Two Communicating Processes

CSCI 6730/ 4730
Operating Systems

Dup & Pipe

1785

Maria Hybinette, UGA

On the path to communication...

Hello Gunnar!

Process
Chat
Gunnar
“B"

Process

Chat

Maria
wA"

A
>

A

Hi Nice to Hear
from you!

@ Concept that we want to implement

Maria Hybinette, UGA

Review 1730 - File: The Unix Way

e Want: A communicating processes
@ Have so far: Forking — to create processes

e Problem:

» After fork() is called we end up with two independent
processes.

» Separate Address Spaces
@ Solution? How do we communicate?

Maria Hybinette, UGA

Big Picture (more on this later)

@ One easy way to communicate is to use files.
» Process A writes to a file and process B reads from
it
o File descriptors
» Mechanism to work with files
» Used by low level /O
— Open(), close(), read(), write()

» file descriptors generalize to other communication
devices such as pipes and sockets

Maria Hybinette, UGA

Producer -> Consumer Problems

File Descriptor Table
fd0 File Table Entry
fd 1 File status flags
d 2 offet
Vnode pointer
fd 3

Maria Hybinette, UGA

e Simple example: who | sort
» Both the writing process (who) and the reading
process (sort) of a pipeline execute concurrently.
@ A pipe is usually implemented as an internal
OS buffer with 2 file descriptors.
» It is a resource that is concurrently accessed

— by the reader and the writer, so it must be managed
carefully (by the Kernel)

Maria Hybinette, UGA

Buffering: Programming with Pipes Example: pipe-yourself.c

write(p[1], msgl, MSGSIZE);
#include <unistd.h> #include <stdio.h> write(p[1l], msg2, MSGSIZE);
#include <unistd.h> write(p[1l], msg3, MSGSIZE);
#define MSGSIZE 16 /* null */

int pipe(int £d4[2]);

for(i=0; i < 3; i++)
char *msgl=“hello, world #1”; { /* read pipe */)
® pipe () binds £d[]with two file descriptors: char *msg2="hello, world #2"; el PO o Sty PR)

printf(“%s\n”, inbuf);
) char *msg3=“hello, world #3”; }
» £ds[0] used to read from pipe

. . int main()
» £ds[1] used to write to pipe {

return 0; {saffron:ingrid:4} pipe-yourself
hello, world #1

hello, world #2
. . har inbuf [MSGSIZE]; , 3
o Half-Duplex (one way) Communicationgss: process int pl2], 4 nelte, womi ¥

int p[2], i;
® Returns 0 if OK and -1 on error.

; A ipe
AT TH if(pipe(p) <0) pipe p
{ /* open pipe */

perror(“pipe”);
}

Kernel 7

plO] (read)
pl1l] (write)

Maria Hybinette, UGA Maria Hybinette, UGA

Things to Note What Happens After Fork?

User Process (Parent) User Process (Parent) User Process (Child)

o Pipes uses FIFO ordering: first-in first-out.

£4[0] £d[1] £d4[0] £d[1] £d4[0] £d[1]
® Read / write amounts do not need to be the
same, but then text will be split differently.

@ Pipes are most useful with fork () which

I\ -\
creates an IPC connection between the parent “

and the child (or between the parents children)

Before Fork

After Fork

o Design Question:

» Decide on : Direction of data flow — then close
appropriate ends of pipe (at both parent and child)

9
Maria Hysinetie, UGA Maria Hysinetie, UGA
Example: pipe-fork-close.c
if(pid > 0) /* parent */
. #include <stdio.h> {
o A forked child #include <sys/wait.h> close(p[0]); /* read link */
. " . . . #include <unistd.h> write(p[1], msgl, MSGSIZE);
» inherits file descriptors from its parent P ——— write(pIl], meg2, MSGSIZE):
- write(p[1], msg3, MSGSIZE);
L P'Pe() char *msgl="hello, world #1”; wait((int %) 0)i[ie(piq == 0) /* child +/
i 7 * = . #27; }
» Cr n internal m buffer and two fil char mmegi=hello, world (
cl eate_s a ternal SVSte_ buffer and two e char *msg3="hello, world #3"; close(p[1]); /* write link */
descriptors, one for reading and one for writing. for(4=0; i < 3; i+h)
int main()
. {
o After the pipe Ca", ihar TR - read(p[0], inbuf, MSGSIZE);
A - int p[2], i, pid; ! printf(“%s\n”, inbuf);
» the parent and child should close the file }
descriptors for the opposite direction. if(pipe(p) < 0)) return 0;
{ /* open pige */ }
» Leaving them open does not permit full-duplex ol P 0
N . e 5 p[0] (read)
communication.)
if((pid = fork()) < 0)
(
perror(“fork”);
exit(2);
1 !
Maria Hysinetie, UGA

pI1] (write) 12

Some Rules of Pipes

o Every pipe has a size limit

» POSIX minimum is 512 bytes -- most systems makes this
figure larger

® read () blocks if pipe is empty and there is aawrite
link open to that pipe

® read () from a pipe whose write () end is closed and
is empty returns 0 (indicates EOF)

» Close write links or read () will never return

® write () to a pipe with no read () ends returns -1 and
generates SIGPIPE and errno is set to EPIPE
e write () blocks if the pipe is full or there is not enough
room to support the write() .
» May block in the middle of a write ()
13

Maria Hybinette, UGA

Duplicate File Descriptors

#include <unistd.h>

int dup2(int old-fd, int new-£fd);
@ Set one FD to the value of another.
o new-fd and old-fd now refer to the —

same file eldli N
e if new-fd is open, it is first
automatically closed File

@ Note that dup2() refer to fds not
streams

e Example:
» dup2(£d[1], fileno(stdout));
15

Maria Hybinette, UGA

Want: sort < filel.txt | uniq

uniq sort

stdin £d[0] stdin £d[0]
r stdout £d[1] I ’—-stdout £d[1]

File 1

> I

@ Want: How do we get there?

17

Maria Hybinette, UGA

Pipes and exec ()

How can we code who | sort ?

1. Use exec () to start two processes (one
runs who the other sort) which share a
pipe (exec’s start a new program within a
copy of the ‘parent’ process).

2. Connect the pipe to stdin and stdout
using dup2 () .

14

Maria Hybinette, UGA

Example : sort < filel.txt | unigq

® What does this look like? How would a shell
be programmed to process this?

» Well we know we need a parent & child to
communicate though the pipe!

» Parent
» Child

» We need to open a file and read from it — and then
read it as we read it from standard input.

16

Maria Hybinette, UGA

Want: “sort < filel | uniq”

Parent

filedes

stdin £4[0]
stdout £d[1]

File 1

fileDES = open("filel.txt", O RDONLY);

18

Maria Hybinette, UGA

Want: “sort < filel | uniq”

Parent

filedes

stdin £4[0]
stdout £d[1]

File 1

fileDES = open("myfile.txt", O_RDONLY);
dup2(fileDES, fileno(stdin));
19

Maria Hybinette, UGA

Want: “sort < filel | uniq”

Want: “sort < filel | uniq”

Parent

filedes

stdin £4[0]

stdout £d[1]
File 1

pipe(fd);
. fork()

Maria Hybinette, UGA

Want: “sort < filel | uniq”

= =
Parent uniq Cchild sort
filedes
TR £d[0] €————7 5 | stdin £4[0] <«f--=
stdout £d1] H stdout £d[1] ===f7 1
1
N — o
1| 1
1
1 1 1
File 1 1 1 1
________ [R
o Pipe
fork();

/* decide who does what */

23

Maria Hybinette, UGA

Maria Hybinette, UGA

Parent
filedes
stdin £4[0]
stdout £d[1]
File 1
fileDES = open("myfile.txt", O_RDONLY);
dup2(fileDES, fileno(stdin));
close(fileDES); 20
o . T
Want: “sort < filel | unigq
Parent Child
filedes
stdin £d[0] «— > stdin £4[0] ===
stdout £d1] H stdout £d[1] ===f7 1
1 | i
i :
1 i
File 1 1 1 1
________ [! S —
e = Pipe
fork();
/* now do the plumbing */
M Hybinette, UGA 22
o . T
Want: “sort < filel | unigq
Parent uniq Cchild sort
filedes
stdin £d[0] €«— stdin £d[0]
stdout £d11] | = stdout £d[1] —-I
1
File 1 :€>
/* make writing to the pipe the same
/* as writing to stdout */
dup2(fd[1l], fileno(stdout)); /* in green */ ot

Want: “sort < filel | uniq”

Eazens R Child sort
filedes
stdin £d[0] «— > stdin £4[0]
stdout £d4[1] : = stdout £d[1]
I
i
[
: ! 1
File 1 ---__—--= - >
close(£fd[0]); close(£fd[l]); /* child */
/* leaving the ---- connections for child */
M Hybinette, UGA 25
Want: “sort < filel | uniq”
Eazens R Child sort
filedes
stdin £d[0] 3 di £d[0
stdout £d4[1] ::d:!l:t fd{l}
File 1 >
close(fd[1]); close(£fd[0]); /* parent */
M Hybinette, UGA 27
Thought questions
e Other ways of designing this task?
29

Maria Hybinette, UGA

Want: “sort < filel | uniq”

mm——m =
1
I | Parent uniq Child T
L filedes
stdin £d[0] «— q
o = L P
File 1 >
dup2 (£d[0], fileno(stdin)); /* parent */
/* parent reads from pipe */
M Hybinette, UGA 26
Example : “sort < filel | uniq”

include <stdio.h>
include <stdlib.h>
include <unistd.h>

[—

include <fcntl.h>

/% child
/* sort < filel.txt | unig */

| parent */

int main()

{

int status;
int fileDES;
int pipeDES[2];
pid_t pid;

£ileDES = open("myfile.txt", O_RDONLY);
dup2(fileDES, fileno(stdin));

/* don't need to read via this one anymore */
close(fileDES) ;

/% create a child that communicate via a pipe */
/% parent reads from pipe, child writes to pipe */
pipe(pipeDES);

pid = fork();
if(pid <0)
{
perror ("fork");
exit(1l);
}

else if(pid == 0) // child

{
close(pipeDES[0]);

dup2(pipeDES[1], fileno(stdout));

close(pipeDES[1]);
execl("/usr/bin/sort",

}

"sort", (char *) 0);

else if(pid > 0) // parent

{
close(pipeDES[1]);

dup2(pipeDES[0], fileno(stdin));

close(pipeDES[0]);
execl("/usr/bin/uniq",
}

}

"unig", (char *) 0);

P8

5 Fiyomette, U1

