
Maria Hybinette, UGA

CSCI [4|6]730
 Operating Systems

Deadlock

Maria Hybinette, UGA
2

Chapter 8: Deadlock Questions?

!! What is a deadlock?

!! What causes a deadlock?

!! How do you deal with (potential) deadlocks?

Maria Hybinette, UGA
3

Deadlock: What is a deadlock?

!! All are waiting for a resource that is held by another

waiting entity. Since all are waiting, none can provide

any of the things being waited for.

!! Example: narrow bridge (resource) --

»! if a deadlock occurs, resolved if one car back up

(preempts resource and rollback).

I don’t back!

up for idiots!

Deitel & Deitel anecdote

No problem -- !

I do!!

Maria Hybinette, UGA
4

A += 10;

B += 20;

A += B;

A += 30

B += 10;

A += 20;

A += B;

B += 30

Thread Maria Thread Tucker

Example: Two Threads?

!! Two threads access two shared variables, A and B

»! Variable A is protected by lock a

»! Variable B by lock b

!! How to add lock and unlock statements?

lock(b)

lock(a);

unlock(a);

unlock(b);

Does this

work?

lock(a);

lock(b);

unlock(b)

unlock(a)

Maria Hybinette, UGA
5

Example: Maria & Tucker

lock(a);

A += 10;

lock(b);

B += 20;

A += B;

unlock(b)

A += 30

unlock(a)

Thread Maria

Thread Tucker

Maria gets lock a

Time Thread Tucker Thread Maria

lock(b)

B += 10;

lock(a);

A += 20;

A += B;

unlock(a);

B += 30

unlock(b);

Tucker gets lock b

Maria waits for lock b

Tucker waits lock b

Maria Hybinette, UGA
6

Representing Deadlock

!! Two common ways of representing deadlock:

»! Vertices (circles or rectangles)

–! threads (or processes) in system

–! resources [types] (e.g., locks, semaphores, printers)

»! Edges: indicates (`waiting for’ or `wants’) or `held by’

direction of the edge determines the type.

T1! T2!

“waiting for”!

T2!T1!

R1!

R2!

held by!wants!

wants!held by!

Wait-For Graph! Resource Allocation Graph!

Maria Hybinette, UGA
7

Conditions for Deadlock

!! Mutual exclusion:

»! Resource cannot be shared

»! Requests are delayed until resource is released

!! Hold and wait:

»! Thread holds one resource while waits for another

!! No preemption:

»! previously granted resources cannot forcibly be taken away

!! Circular wait:

»! Circular dependencies exist in “waits-for” or “resource-
allocation” graphs

»! Each is waiting for a resource held by next member of the
chain.

All for conditions must hold simultaneously!

Maria Hybinette, UGA
8

 Handling Deadlock

1.! Ignore

»! Easiest and most common approach (e.g., UNIX).

2.! Deadlock prevention

»! Ensure deadlock does not happen

»! Ensure at least one of 4 conditions does not occur

1.! Hold&Wait, No Preemption, Circularity, Mutual Exclusion

2.! System build so deadlock cannot happen

3.! Deadlock detection and recovery

»! Allow deadlocks, but detect when occur

»! Recover and continue

4.! Deadlock avoidance

»! Ensure deadlock does not happen

»! Use information about resource requests to dynamically
avoid unsafe situations

Ostrich algorithm

Maria Hybinette, UGA
9

Deadlock Prevention

!! Approach

»! Ensure 1 of 4 conditions cannot occur

»!Negate each of the 4 conditions

!! No single approach is appropriate (or
possible) for all circumstances

Mutual exclusion

Hold and wait

No preemption

Circular wait

Maria Hybinette, UGA
10

Deadlock Prevention:
 Mutual Exclusion

!! No mutual exclusion --> Make
resource sharable ; examples:

»!Read-only files

»! Printer daemon needs exclusive
access to the printer, there is only one
printer daemon -- uses spooling.

Mutual exclusion

Hold and wait

No preemption

Circular wait

Maria Hybinette, UGA
11

Deadlock Prevention
Hold and Wait

!! Two Approaches:

1.! Only request resources when it does
not hold other resources

–! release resources before requesting

new ones

lock(a);

A += 10;

unlock(a)

lock(b);

B += 20;

unlock(b)

lock(a)

A += 30

unlock(a)

Thread Tucker Thread Maria

lock(b)

B += 10;

Unlock(b);

lock(a);

A += 20;

unlock(a);

lock(b)

B += 30

unlock(b);

Mutual exclusion

Hold and wait

No preemption

Circular wait

Maria Hybinette, UGA
12

Deadlock Prevention
Hold and Wait

!! Two Approaches:

2.! Atomically acquire all resources at
once

»! Example: Single lock to protect all

(other variations - e.g., release access
to one variable earlier)

lock(AB);

A += 10;

B += 20;

A += 30

unlock(AB)

Thread Tucker Thread Maria

lock(AB)

B += 10;

A += 20;

B += 30

unlock(AB);

Mutual exclusion

Hold and wait

No preemption

Circular wait

Maria Hybinette, UGA
13

Deadlock Prevention
 Hold and Wait

!! Summary the Two Approaches:

1.! Only request resources when it does not hold
other resources

2.! Atomically acquire all resources at once

!! Problems:

»! Low resource utilization: ties up resources
other processes could be using

»! May not know required resources before run

»! Starvation: A thread that need popular
resources may wait forever

Mutual exclusion

Hold and wait

No preemption

Circular wait

Maria Hybinette, UGA
14

Deadlock Prevention
No Preemption

!! Two Approaches:

1.! Preempt requestors resource

–! Example: B is holding some resources and
then requests additional resources that are
held by other threads, then B releases all its
resources (and start over)

2.! Preempt holders resource

–! Example: A waiting for something held by B, then
take resource away from B and give them to A (B
starts over).

!! Not possible if resource cannot be saved
and restored

»! Can’t take away a lock without causing
problems

!! Only works for some resources (e.g., CPU
and memory)

Mutual exclusion

Hold and wait

No preemption

Circular wait

Maria Hybinette, UGA
15

Deadlock Prevention
Circular Wait Condition

!! Impose ordering on resources

»!Give all resources a ranking; must
acquire highest ranked resource first

Mutual exclusion

Hold and wait

No preemption

Circular wait

Maria Hybinette, UGA
16

Deadlock Detection & Recovery

1.! Allow system to enter deadlock state

2.! Detection algorithm

3.! Recovery scheme

Maria Hybinette, UGA
17

Deadlock Detection
Single Instance of Each Resource Type

!! Maintain wait-for graph

»! Nodes are processes.

»! removes resource nodes and collapsing edges

»! Pi ! Pj if Pi is waiting for Pj.

!! Periodically invoke an algorithm that searches for a
cycle in the graph.

!! An algorithm to detect a cycle in a graph requires an
order of n2 operations, where n is the number of
vertices in the graph.

Maria Hybinette, UGA
18

Depth first search (example)

L = {empty list} and Nodes = {unvisited};

current node = initial node ;

while(current node is not the initial node twice)

 L.enqueue(current node); // add to node to end of L

 if(current node is in L twice)

 there is a cycle " cycle and return

 if(there is an unmarked arc)

mark the arc as visited and use destination as new
current node

 else

go back to previous node

 Back to initial node there is no cycle

For each node in the graph:

Maria Hybinette, UGA
19

Deadlock detection (1 resource of
each)

!! Do a depth-first-search on the resource
allocation graph

D, E, G ?

are deadlocked

A, C, F ?

are not deadlocked because S can

be allocated to either and then the

other two can take turn to complete

Maria Hybinette, UGA
20

Example: Deadlock Detection

!! Do a depth-first-search on the resource
allocation graph

Initialize a list to the empty list, designate arcs as ‘unvisited’

T

Maria Hybinette, UGA
21

Example: Deadlock Detection

!! Do a depth-first-search on the resource
allocation graph

T

Maria Hybinette, UGA
22

Example: Deadlock Detection

!! Do a depth-first-search on the resource
allocation graph

T

Maria Hybinette, UGA
23

Example: Deadlock Detection

!! Do a depth-first-search on the resource
allocation graph

T

Maria Hybinette, UGA
24

Deadlock Detection with
Multiple Resources

!! Theorem: If a graph does not contain a cycle
then no processes are deadlocked

»!A cycle in a RAG is a necessary condition for
deadlock

»! Is it a sufficient condition?

waiting

waiting

holding

holding

holding

Printers

CD-WR

Maria Hybinette, UGA
25

Deadlock Detection Algorithm:
 Multiple Resource Instances

!! Available: Indicates the number of available resources of each type (m)

!! Allocation: Number of resources of each type currently allocated (nxm)

!! Request: current requests of each thread (nxm)

»! If Request [ij] = k, then process Pi is requesting k more instances of type. Rj.

What I have (now!) What I am requesting now

Doesn’t

Change

Maria Hybinette, UGA
26

Example

!! Is there a possible allocation sequence of resources

so that each process can complete?

Maria Hybinette, UGA
27

Detection algorithm

1. Look for an unmarked process Pi, for which

the ith row of R (need) is less than or equal
to A

2. If such a process is found, add the i-th row of

C to A, mark the process and go back to

step 1

3. If no such process exists the algorithm

terminates
If all marked, no deadlock

A marked process means it can run to completion

Maria Hybinette, UGA
28

Detection algorithm

Maria Hybinette, UGA
29

Detection algorithm

Maria Hybinette, UGA
30

Detection algorithm

Maria Hybinette, UGA
31

Detection algorithm

 2 2 2 0

Maria Hybinette, UGA
32

Detection algorithm

 2 2 2 0

Maria Hybinette, UGA
33

Detection algorithm

 4 2 2 1

 2 2 2 0

Maria Hybinette, UGA
34

Detection algorithm

 4 2 2 1

 2 2 2 0

No deadlock!

Maria Hybinette, UGA
35

Deadlock detection issues

!! How often should the algorithm run?

»!After every resource request?

»! Periodically?

»!When CPU utilization is low?

»!When we suspect deadlock because some thread

has been asleep for a long period of time?

Maria Hybinette, UGA
36

Recovery from deadlock

!! What should be done to recover?

»! Abort deadlocked processes and reclaim resources

»! Temporarily reclaim resource, if possible

»! Abort one process at a time until deadlock cycle is
eliminated

!! Where to start?

»! Low priority process

»! How long process has been executing

»! How many resources a process holds

»! Batch or interactive

»! Number of processes that must be terminated

Maria Hybinette, UGA
37

Other deadlock recovery
techniques

!! Recovery through rollback

»! Save state periodically

–! take a checkpoint

–! start computation again from checkpoint

»!Done for large computation systems

Maria Hybinette, UGA
38

Review: Handling Deadlock

!! Ignore

»! Easiest and most common approach (e.g., UNIX).

!! Deadlock prevention

»! Ensure deadlock does not happen

»! Ensure at least one of 4 conditions does not occur

!! Deadlock detection and recovery

»! Allow deadlocks, but detect when occur

»! Recover and continue

!! Deadlock avoidance

»! Ensure deadlock does not happen

»! Use information about resource requests to dynamically
avoid unsafe situations

Ostrich algorithm

Maria Hybinette, UGA
39

Deadlock avoidance

!! Detection vs. avoidance…

»!Detection – “optimistic” approach

–! Allocate resources

–! “Break” system to fix it

»!Avoidance – “pessimistic” (conservative) approach

–! Don’t allocate resource if it may lead to deadlock

–! If a process requests a resource...

 ... make it wait until you are sure it’s OK

»!Which one to use depends upon the application

Maria Hybinette, UGA
40

Process-resource trajectories

instruction!

Process A!

t1! t2! t3! t4!

Maria Hybinette, UGA
41

Process-resource trajectories

instruction!

Process A!

t1! t2! t3! t4!

Requests Printer!

Requests CD-RW!

Releases Printer!

Releases CD-RW!

RP RC RLP RLC

Maria Hybinette, UGA
42

Process-resource trajectories

in
st

ru
ct

io
n
!

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Maria Hybinette, UGA
43

Process-resource trajectories

in
st

ru
ct

io
n
!

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Requests Printer!

Releases CD-RW!

Releases Printer!

Request CD-RW!

RC

RP

RLC

RLP

Maria Hybinette, UGA
44

Process-resource trajectories

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n
!

instruction!
RP RC RLP RLC

RC

RP

RLC

RLP

Maria Hybinette, UGA
45

Process-resource trajectories

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n
!

instruction!

Both processes!
hold CD-RW!

RC

RP

RLC

RLP

RP RC RLP RLC

Mutual

Exclusion

Maria Hybinette, UGA
46

Process-resource trajectories
P

ro
ce

ss
 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n
!

instruction!

Both processes!
Request Printer!

RC

RP

RLC

RLP

RP RC RLP RLC

Mutual

Exclusion

Maria Hybinette, UGA
47

Process-resource trajectories

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n
!

instruction!

RC

RP

RLC

RLP

RP RC RLP RLP

Unsafe: Forbidden!
Zone!

Maria Hybinette, UGA
48

Process-resource trajectories

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n
!

instruction!

Trajectory showing!
system progress!

RP RC RLP RLP

RC

RP

RLC

RLP

Maria Hybinette, UGA
49

Process-resource trajectories

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n
!

instruction!

RC

RP

RLC

RLP

RP RC RLP RLP

B makes progress,!
A is not running!

Maria Hybinette, UGA
50

Process-resource trajectories

B requests!
the CD-RW!

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n
!

instruction!

RC

RP

RLC

RLP

RP RC RLP RLP

Maria Hybinette, UGA
51

Process-resource trajectories

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

in
o
n

s!

instructions!

RC

RP

RLC

RLP

RP RC RLP RLP

Request is granted!

Maria Hybinette, UGA
52

Process-resource trajectories
P

ro
ce

ss
 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

in
o
n

s!

instructinons!

RC

RP

RLC

RLP

RP RC RLP RLP

A runs & makes!
a request for printer!

Maria Hybinette, UGA
53

Process-resource trajectories

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n

s!

instructions!

RC

RP

RLC

RLP

RP RC RLP RLP

Request is granted;!
A proceeds!

Maria Hybinette, UGA
54

Process-resource trajectories

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n

s!

instructions!

RC

RP

RLC

RLP

RP RC RLP RLP

B runs & requests!
the printer...!

MUST WAIT!!

Maria Hybinette, UGA
55

Process-resource trajectories

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n

s!

instructions!

RC

RP

RLC

RLP

RP RC RLP RLP

A runs & requests!
the CD-RW!

Maria Hybinette, UGA
56

Process-resource trajectories

A...!

 holds printer!

 requests CD-RW!

B...!

 holds CD-RW!

 requests printer!P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n

s!

instructions!

RC

RP

RLC

RLP

RP RC RLP RLP

Maria Hybinette, UGA
57

Process-resource trajectories

A...!

 holds printer!

 requests CD-RW!

B...!

 holds CD-RW!

 requests printer!

DEADLOCK!!

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

in
o
s!

instructions!

RC

RP

RLC

RLP

RP RC RLP RLP

Maria Hybinette, UGA
58

Process-resource trajectories

A danger!

 occurred here.!

Should the OS!

 give A the printer,!

 or make it wait???!P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n

s!

instructions!

RC

RP

RLC

RLP

RP RC RLP RLP

Maria Hybinette, UGA
59

Process-resource trajectories

This area is “unsafe”!

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n

s!

instructions!

RC

RP

RLC

RLP

RP RC RLP RLP

Maria Hybinette, UGA
60

Process-resource trajectories

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n

s!

instructions!

RC

RP

RLC

RLP

RP RC RLP RLP

Within the “unsafe” area,!

 deadlock is inevitable.!

We don’t want to!

enter this area.!

The OS should make!

A wait at this point!!

Maria Hybinette, UGA
61

Process-resource trajectories

P
ro

ce
ss

 B
!

tW!

tX!

tY!

tZ!

Process A!

t1! t2! t3! t4!

in
st

ru
ct

io
n

s!

time!

RC

RP

RLC

RLP

RP RC RLP RLP

B requests the printer,!

B releases CD-RW,!

B releases printer,!

then A runs to completion!!

Maria Hybinette, UGA
62

Safe states

!! The current state:

 “which processes hold which resources”

!! A “safe” state:

»! No deadlock, and

»! There is some scheduling order in which every process
can run to completion even if all of them request their
maximum number of units immediately

!! The Banker’s Algorithm:

»! Goal: Avoid unsafe states!!!

»! Question: When a process requests more units, should
the system grant the request or make it wait?

Maria Hybinette, UGA
63

Deadlock Avoidance

!! Dijkstra’s Banker’s Algorithm

!! Idea: Avoid unsafe states of processes

holding resources

»!Unsafe states might lead to deadlock if processes

make certain future requests

»!When process requests resource, only give if

doesn’t cause unsafe state

»! Problem: Requires processes to specify all possible

future resource demands

Maria Hybinette, UGA
64

The Banker’s Algorithm

!! Assumptions:

»!Only one type of resource, with multiple units.

»! Processes declare their maximum potential resource needs

ahead of time (total sum is 22 units of credit but only has 10)

!! When a process requests more units should the system

make it wait to ensure safety?

6

2

5

Example: One resource type with 10 units

3

Maria Hybinette, UGA
65

Safe states

!! Safe state – “when system is not deadlocked

and there is some scheduling order in which
every process can run to completion even if

all of them suddenly request their maximum
number of resource immediately”

6

2

5

10 total

3

Maria Hybinette, UGA
66

Unsafe/Safe state?

6

2

5

10 total

3

5

2

5

2

Unsafe!

The difference here is A

possesses 1 more resource

Safe

Maria Hybinette, UGA
67

Avoidance with multiple resource
types

Note: These are the max. possible!
requests, which we assume!
are known ahead of time!

Maximum # Needed

Maria Hybinette, UGA
68

Banker’s algorithm for multiple
resources

!! Look for a row, R, whose unmet resource needs are all
smaller than or equal to A. If no such row exists, the
system will eventually deadlock since no process can run
to completion

!! Assume the process of the row chosen requests all the
resources that it needs (which is guaranteed to be
possible) and finishes. Mark that process as terminated
and add all its resources to A vector

!! Repeat steps 1 and 2, until either all process are marked
terminated, in which case the initial state was safe, or until
deadlock occurs, in which case it was not

Maria Hybinette, UGA
69

Avoidance modeling

Available resource vector Total resource vector

Maximum Request Vector

Row 2 is what process 2 might need

RUN ALGORITHM ON EVERY

RESOURCE REQUEST

Maria Hybinette, UGA
70

Avoidance algorithm

More needed matrix

Maria Hybinette, UGA
71

Avoidance algorithm

More needed matrix

Maria Hybinette, UGA
72

Avoidance algorithm

More needed matrix

Maria Hybinette, UGA
73

Avoidance algorithm

 2 2 2 0

More needed matrix

Maria Hybinette, UGA
74

Avoidance algorithm

 2 2 2 0

More needed matrix

Maria Hybinette, UGA
75

Avoidance algorithm

 4 2 2 1

 2 2 2 0

More needed matrix

Maria Hybinette, UGA
76

Deadlock avoidance

!! Deadlock avoidance is usually impossible

»! because you don’t know in advance what resources
a process will need!

