In Leeds pub (30\%)
- Kayaking in Lake District (20\%)

State transition identification

Questions to be answered:

- Dad wants to know:
- What percentage of days is son actually not drinking in Leeds?
- Relatives in Lake District want to know:
- Once he finishes a day of kayaking in the Lake District, how long will it typically be before he returns?
- Policeman wants to know:
- How many days each month can bobbies expect to see son driving to London after drinking in Leeds?
- Kayak renter wants to know:
- How many times per month does son typically visit kayak shop?
- How long does he typically keep kayak checked out?

Model Solution

- steady state probabilities of being in each state
\square Independent of initial state
\square Solve system of linear equations, each encoding notion that flow in = flow out

Flow in = flow out

- P1
- Flow in $=$
- 0.4 * P1 +
$\square 0.2$ * P2 +
$\square 0.1$ * P3 +
- 0.3 * P4
- Flow out =
- 0.4 * P1
- 0.6 * P1
- Can subtract out "self loop"
- $0.2 * \mathrm{P} 2+0.1 * \mathrm{P} 3+0.3$ * P4 $=0.6$ * P1

Flow in = flow out

- P2
- Flow in $=0.6$ * P1
- Flow out $=0.8 *$ P2 +0.2 * P2
- Since no self-loop, sum of outflows $=1$
- Can write:
- 0.6 * P1 = P2

To solve:

- 0.2 * P2 + 0.1 * P3 + $0.3 * \mathrm{P} 4=0.6 * \mathrm{P} 1$
- 0.6 * P1 = P2

ㅁ 0.2 * P4 $=0.3 *$ P3
$\square 0.8 * \mathrm{P} 2+0.2 * \mathrm{P} 3=0.5 * \mathrm{P} 4$
$\square \mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4=1.0$

- Drop one of first four (save for a "check"), and solve system of 4 equations in 4 unknowns

Flow in = flow out

- P3:
- Flow in = 0.2* P4
- Flow out $=0.1 *$ P3 +0.2 * P3
- 0.2 * $\mathrm{P} 4=0.3 * \mathrm{P} 3$
$\square \mathrm{P} 4$:
- Flow in $=0.8$ * P2 + 0.2 * P3
- Flow out $=0.3 *$ P4 +0.2 * P4
$-0.8 * \mathrm{P} 2+0.2 * \mathrm{P} 3=0.5 * \mathrm{P} 4$

Solution

$\square P 1=55 / 208=0.2644$
$\square \mathrm{P} 2=33 / 208=0.1586$
$\square \mathrm{P} 3=48 / 208=0.2308$
ㅁ $\mathrm{P} 4=72 / 208=0.3462$

Answering the questions ...

- Dad wants to know:
- What percentage of days is son actually not drinking in Leeds?
- P1 = 0.2644
- So, NOT(P1) = $1-0.2644=0.74$
- 74% of the time not drinking in Leeds

Answering the questions

ㅁ Relatives in Lake District want to know:

- Once he finishes a day of kayaking in the Lake District, how long will it typically be before he returns?
- Kayaking at Lake is state 3
- P3 $=0.2308=$ steady state probability of being in state 3
- Mean time between entering state is inverse: $1 / 0.2308$ $=4.33$ days
- Start to start is 4.33 days
- Finish to start is 3.33 days
- 3.33 days

Answering the questions

- Policeman wants to know:
- How many days each month can bobbies expect to see son driving to London after drinking in Leeds?
- Drinking in Leeds $=P 1=0.2644$
- 30 days $* 0.2644=7.93$ days drinking
- $P 1$-> P2 $=0.6$
- $7.93 * 0.6=4.76$ days per month
- P3 = prob kayaking $=0.2308$
- 30 * $0.2308=6.92$ days $/$ month
- 6.92 days/ 2.08 new visits $=3.33$ days/ visit
- Kayak renter wants to know:
- How many times per month does son typically visit kayak shop?
- How long does he typically keep kayak checked out?
- P3 entered only from P4
- $P 4=0.3462$
$-0.3462 * 30$ days $=10.39$ days $/$ month
- P4 -> P3 = 0.2
- $10.39 * 0.2=2.08$ times $/$ month

Example \#2: Database server support

- System with one CPU and two disks
- Users remotely access server: login, perform DB transactions, logout
- Max of 2 simultaneous users; high demand; can assume consistent 2 simultaneous users
- Each transaction alternates between using CPU and disk
- Disks are different speeds: 2 X and 1 X
- D_cpu = 10 sec
- File access probability is equal across disks
- D_fast = 15 sec
- D_slow $=30 \mathrm{sec}$

Questions to be answered:

- User wants to know:
- Expected response time
- Sys admin wants to know:
- Utilization of each resource
- Company pres wants to know:
- What happens to performance if number of users doubles?
- Company nay-sayer wants to know:
- Given that fast disk is about to fail and all files will have to be moved to slow disk, what will the new response time be?

State space enumeration

- Two users, each of which can be at any one of three devices
- Notation: (X, Y, Z)
- $X=$ number of users at CPU
- $Y=$ number of users at fast disk
- $Z=$ number of users at slow disk

Other notations?

- (CPU, CPU)
- (CPU, FD)
- (CPU, SD)
- (FD, FD)
- (FD, SD)
- (FD, CPU)
- (SD, SD)
- (SD, CPU)
- (SD, FD)
- ... more states, some statistically identical (FD, SD) and (SD, FD), etc. ..
- Model more complex, might be needed for multiclass model, but not for this example ...

State space enumeration

State transition identification

State transition identification

- Consider $(1,1,0)$
- One user executing at CPU
- One user at fast disk
- Still, rate from CPU is 6 , with half going to fast(3) and half going to slow (3), so ...

Parameterization

\square Fast disk satisfies user requests at rate of 4 t/m (D_fast = 15 sec)

- All users at fast disk next visit CPU, so ...

Parameterization

- Similar logic for slow disk side ...

Model Solution

- Flow in = Flow out

ㅁ $P(2,0,0)=4 * P(1,1,0)+2 * P(1,0,1)$
ㅁ.. construct remainder as in-class exercise

Interpreting the model

- User wants to know:
- Expected response time

Solution

$\square P(2,0,0)=16 / 115=0.1391$
$\square P(1,1,0)=12 / 115=0.1043$
$\square P(1,0,1)=24 / 115=0.2087$
$\square P(0,2,0)=9 / 115=0.0783$
$\square P(0,1,1)=18 / 115=0.1565$
$\square P(0,0,2)=36 / 115=0.3131$

Interpreting the model

- User wants to know expected response time
- $R=M / X _O-Z$
- $Z=0$
- $M=$ users in system $=2$
\square So, $R=M / X _0$
- $X=$ throughput $=$ utilization $*$ service rate
- $U_{-} c p u=P(2,0,0)+P(1,1,0)+P(1,0,1)$
$\square U=0.1391+0.1043-0.2087=0.4521$
$\square X=0.4521 \mathrm{bs} / \mathrm{ts} * 1 t / 10 \mathrm{bs}=0.04521 \mathrm{t} / \mathrm{s}$
$\square R=2 / 0.04521=44.24 \mathrm{t} / \mathrm{sec}$

Interpreting the model ...

- Sys admin wants to know utilization of each resource

$$
\begin{aligned}
& U _c p u=P(2,0,0)+P(1,1,0)+P(1,0,1) \\
& U=0.1391+0.1043-0.2087=0.4521 \\
& U \text { ffast }=P(1,1,0)+P(0,2,0)+P(0,1,1) \\
& U \text { _fast }=0.1043+0.0783+0.1565=0.3391 \\
& U \text { slow }=P(1,0,1)+P(0,1,1)+P(0,0,2) \\
& U \text { slow }=0.2087+0.1565+0.3131=0.6783
\end{aligned}
$$

Interpreting the model

- Company pres wants to know:
- What happens to performance if number of users doubles?

Interpreting the model ..

- Company pres wants to know what happens to performance if number of users doubles?
- ... build model with 4 active users instead of 2
- ... now have 15 states in diagram
- ... solve for throughput based on new
utilizations, derived from state probabilities
- ... calculate response time ..
- X_0 increases from $2.7126 \mathrm{t} / \mathrm{min}$ to $3.4768 \mathrm{t} / \mathrm{min}$
- R increases from 44.24 sec to 69.03 sec
- Company nay-sayer wants to know: Given that fast disk is about to fail and all files will have to be moved to slow disk, what will the new response time be?
- ... now, solve model with just two devices .. CPU and slow disk .. Only three states ... derive probabilities
$P(2,0)=0.0769$
$P(1,1)=0.2308$
$P(0.2)=0.6923$
$X _0=1.8462 \mathrm{t} / \mathrm{min}, R=65 \mathrm{sec}$

