
CSCI 4730

Special Class on Real-Time Systems

October 6, 2009

October 6, 2009 October 6, 2009

Real-time vs. general operating system

•! In addition to requiring logical
correctness, real-time systems
require temporal correctness
–! Logical correctness: Given an input, the

system must create the correct output

–! Temporal correctness: The correct
output must be created at the correct
time

•! Real-time systems are used in a variety
of applications
–! Safety critical systems

•! Airplane autopilot, power plant controllers

–! Expensive systems
•! Satellite controllers, Mars rovers

–!Other time critical applications
•! Radar system, Sensor networks

–! Consumer and embedded devices
•! Cell phones

Real-time applications

October 6, 2009

Types of Real-Time Systems

•! Hard real-time systems
–! Deadlines must be met
–! Missed deadline = system failure

•! Soft real-time systems
–! Some deadline misses OK
–! Many missed deadlines = lower quality of

service

•! Mixed systems
–! Real-time and non-real-time jobs execute

together
–! Scheduling must ensure all real-time jobs

meet their deadlines
October 6, 2009

•! There are many active areas of
research real-time systems
–! Scheduling algorithms

–! Schedulability tests

–! Strategies for reducing power consumption

–! Real-time operating systems

–! Real-time programming languages

–! Specific real-time applications

–!Hardware for real-time systems

Aspects of real-time research

October 6, 2009

Properties of Real-Time Schedulers

•! Priority based
–! Jobs are assigned priorities

–! Scheduler always executes jobs with the
highest priority

•! Preemptive
–!When a higher priority job arrives, it

interrupts currently executing job
•! Preemption is often allowed, but not always

•! Sometimes preemption may be allowed only
at certain points within a job

October 6, 2009

More properties

•! Event driven
–! Some external events can change the

system configuration
•! Add jobs
•! Remove jobs
•! Change job priorities

–! Example: Power plant temperature exceeds
certain safety threshold

•! Low event latency
–! When such an event occurs, the system

must respond in a timely manner
•! Latency = system_response_time – event_time

October 6, 2009 October 6, 2009

Standard real-time system model

•! Periodic and sporadic tasks: A mechanism
for executing a job repeatedly at regular
time intervals

•! Simplified model T = (p,e)

•! Periodic tasks invoke a new job every p
time units

•! Sporadic tasks invoke jobs at least p time
units apart

October 6, 2009

Task notation

•! T = (!,p,e,D)
–! ! = phase

•! Periodic: start time of first job
•! Sporadic: first jobs starts no earlier than !

–! e = execution requirement
–! p = period

•! Periodic: exact time between job releases
•! Sporadic: minimum time between job releases

–! D = relative deadline
•! Amount of time job has to execute

•! Simplified model T = (p,e)
–! ! = 0
–! D = p

October 6, 2009

Example

•! T = (5,3)
–! This task generates a new job every 5

time units

–! Each job will require at most 3 time units
to execute

–! The deadline of each job is equal to the
arrival time of the next job

October 6, 2009

Task utilization

•! Given a periodic task Ti = (pi ,ei), the
utilization of Ti is ui = ei/pi
–! Proportion of processing time this task

will require on average

•! Given a set of n periodic or sporadic
tasks ! = T1, T2, …, Tn, U(") is the total
utilization of all tasks
–! U(!) = #1in ui

•! Many schedulability tests are based
on task utilization

October 6, 2009

Two common scheduling algorithms

•! Earliest Deadline First (EDF)
–! Jobs with earlier deadlines are given

higher priority

•! Rate Monotonic (RM)
–! Jobs generated by tasks with shorter

periods are given higher priority

•! Both algorithms have preemptive and
non-preemptive versions

Example Preemptive RM and EDF schedules

Three tasks, T1 = (3,0.5), T2 = (4,1), T3 = (6,2)

T3

T2

T1

T3

T2

T1

RM

EDF

EDF will meet all deadlines if it is possible to do so
We say EDF is optimal on uniprocessors

October 6, 2009 October 6, 2009

Utilization-based EDF test

•! Given a set of periodic tasks

! = {T1 =(e1,p1), T2=(e2,p2), …, Tn=(en,pn)}"

•! If U(!) $ 1, then ! can be successfully
scheduled using preemptive EDF
–!No jobs will miss their deadlines

October 6, 2009

Utilization-based RM test

•! Given a set of periodic tasks

! = {T1 =(e1,p1), T2=(e2,p2), …, Tn=(en,pn)}"

•! If U(!) $ n(21/n -1), then ! can be
successfully scheduled using preemptive
RM
–! Note: n(21/n -1) is a decreasing function that

approaches ln 2 (approx. 69%) as n increases

•! Why use RM?
–! Many real-time operating systems can only

schedule tasks with fixed priority
•! All jobs generated by the same task must have the

same priority
October 6, 2009

Shortcomings

•! The model provided assumes all tasks
are independent
–! Jobs may share resources

•! In this case, one job may block another job

–!One job may generate data that will be
used by another job
•! In this case, we would want to impose a

precedence constraint on these jobs

October 6, 2009

Scheduling jobs with dependiencies

•! Both blocking and precedence
constraints can cause priority
inversion and timing anomolies
–! Priority inversion: A higher priority job

may be forced to wait while a lower
priority job executes

–! Timing anomolies: Reducing the execution
of one job may cause another job finish
execution at a later time

October 6, 2009

Priority inversion

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

= access of single-unit resource R

October 6, 2009

Timing anomalies

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

When tasks share resources, there may be timing anomalies.

Example: Reducing J3’s critical section from 4 time
units to 2.5 causes J1 to miss its deadline!

Multiprocessor scheduling

•! Scheduling analysis is much more
difficult on multiprocessors

•! Many tests can only guarantee
feasibility when the utilization is
approximately m/2, where m is the
number of processors
–! Things get even more complicated when

there is resource sharing or precedence
constraints

October 6, 2009

Optimal multiprocessor scheduling

•! Hong and Leung used the following
example to prove that no online
scheduling algorithm can be optimal
when deadlines are not all equal
–! J1 = J2 = (0; 2; 4); J3 = (0; 4; 8)

–! Later arrival times as follows
•! J4 = J5 = (2; 2; 4), and

•! J4 = J 5 = (4; 4; 8).

October 6, 2009

Example Part 1

–! J1 = J2 = (0, 2, 4); J3 = (0, 4, 8)

–! Later arrival times as follows
•! J4 = J5 = (2, 2, 4), and

•! J4‘ = J 5‘ = (4, 4, 8).

October 6, 2009

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

J5

J4

J3 cannot

execute in

interval [0,2]

Example Part 2

–! J1 = J2 = (0, 2, 4); J3 = (0, 4, 8)

–! Later arrival times as follows
•! J4 = J5 = (2, 2, 4), and

•! J4‘ = J 5‘ = (4, 4, 8).

October 6, 2009

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

J5

J4

J3 must

execute in

interval [0,2]

Multiprocessor utilization test

•! Any task set " is feasible on m
processors provided
–!max{ui} $ 1

–! U(") $ m

•! Knowing some schedule exists is not
the same as having a schedule that
meets all deadlines!

October 6, 2009

Multiprocessor scheduling of PTs

•! There are optimal online algorithms
for scheduling periodic tasks on
multiprocessors
–! Pfair, LLREF

•! These tasks make decisions to
emulate the ideal schedule

October 6, 2009

•! Ideally, we would execute all tasks at a
constant rate
–! Example T1 = (4,2), T2 = (6,3), and T3 = (8,6)

Ideal (but impractical) schedule

October 6, 2009

!! Unfortunately, there are only 2 processors and
each can execute only one task at a time!

T3

T2

T1

2 2

1

0 4 8 12

T1 Remaining Execution Proportion Processor per Task

•! The timeline is broken into time slices
–! Dividing points are determined by task deadlines

–! Scheduling within a TL plane [ti-1,ti] ensures tasks
have executed at their ideal amount at by time ti

•! Example T1 = (4,2), T2 = (5,3), and T3 = (8,6)

0 2 4 6 8 10 12 14 16 18

New scheduling algorithm: NQ-Wrap

October 6, 2009

Local execution and utilization

•! Within each time slice [tj-1,tj), each
task is assigned a local workload and
utilization

•! %i,t = remaining work for Ti within time
slice

•! ri,t = local utilization within time slice

•! ri,t = %i,t / (tj – t)

•! At start of each slice ri = ui

–! i.e., %i,t(j-1) = ui x (tj – tj-1)

October 6, 2009

Schedulers

•! NQ-Wrap has two schedulers
–! Global scheduler makes decisions for all

processors

–! Local scheduler schedules tasks on single
processor

•! In NQ-Wrap, the global scheduler
executes at time slice boundaries only
–! Determines schedule for entire time

slice and sends schedules to processors

October 6, 2009

Global scheduler

•! At the beginning of each time slice
[tj-1,tj), the global scheduler performs
the following tasks
–! Determine %i for each task Ti

–! Considers these execution times in a long
sequence

–! Cuts this sequence every (tj – tj-1) time
units

–! Sends one sequence per processor until
all sequences are assigned

October 6, 2009

!!!!!"# !!!"$ "% !!!!!"& !!!"'

Example

T1=(7,2), T2= (10,3), T3= (9,4), T4 = (12,7), T5 = (14,5)

%1 = 2, %2 = 2.1, %3 = 3.1, %4 = 4.1, %5 = 2.5

!!!!!"# !!!!!"& !!!"' !!!"$ "%

October 6, 2009 October 6, 2009

Why I like researching real-time systems

•! Analyzing real-time systems is like
solving puzzles
–! Analysis is visual

–! Small changes in assumptions can have
large impact in analysis

•! If this seemed interesting to you,
please feel free to contact me
regarding research projects or
directed study!!!

