
Maria Hybinette, UGA

CSCI 6730/ 4730
 Operating Systems

Dup & Pipe

Maria Hybinette, UGA
2

Two Communicating Processes

!! Concept that we want to implement

Process

Chat

Maria

“A”

Process

Chat

Gunnar

“B”

Hello Gunnar!

Hi Nice to Hear

from you!

Maria Hybinette, UGA
3

On the path to communication…

!! Want: A communicating processes

!! Have so far: Forking – to create processes

!! Problem:

»!After fork() is called we end up with two independent

processes.

»! Separate Address Spaces

!! Solution? How do we communicate?

Maria Hybinette, UGA
4

Review 1730 - File: The Unix Way

!! One easy way to communicate is to use files.

»! Process A writes to a file and process B reads from
it

!! File descriptors

»!Mechanism to work with files

»!Used by low level I/O

–! Open(), close(), read(), write()

»! file descriptors generalize to other communication

devices such as pipes and sockets

Maria Hybinette, UGA
5

File Descriptor Table

Big Picture (more on this later)

Stack Pointer

Program Counter

fd 0

fd 1

fd 2

fd 3

File status flags

offet

Vnode pointer

File Table Entry

PCB

Maria Hybinette, UGA
6

Producer -> Consumer Problems

!! Simple example: who | sort

»!Both the writing process (who) and the reading
process (sort) of a pipeline execute concurrently.

!! A pipe is usually implemented as an internal

OS buffer with 2 file descriptors.

»! It is a resource that is concurrently accessed

–! by the reader and the writer, so it must be managed

carefully (by the Kernel)

Maria Hybinette, UGA
7

Buffering: Programming with Pipes

#include <unistd.h>

int pipe(int fd[2]);

!! pipe() binds fd[]with two file descriptors:

»!fds[0] used to read from pipe

»!fds[1] used to write to pipe

!! Half-Duplex (one way) Communication

!! Returns 0 if OK and -1 on error. fd[0] fd[1]

pipe

User process

Kernel
Maria Hybinette, UGA

8

Example: pipe-yourself.c

#include <stdio.h>

#include <unistd.h>

#define MSGSIZE 16 /* null */

char *msg1=“hello, world #1”;

char *msg2=“hello, world #2”;

char *msg3=“hello, world #3”;

int main()
{

 char inbuf[MSGSIZE];
int p[2], i;

 if(pipe(p) < 0)

 { /* open pipe */
 perror(“pipe”);
 exit(1);
 }

write(p[1], msg1, MSGSIZE);

write(p[1], msg2, MSGSIZE);

write(p[1], msg3, MSGSIZE);

for(i=0; i < 3; i++)

 { /* read pipe */
read(p[0], inbuf, MSGSIZE);
printf(“%s\n”, inbuf);
}

return 0;

}

{saffron:ingrid:4} pipe-yourself

hello, world #1

hello, world #2
hello, world #3

process

p[0] (read)

p[1] (write)

pipe p

Maria Hybinette, UGA
9

Things to Note

!! Pipes uses FIFO ordering: first-in first-out.

!! Read / write amounts do not need to be the

same, but then text will be split differently.

!! Pipes are most useful with fork() which

creates an IPC connection between the parent

and the child (or between the parents children)

Maria Hybinette, UGA
10

What Happens After Fork?

!! Design Question:

»!Decide on : Direction of data flow – then close
appropriate ends of pipe (at both parent and child)

fd[0] fd[1]

User Process (Parent)

Pipe

After Fork

fd[0] fd[1]

User Process (Child)

fd[0] fd[1]

User Process (Parent)

Pipe

Before Fork

Maria Hybinette, UGA
11

!! A forked child

»! inherits file descriptors from its parent

!! pipe()

»! creates an internal system buffer and two file

descriptors, one for reading and one for writing.

!! After the pipe call,

»! the parent and child should close the file

descriptors for the opposite direction.

»! Leaving them open does not permit full-duplex

communication.

Maria Hybinette, UGA
12

Example: pipe-fork-close.c

#include <stdio.h>

#include <sys/wait.h>

#include <unistd.h>

#define MSGSIZE 16

char *msg1=“hello, world #1”;

char *msg2=“hello, world #2”;

char *msg3=“hello, world #3”;

int main()
{

 char inbuf[MSGSIZE];
int p[2], i, pid;

 if(pipe(p) < 0)

 { /* open pipe */
 perror(“pipe”);
 exit(1);
 }

 if((pid = fork()) < 0)

 {

 perror(“fork”);
 exit(2);

 }

if(pid > 0) /* parent */

 {

 close(p[0]); /* read link */

 write(p[1], msg1, MSGSIZE);

 write(p[1], msg2, MSGSIZE);

 write(p[1], msg3, MSGSIZE);

 wait((int *) 0);

 }
if(pid == 0) /* child */

 {

 close(p[1]); /* write link */

 for(i=0; i < 3; i++)

 {

 read(p[0], inbuf, MSGSIZE);
 printf(“%s\n”, inbuf);
 }

 } return 0;

}

parent

p[0] (read)

p[1] (write)

child

Maria Hybinette, UGA
13

Some Rules of Pipes

!! Every pipe has a size limit

»! POSIX minimum is 512 bytes -- most systems makes this
figure larger

!! read() blocks if pipe is empty and there is a a write
link open to that pipe

!! read() from a pipe whose write() end is closed and
is empty returns 0 (indicates EOF)

»! Close write links or read() will never return

!! write() to a pipe with no read() ends returns -1 and
generates SIGPIPE and errno is set to EPIPE

!! write() blocks if the pipe is full or there is not enough
room to support the write().

»! May block in the middle of a write()

Maria Hybinette, UGA
14

Pipes and exec()

How can we code who | sort ?

1.! Use exec() to start two processes (one

runs who the other sort) which share a

pipe (exec’s start a new program within a
copy of the ‘parent’ process).

2.! Connect the pipe to stdin and stdout

using dup2().

Maria Hybinette, UGA
15

Duplicate File Descriptors

#include <unistd.h>

int dup2(int old-fd, int new-fd);

!! Set one FD to the value of another.

!! new-fd and old-fd now refer to the

same file

!! if new-fd is open, it is first

automatically closed

!! Note that dup2() refer to fds not

streams

!! Example:

»!dup2(fd[1], fileno(stdout));

new-fd

old fd

File

Maria Hybinette, UGA
16

Example : sort < file1.txt | uniq

!! What does this look like? How would a shell

be programmed to process this?

»!Well we know we need a parent & child to

communicate though the pipe!

»! Parent

»!Child

»!We need to open a file and read from it – and then

read it as we read it from standard input.

Maria Hybinette, UGA
17

Want: sort < file1.txt | uniq

!! Want: How do we get there?

Parent uniq

stdin fd[0]

stdout fd[1]

Child sort

stdin fd[0]

stdout fd[1]

Pipe

File 1

Maria Hybinette, UGA
18

Want: “sort < file1 | uniq”

fileDES = open(”file1.txt", O_RDONLY);!

Parent

filedes

stdin fd[0]

stdout fd[1]

File 1

Maria Hybinette, UGA
19

Want: “sort < file1 | uniq”

fileDES = open("myfile.txt", O_RDONLY);!

dup2(fileDES, fileno(stdin));!

Parent

filedes

stdin fd[0]

stdout fd[1]

File 1

Maria Hybinette, UGA
20

Want: “sort < file1 | uniq”

fileDES = open("myfile.txt", O_RDONLY);!

dup2(fileDES, fileno(stdin));!

close(fileDES);!

Parent

filedes

stdin fd[0]

stdout fd[1]

File 1

Maria Hybinette, UGA
21

Want: “sort < file1 | uniq”

pipe(fd);!

… fork() …!

Parent

filedes

stdin fd[0]

stdout fd[1]

File 1

Pipe

Maria Hybinette, UGA
22

Want: “sort < file1 | uniq”

fork();!

/* now do the plumbing */!

Parent

filedes

stdin fd[0]

stdout fd[1]

File 1

Pipe

Child

stdin fd[0]

stdout fd[1]

Maria Hybinette, UGA
23

Want: “sort < file1 | uniq”

fork();!

/* decide who does what */

Parent uniq

filedes

stdin fd[0]

stdout fd[1]

File 1

Pipe

Child sort

stdin fd[0]

stdout fd[1]

Maria Hybinette, UGA
24

Want: “sort < file1 | uniq”

/* make writing to the pipe the same!

/* as writing to stdout */!

dup2(fd[1], fileno(stdout)); /* in green */!

Parent uniq

filedes

stdin fd[0]

stdout fd[1]

File 1

Pipe

Child sort

stdin fd[0]

stdout fd[1]

Maria Hybinette, UGA
25

Want: “sort < file1 | uniq”

close(fd[0]); close(fd[1]); /* child */!

/* leaving the ---- connections for child */!

Parent uniq

filedes

stdin fd[0]

stdout fd[1]

File 1

Pipe

Child sort

stdin fd[0]

stdout fd[1]

Maria Hybinette, UGA
26

Want: “sort < file1 | uniq”

dup2(fd[0], fileno(stdin)); /* parent */!

/* parent reads from pipe */!

Parent uniq

filedes

stdin fd[0]

stdout fd[1]

File 1

Pipe

Child sort

stdin fd[0]

stdout fd[1]

Maria Hybinette, UGA
27

Want: “sort < file1 | uniq”

close(fd[1]); close(fd[0]); /* parent */!

Parent uniq

filedes

stdin fd[0]

stdout fd[1]

File 1

Pipe

Child sort

stdin fd[0]

stdout fd[1]

Maria Hybinette, UGA
28

Example : “sort < file1 | uniq”

pid = fork();!

if(pid < 0)!

 {!

 perror("fork");!

 exit(1);!

 }!

else if(pid == 0) // child!

 {!

 close(pipeDES[0]);!

 dup2(pipeDES[1], fileno(stdout));!

 close(pipeDES[1]);!

 execl("/usr/bin/sort", "sort", (char *) 0);!

 }!

else if(pid > 0) // parent!

 {!

 close(pipeDES[1]);!

 dup2(pipeDES[0], fileno(stdin)); !

 close(pipeDES[0]);!

 execl("/usr/bin/uniq", "uniq", (char *) 0);!

 }!

}!

include <stdio.h>!

include <stdlib.h>!

include <unistd.h>!

include <fcntl.h>!

/* child | parent */!

/* sort < file1.txt | uniq */!

int main()!

{!

int status;!

int fileDES;!

int pipeDES[2];!

pid_t pid;!

fileDES = open("myfile.txt", O_RDONLY);!

dup2(fileDES, fileno(stdin));!

/* don't need to read via this one anymore */!

close(fileDES) ; !

/* create a child that communicate via a pipe */!

/* parent reads from pipe, child writes to pipe */!

pipe(pipeDES);!

Maria Hybinette, UGA
29

Thought questions

!! Other ways of designing this task?

