Real-time vs. general operating system

+ In addition to requiring logical
CSCI 4730 correctness, real-time systems

Special Class on Real-Time Systems require temporal correctness
- Logical correctness: Given an input, the

system must create the correct output

- Temporal correctness: The correct
output must be created at the correct

October 6, 2009 time

October 6, 2009 October 6, 2009

Real-time applications Types of Real-Time Systems

* Hard real-time systems

* Real-time systems are used in a variety - Deadlines must be met

of applications

> - Missed deadline = system failure
- Safety critical systems - Soft real-time systems
‘d"w + Airplane autopilot, power plant controllers - Some deadline misses OK
/ 12 Expensive systems - Many missed deadlines = lower quality of
° @ - Satellite controllers, Mars rovers 7% service
- Other time critical applications g * Mixed systems
- Radar system, Sensor networks * - Real-fime and non-real-time jobs execute

Consumer and embedded devices TerThe? N
- Scheduling must ensure all real-time jobs

+ Cell phones meet their deadlines

October 6, 2009 October 6, 2009

Aspects of real-time research Properties of Real-Time Schedulers

* Priority based
- Jobs are assigned priorities
- Scheduler always executes jobs with the
highest priority
* Preemptive
- When a higher priority job arrives, it

* There are many active areas of
research real-time systems
- Scheduling algorithms
- Schedulability tests
- Strategies for reducing power consumption

B Real-‘r,me operating §ysTems interrupts currently executing job
- Real-time programming languages + Preemption is often allowed, but not always

- Specific real-time applications + Sometimes preemption may be allowed only
- Hardware for real-time systems at certain points within a job

October 6, 2009 October 6, 2009



More properties

- Event driven
- Some external events can change the
system configuration
- Add jobs
+ Remove jobs
+ Change job priorities
- Example: Power L)lan‘r temperature exceeds
certain safety threshold
* Low event latency

- When such an event occurs, the system
must respond in a timely manner
* Latency = system_response_time - event_time

October 6, 2009

Task notation

* T=(p,p.eD)
- ¢ = phase

+ Periodic: start time of first job

- Sporadic: first jobs starts no earlier than ¢
- e = execution requirement
- p = period

* Periodic: exact time between job releases

* Sporadic: minimum time between job releases
- D = relative deadline

+ Amount of time job has to execute

- Simplified model T = (p,e)
-9=0

October 6, 2009

Task utilization

* Given a periodic task T; = (p; ,e;), the
utilization of T;is u;= e/p;
- Proportion of processing time this task

will require on average

* Given a set of n periodic or sporadic
tasks 1= Ty, Ty, ..., T,,, U(T) is the total
utilization of all tasks
-U() = 21 Ui

* Many schedulability tests are based
on task utilization

October 6, 2009

Standard real-time system model

Periodic and sporadic tasks: A mechanism
for executing a job repeatedly at regular
time intervals

Simplified model T = (p,e)
Periodic tasks invoke a new job every p
time units

Sporadic tasks invoke jobs at least p time

units apart
October 6, 2009
Example
- T=(5,3)
- This task generates a new job every 5
time units
- Each job will require at most 3 fime units
to execute

- The deadline of each job is equal to the
arrival time of the next job

1 1 ]

October 6, 2009

Two common scheduling algorithms
+ Earliest Deadline First (EDF)

- Jobs with earlier deadlines are given
higher priority
+ Rate Monotonic (RM)
- Jobs generated by tasks with shorter
periods are given higher priority
* Both algorithms have preemptive and
non-preemptive versions

October 6, 2009



Example Preemptive RM and EDF schedules Utilization-~based EDF test

Three tasks T, = (3,0.5), T, = (4,1), Ty = (6,2) * Given a set of periodic tasks
1_1 %—FLYﬁ—PLYﬁ—FLYﬁ—F T= {T]_ :(e]_lpl)l T2=(621p2)1 ey Tn:(en/pn)}
RM T, HHler—— - If U(1) < 1, then t can be successfully

1
T, mm e m scheduled using preemptive EDF

- No jobs will miss their deadlines

Tl
EDFT#IIHYY¥_II¥
T2¥x_xx¥_xww¥

EDF will meet all deadlines if it is possible to do so

We say EDF is optimal on uniprocessors
October 6, 2009

October 6, 2009

Utilization-based RM test Shortcomings
- Given a set of periodic tasks * The model provided assumes all tasks
T= {Tl :(elfpl), TZZ(eZIPZ)I [y Tn:(enlpn)} are |ndependenT
« If U(1) ¢ n(2¥n-1), then T can be - Jobs may share resources
successfully scheduled using preemptive - In this case, one job may block another job

RM - One job may generate data that will be
- Note: n(2¥n -1) is a decreasing function that

. ey , used by another job
approaches In 2 (approx. 69%) as n increases + In this case, we would want to impose a
* Why use RM?

precedence constraint on these jobs
- Many real-time operating systems can only

schedule tasks with fixed priority

+ All jobs generated by the same task must have the
same priority

October 6, 2009 October 6, 2009

Scheduling jobs with dependiencies Priority inversion

* Both blocking and precedence ;
constraints can cause priority ‘

inversion and timing anomolies 1, — e
- Priority inversion: A higher priority job
may be forced to wait while a lower 1, — . -

priority job executes

- Timing anomolies: Reducing the execution o 2 4 6 § 10 12 14 16
of one job may cause another job finish

execution at a later time Bl - access of single-unit resource R

October 6, 2009
October 6, 2009



Timing anomalies
When tasks share resources, there may be timing anomalies

Example: Reducing J;'s critical section from 4 time
units to 2.5 causes J; to miss its deadline!

A '—| -L
1, 1 m s — |
LEmm e i

\ N N N N N \

October 6, 2009

Optimal multiprocessor scheduling

* Hong and Leung used the following
example to prove that no online
scheduling algorithm can be optimal
when deadlines are not all equal
- J:=J.= (0; 2; 4); J-= (0; 4; 8)

- Later arrival times as follows
+ Js=Js=(2; 2; 4), and
+ Ja=Js5= (4. 4. 8).

October 6, 2009

Example Part 2

-1:=7:2(0,2,4) 7= (0,4.8) |
i ) 3 must
- Later arrival times as follows gy acute in

+ Ja=J5=(2,2,4),and interval [0,2]
+Ji=J5=(4,4,8).

I 72721! \"/

1, ‘ W_‘M/\S/ ‘

114

), ) !
i ()

s

\ N N N N N N N N N
0 2 4 6 8 10 12 14 16 18

October 6, 2009

Multiprocessor scheduling

+ Scheduling analysis is much more
difficult on multiprocessors

* Many tests can only guarantee
feasibility when the utilization is
approximately m/2, where m is the
number of processors

- Things get even more complicated when
there is resource sharing or precedence
constraints

October 6, 2009

Example Part 1

- J:=J.= (0, 2,4); J:= (0, 4, 8)
. ) J; cannot
- Later arrival times as follows execute in

*J4=J5=(2,2,4), and interval [0,2]
- J4=T5=(4,4,8).

Yz 7\ |

7i8/24] |

l V2

| w74l

| gzzat

o 2 4 6 % 10 b 4 16 1

October 6, 2009

Multiprocessor utilization test

* Any task set 7 is feasible on m
processors provided
- max{u} <1
-U@@) ¢m

* Knowing some schedule exists is not
the same as having a schedule that
meets all deadlines!

October 6, 2009



Multiprocessor scheduling of PTs

* There are optimal online algorithms
for scheduling periodic tasks on
multiprocessors
- Pfair, LLREF

* These tasks make decisions to
emulate the ideal schedule

October 6, 2009

New scheduling algorithm: NQ-Wrap

* The timeline is broken into time slices
- Dividing points are determined by task deadlines

- Scheduling within a TL plane [t;.4,;] ensures tasks
have executed at their ideal amount at by time t;

| I I I

T T T

I P T
0 2 4 6 8 10 12 14 16

+ Example T, =(4,2), T,=(5,3),and T5 = (8,6)

October 6, 2009

Schedulers
* NQ-Wrap has two schedulers

- Global scheduler makes decisions for all
processors

- Local scheduler schedules tasks on single
processor

* In NQ-Wrap, the global scheduler
executes at time slice boundaries only

- Determines schedule for entire time
slice and sends schedules to processors

October 6, 2009

18

Ideal (but impractical) schedule

+ Ideally, we would execute all tasks at a
constant rate

- Example T; = (4,2), T, = (6,3),and T5 = (8,6)

Proportion Processor per Task

T, Remaining Execution

October 6, 2009

Local execution and utilization

« Within each time slice [Tj_l,‘r), each
task is assigned a local wor‘kfoad and
utilization

* €1 = remaining work for T, within fime
slice

* ri; = local utilization within time slice

“riy =8/ (TJ- -1)

* At start of each slice r; = y;

- Qg = U X (- 1)

October 6, 2009

Global scheduler

* At the beginning of each time slice
[TJ-_I,TJ-), the global scheduler performs
the following tasks
- Determine ¢, for each task T,

- Considers these execution times in a long
sequence

- Cuts this sequence every (t;- t;;) time
units

- Sends one sequence per processor until
all sequences are assigned

October 6, 2009



Example Wﬁy I like researching real-time systems

T(7.2), T,= (10,3), Ts= (9.4), Ty = (12,7), Ty = (14,5) * Analyzing real-time systems is like

€22,8,=21,4,231,8,= 41,4225 solving puzzles
‘ - Analysis is visual

- Small changes in assumptions can have
large impact in analysis
T + If this seemed interesting to you,
please feel free to contact me
regarding research projects or
T T directed study!ll

October 6, 2009 October 6, 2009



