
Page 1

Maria Hybinette, UGA

CSCI 6730 / 4730
 Operating Systems

Processes

Maria Hybinette, UGA
2

Review

  Operating System Fundamentals
» What is an OS?
» What does it do?
» How and when is it invoked?

  Structures
» Monolithic
»  Layered
» Microkernels
»  Virtual Machines
» Modular

Maria Hybinette, UGA
3

Chapter 3: Processes: Outline

  Process Concept: views of a process
  Process Basics Scheduling
  Operations on Processes

»  Life of a process: from birth to death

  Cooperating Processes
»  Interprocess Communication

–  Mailboxes
–  Shared Memory
–  Sockets

Maria Hybinette, UGA
4

What is a Process?

  A process is a program in execution (an
active entity, i.e. it is a running program)

» Basic unit of work on a computer, a job, a task.
» A container of instructions with some resources:

–  e.g. CPU time (CPU carries out the instructions),
memory, files, I/O devices to accomplish its task

»  Examples: compilation process, word processing
process, scheduler (sched, swapper) process or
daemon processes: ftpd, httpd

  System view…

Maria Hybinette, UGA
5

What are Processes?

  Multiple processes:
»  Several distinct processes can execute the SAME

program
  Time sharing systems run several processes by

multiplexing between them
  ALL “runnables” including the OS are organized into a

number of “sequential processes”

Scheduler

… n-1

Processes

Maria Hybinette, UGA
6

Our Process Definition

A process is a ‘program in execution’, a
sequential execution characterized by trace. It
has a context (the information or data) and
this ‘context’ is maintained as the process
progresses through the system.

Page 2

Maria Hybinette, UGA
7

Activity of a Process

Process A

Process B

Process C

A

B

C

Time
Multiprogramming:
  Solution: provide a programming counter.
  One processor (CPU).

1 CPU

Maria Hybinette, UGA
8

Activity of a Process: Time Sharing

Process A

Time

Process B

Process C

B A C

Maria Hybinette, UGA
9

What Does the Process Do?

  Created
  Runs
  Does not run (but ready to run)
  Runs
  Does not run (but ready to run)
  ….
  Terminates

Maria Hybinette, UGA
10

‘States’ of a Process

  As a process executes, it changes state
»  New: The process is being created.
»  Running: Instructions are being executed.
»  Ready: The process is waiting to be assigned to a

processor (CPU).
»  Terminated: The process has finished execution.
»  Waiting: The process is waiting for some event to occur.

Ready

New

Running

Waiting

Terminated

Maria Hybinette, UGA
11

State Transitions

  A process may change state as a result:
»  Program action (system call)
» OS action (scheduling decision)
»  External action (interrupts)

Ready

New

Running

Waiting

Terminated

Scheduler pick
I/O or event wait

exit
Interrupt (time) and

scheduler picks
another process

admitted

I/O or event
completion

Maria Hybinette, UGA
12

OS Designer’s Questions?

  How is process state represented?
» What information is needed to represent a process?

  How are processes selected to transition
between states?

  What mechanism is needed for a process to
run on the CPU?

Page 3

Maria Hybinette, UGA
13

What Makes up a Process?

User resources/OS Resources:
  Program code (text)
  Data

»  global variables
»  heap (dynamically allocated memory)

  Process stack
»  function parameters
»  return addresses
»  local variables and functions

  OS Resources, environment
»  open files, sockets
»  Credential for security

  Registers
»  program counter, stack pointer

User Mode
Address
Space

heap

stack

data

routine1
var1
var2

main
 routine1
 routine2

arrayA
arrayB

text

address space are the shared resources
of a(ll) thread(s) in a program

Maria Hybinette, UGA
14

What is needed to keep track of a Process?

  Memory information:
»  Pointer to memory segments needed

to run a process, i.e., pointers to the
address space -- text, data, stack
segments.

  Process management information:
»  Process state, ID
»  Content of registers:

–  Program counter, stack pointer,
process state, priority, process ID,
CPU time used

  File management & I/O information:
»  Working directory, file descriptors

open, I/O devices allocated
  Accounting: amount of CPU used.

Process Number

Program Counter

Registers

Process State

Memory Limits

Page tables

List of opened files

I/O Devices allocated

Accounting

Process control
Block (PCB)

Maria Hybinette, UGA
15

Process Representation

Initial P0

Process P1

Process P2

Process P3

Memory mappings

Pending requests

…

Memory base

Program counter

…

Process P2 Information System Memory

Kernel Process Table

P2 : HW state: resources

P0 : HW state: resources

P3 : HW state: resources

P1 : HW state: resources

…

Maria Hybinette, UGA
16

OS View: Process Control Block
(PCB)

  How does an OS keep track of the state of a
process?

» Keep track of ‘some information’ in a structure.
–  Example: In Linux a process’ information is kept in a

structure called struct task_struct declared in
#include linux/sched.h

–  What is in the structure?

struct task_struct

 pid_t pid; /* process identifier */

 long state; /* state for the process */

 unsigned int time_slice /* scheduling information */

 struct mm_struct *mm /* address space of this process */

Maria Hybinette, UGA
17

State in Linux

volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */

#define TASK_RUNNING 0

#define TASK_INTERRUPTIBLE 1

#define TASK_UNINTERRUPTIBLE 2

#define TASK_ZOMBIE 4

#define TASK_STOPPED 8

#define TASK_EXCLUSIVE 32

•  traditionally ‘zombies’ are child processes of parents that have not
processed a wait() instruction.

•  Note: processes that have been ‘adopted’ by init are not zombies (these
are children of parents that terminates before the child). Init
automatically calls wait() on these children when they terminate.

•  this is true in LINUX.
• What to do: 1) Kill the parent 2) Fix the parent (make it issue a wait) 2)
Don’t care

Maria Hybinette, UGA
18

Process Table in MINIX

  Microkernel design - process table
functionality (monolithic) partitioned into four
tables:

» Kernel management (kernel/proc.h)
» Memory management (VM server vm/vmproc.h)

–  Memory part of fork, exit etc calls
–  Used/unused part of memory

»  File management (FS) (FS server fs/fproc.h
»  Process management (PM server pm/mproc.h)

HERE

Page 4

Maria Hybinette, UGA
19

Running Processes

Running

Ready

Waiting Process A

Process B

Process C

Scheduler

Time

1 CPU

Maria Hybinette, UGA
20

Why is Scheduling important?

  Goals:
» Maximize the ‘usage’ of the computer system
» Maximize CPU usage (utilization)
» Maximize I/O device usage
» Meet as many task deadlines as possible (maximize

throughput).

Maria Hybinette, UGA
21

Scheduling

  Approach: Divide up scheduling into task levels:
»  Select process who gets the CPU (from main memory).
»  Admit processes into memory

–  Sub problem: How?

  Short-term scheduler (CPU scheduler):
»  selects which process should be executed next and

allocates CPU.
»  invoked frequently (ms) ⇒ (must be fast).

  Long-term scheduler (look at first):
»  selects which processes should be brought into the

memory (and into the ready state)
»  invoked infrequently (seconds, minutes)
»  controls the degree of multiprogramming.

Maria Hybinette, UGA
22

Process Characteristics

 Processes can be described as either:
» I/O-bound process – spends more time doing I/

O than computations, many short CPU bursts.
» CPU-bound process – spends more time doing

computations; few very long CPU bursts.

Maria Hybinette, UGA
23

Observations

  If all processes are I/O bound, the ready
queue will almost always be empty (little
scheduling)

  If all processes are CPU bound the I/O
devices are underutilized

  Approach (long term scheduler): ‘Admit’ a
good mix of CPU bound and I/O bound
processes.

Maria Hybinette, UGA
24

Big Picture (so far)

CPU

Main
Memory

Arriving Job

Input Queue

Long term
scheduler

Short term
scheduler

Page 5

Maria Hybinette, UGA
25

Exhaust Memory?

  Problem: What happens when the number of
processes is so large that there is not enough
room for all of them in memory?

  Solution: Medium-level scheduler:
»  Introduce another level of scheduling that removes

processes from memory; at some later time, the
process can be reintroduced into memory and its
execution can be continued where it left off

» Also affect degree of multi-programming.

Maria Hybinette, UGA
26

Disk

CPU

Main
Memory

Arriving Job

Input Queue

Long term
scheduler

Short term
scheduler

Medium term
scheduler

Maria Hybinette, UGA
27

Which processes should be
selected?

 Processor (CPU) is faster than I/O so
all processes could be waiting for I/O

» Swap these processes to disk to free up
more memory

 Blocked state becomes suspend state
when swapped to disk

» Two new states
– waiting, suspend
– Ready, suspend

Maria Hybinette, UGA
28

Suspending a Process

Ready

New

Running

Waiting

Terminated

Waiting,
Suspended

Ready,
Suspended

  Which to suspend?
  Others?

Suspended Processes (possibly on backing store)

Main memory

Maria Hybinette, UGA
29

Possible Scheduling Criteria

  How long since process was swapped in our
out?

  How much CPU time has the process had
recently?

  How big is the process (small ones do not get
in the way)?

  How important is the process (high priority)?

Maria Hybinette, UGA
30

OS Implementation: Process
Scheduling Queues

  Job queue – set of all processes in the system.
  Ready queue – set of all processes residing in

main memory, ready and waiting to execute on
CPU

  Device queues – set of processes waiting for an I/O
device.

  Process migration between the various queues.

Page 6

Maria Hybinette, UGA
31

Representation of Process
Scheduling

Maria Hybinette, UGA
32

Ready Queue, I/O Device Queues

Maria Hybinette, UGA
33

Context Switch

 When CPU switches to another
process, the system must save the
state of the old process and load the
saved state for the new process.

 Context-switch time is overhead; the
system does no useful work while
switching.

 Time dependent on hardware support.

Maria Hybinette, UGA
34

CPU Context Switches

Maria Hybinette, UGA
35

Process Creation

  Process Cycle: Parents create children; results
in a (inverse) tree of processes.

»  Forms an ancestral hierarchy

  Address space models:
» Child duplicate of parent.
» Child has a program loaded into it.

  Execution models:
»  Parent and children execute concurrently.
»  Parent waits until children terminate.

  Examples

Maria Hybinette, UGA
36

Continuing the Boot Sequence…

  After loading in the Kernel and it does a
number of system checks it creates a number
of ‘dummy processes’ -- processes that
cannot be killed -- to handle system tasks.

  Usually ….

Page 7

Maria Hybinette, UGA
37

Process Life Cycle: UNIX (cont)

  PID 0 is usually the scheduler process (often called
swapper)

»  is a system process -- **** it is part of the kernel *****
»  the grandmother of all processes).

  init - Mother of all user processes, init is started at
boot time (at end of the boot strap procedure) and is
responsible for starting other processes

»  It is a user process (not a system process that runs
within the kernel like swapper) with PID 1 (but runs with
root privileges)

»  init uses file inittab and directory /etc/rc?.d
»  brings the user to a certain specified state (e.g., multiuser

mode)
  getty - login process that manages login sessions

Maria Hybinette, UGA
38

Processes Tree on a typical UNIX
System

Process 1
(init)

OS Kernel

Process 0
(sched - ATT, swapper - BSD)

Process 2 (BSD)
pagedaemon

deamon (e.g. httpd) getty

login

bash

getty

login

ksh

mother of all user processes

Maria Hybinette, UGA
39

Other Systems

HP-UX 10.20

UID PID PPID C STIME TTY TIME COMMAND

 root 0 0 0 Apr 20 ? 0:17 swapper

 root 1 0 0 Apr 20 ? 0:00 init

 root 2 0 0 Apr 20 ? 1:02 vhand

Solaris:

 UID PID PPID C STIME TTY TIME CMD

 root 0 0 0 Apr 19 ? 0:00 sched

 root 1 0 0 Apr 19 ? 0:22 /etc/init -

 root 2 0 0 Apr 19 ? 0:00 pageout

* sched - dummy process which provides swapping services

* pageout - dummy process which provides virtual memory (paging)
services

Linux RedHat 6.0:

 UID PID PPID C STIME TTY TIME CMD

 root 1 0 0 09:59 ? 00:00:07 init

 root 2 1 0 09:59 ? 00:00:00 [kflushd]

 root 3 1 0 09:59 ? 00:00:00 [kpiod]

 root 4 1 0 09:59 ? 00:00:00 [kswapd]

 root 5 1 0 10:00 ? 00:00:00
[mdrecoveryd]

Page handler

Process spawner

Scheduler

Buffering/Flushing I/O

Maria Hybinette, UGA
40

Running Processes

 {atlas:maria} ps -efjc | sort -k 2 -n | more
 UID PID PPID PGID SID CLS PRI STIME TTY TIME CMD
 root 0 0 0 0 SYS 96 Mar 03 ? 0:01 sched
 root 1 0 0 0 TS 59 Mar 03 ? 1:13 /etc/init -r
 root 2 0 0 0 SYS 98 Mar 03 ? 0:00 pageout
 root 3 0 0 0 SYS 60 Mar 03 ? 4786:00 fsflush
 root 61 1 61 61 TS 59 Mar 03 ? 0:00 /usr/lib/sysevent/syseventd
 root 64 1 64 64 TS 59 Mar 03 ? 0:08 devfsadmd
 root 73 1 73 73 TS 59 Mar 03 ? 30:29 /usr/lib/picl/picld
 root 256 1 256 256 TS 59 Mar 03 ? 2:56 /usr/sbin/rpcbind
 root 259 1 259 259 TS 59 Mar 03 ? 2:05 /usr/sbin/keyserv
 root 284 1 284 284 TS 59 Mar 03 ? 0:38 /usr/sbin/inetd -s
 daemon 300 1 300 300 TS 59 Mar 03 ? 0:02 /usr/lib/nfs/statd
 root 302 1 302 302 TS 59 Mar 03 ? 0:05 /usr/lib/nfs/lockd
 root 308 1 308 308 TS 59 Mar 03 ? 377:42 /usr/lib/autofs/automountd
 root 319 1 319 319 TS 59 Mar 03 ? 6:33 /usr/sbin/syslogd

  Print out status information of various processes in the system:
ps -axj (BSD) , ps -efjc (SVR4)

  Daemons (background processes) with root privileges, no
controlling terminal, parent process is init

Maria Hybinette, UGA
41

Process Creation: Execution &
Address Space in UNIX

  In UNIX process fork()-exec()
mechanisms handles process creation and its
behavior:
» fork() creates an exact copy of itself (the parent)

and the new process is called the child process
» exec() system call places the image of a new

program over the newly copied program of the
parent

Maria Hybinette, UGA
42

fork() a child

Shared
 Program
(read only)

Copied
Data, heap

& stack

Data, heap,
& stack

Parent

pid = fork()

pid == 0 pid == 5

Child (can only
have 1 parent) Parent

Page 8

Maria Hybinette, UGA
43

Example: parent-child.c

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main()
 {
 int i;

 pid_t pid;
 pid = fork();
 if(pid > 0)
 { /* parent */
 for(i = 0; i < 1000; i++)
 printf(“\tPARENT %d\n”, i);

}

 else
 { /* child */
 for(i = 0; i < 1000; i++)

 printf(“\t\tCHILD %d\n”, i);
}

 }

{saffron} parent-child
 PARENT 0
 PARENT 1
 PARENT 2
 CHILD 0
 CHILD 1
 PARENT 3
 PARENT 4
 CHILD 2
 .
 .

Maria Hybinette, UGA
44

Things to Note

  i is copied between parent and child
  The switching between parent and child

depends on many factors:
» Machine load, system process scheduling, …

  I/O buffering effects the output shown
» Output interleaving is non-deterministic

–  Cannot determine output by looking at code

Maria Hybinette, UGA
45

Process Creation: Windows

  Processes created via 10 params CreateProcess()
  Child process requires loading a specific program into

the address space.
BOOL WINAPI CreateProcess(

 LPCTSTR lpApplicationName,

 LPTSTR lpCommandLine,

 LPSECURITY_ATTRIBUTES lpProcessAttributes,

 LPSECURITY_ATTRIBUTES lpThreadAttributes,

 BOOL bInheritHandles,

 DWORD dwCreationFlags,

 LPVOID lpEnvironment,

 LPCTSTR lpCurrentDirectory,

 LPSTARTUPINFO lpStartupInfo,

 LPPROCESS_INFORMATION lpProcessInformation);

Maria Hybinette, UGA
46

Process Termination

  Process executes last statement and asks the operating
system to delete it by using the exit() system call.

»  Output data from child to parent (via wait).
»  Process’ resources are deallocated by operating system.

  Parent may terminate execution of children processes
(abort).

»  Child has exceeded allocated resources.
»  Task assigned to child is no longer required.
»  Parent is exiting.

–  Some Operating system does not allow child to continue if its
parent terminates.

  Cascading termination (initiated by system to kill of children of
parents that exited).

–  If a parents terminates children are adopted by init() - so they
still have a parent to collect their status and statistics

Maria Hybinette, UGA
47

Cooperating Processes

  Independent process cannot affect or be affected by
the execution of another process.

  Cooperating process can affect or be affected by
the execution of another process

» Advantages of process cooperation
–  Information sharing
–  Computation speed-up
–  Modularity
–  Convenience

» Requirement: Inter-process communication (IPC)
mechanism.

Maria Hybinette, UGA
48

Two Communicating Processes

  Concept that we want to implement

Process
Chat
Maria
“A”

Process
Chat

Gunnar
“B”

Hello Gunnar!

Hi Nice to Hear
from you!

Page 9

Maria Hybinette, UGA
49

On the path to communication…

  Want: A communicating processes
  Have so far: Forking – to create processes
  Problem:

» After fork() is called we end up with two independent
processes.

»  Separate Address Spaces

  Solution? How do we communicate?

Maria Hybinette, UGA
50

File: The Unix Way

  One easy way to communicate is to use files.
»  Process A writes to a file and process B reads from

it

  File descriptors
» Mechanism to work with files
» Used by low level I/O

–  Open(), close(), read(), write()
»  file descriptors generalize to other communication

devices such as pipes and sockets

Maria Hybinette, UGA
51

File Descriptor Table

Big Picture

Stack Pointer

Program Counter

fd 0
fd 1
fd 2
fd 3

File status flags

offet

Vnode pointer

File Table Entry

PCB

Maria Hybinette, UGA
52

Other Methods (Right now assume
we are on a ‘local’ computer)

  Pipes
  Sockets (starting thursday)
  Signal
  Shared Memory
  Messages (this paradigm also extends to

Remote Machines)

Maria Hybinette, UGA
53

Communication Models

  Shared memory model
»  Share memory region for communication
» Read and write data to shared region
» Requires synchronization (e.g., locks)
»  faster
»  Setup time

  Message Passing model
» Communication via exchanging messages

Maria Hybinette, UGA
54

Communication Models

…

Kernel

Process A M

Process B M

M

1

2

…

Kernel

Process A

Process B

1

2
Shared memory

Message Passing Shared Memory

Page 10

Maria Hybinette, UGA
55

Communication Examples

  Within a single computer
»  Pipes,

–  Unamed: only persist as long as process lives
–  Named Pipes (FIFO)- looks like a file (mkfifo filename,
attach, open, close, read, write)

  http://developers.sun.com/solaris/articles/named_pipes.html

» Message Passing (Queues)
»  Shared Memory (next HW)

  Distributed System (remote computers, connected via
cable, air e.g., WiFi) - Later

»  TCP/IP sockets (Project)
» Remote Procedure Calls (next, to next HW)
» Remote Method Invocations (RMI, maybe HW)
» Message passing libraries: MPI, PVM Maria Hybinette, UGA

56

Message Passing Systems

  NO shared state
» Communicate across address spaces and

protection
» Agreed protocol

  Generic API
» send(dest, &msg)
» recv(src, &msg)

  What is the dest and src?
»  pid
»  File: e.g., pipe
»  Port, network address,
» Unspecified source (any source, any message)

Maria Hybinette, UGA
57

Direct Communication

  Explicitly specify dest and src process by an
identifier

  Multiple buffers:
» Receiver

–  If it has multiple senders (then need to search
through a ‘buffer(s)’ to get a specific sender)

»  Sender

  What is the dest and src?
»  pid
»  File: e.g., pipe
»  Port, network address,
» Unspecified source (any source, any message)

To: Amy
To: Homer

Maria Hybinette, UGA
58

Indirect Communication

  dest and src are (unique) queues
  Uses a unique shared queue, allows many

to many communication :
» messages sorted FIFO
» messages are stored as a sequence of bytes
»  get a message queue identifier:

int queue_id = msgget (key, flags)

  sending messages:
» msgsnd(queue_id, buffer, size, flags)

  receiving messages (type is priority):
» msgsnd(queue_id, buffer, size, type,
flags)

Maria Hybinette, UGA
59

Mailboxes vs Pipes

  Same machine: Are there any differences
between a mailbox and a pipe?

» Message types
–  mailboxes may have messages of different types
–  pipes do not have different types

  Buffer
»  Pipes: Messages stored in contiguous bytes
» Mailbox – linked list of messages of different types

  Number of processes
»  Typically 2 for pipes (one sender & one receiver)
» Many processes typically use a mailbox (understood

paradigm)

Maria Hybinette, UGA
60

Shared Memory

  Efficient and fast way for processes to communicate
»  After setting up a shared memory segment

  Multiple processes can attach a segment of physical memory to
their virtual address space

»  Process: Create, Attach an Populate

  create a shared segment shmid = shmget(key, size, flags)

  attach a sm to a data space: shmat(shmid, *shmaddr, flags)

  detach (close) a shared segment: shmdt(*shmaddr)

 if more than one process can access segment, an outside protocol
or mechanism (like semaphores) should enforce consistency/
avoid collisions

Simple Example

Page 11

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSZ 27

main()
{
 int shmid;
 key_t key;
 char *shm, *s;

 key = 5678; /* selected key by server */

 /* Locate the segment. */
 if ((shmid = shmget(key,SHMSZ,0666)) < 0)

 {
 perror("shmget"); exit(1);
 }

 /* Now we attach the segment to our data space. */
 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {
 perror("shmat"); exit(1);
 }

 /* read what the server put in the memory. */
 for (s = shm; *s != NULL; s++) putchar(*s);
 putchar('\n');

 /* change the first character in segment to '*' */
 shm = '';

 exit(0);
}

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSZ 27

main()
{
 int shmid;
 key_t key;
 char c, *shm, *s;

 key = 5678; /* selected key */

 /* Create the segment.*/
 if ((shmid = shmget(key,SHMSZ,IPC_CREAT | 0666)) < 0)

 {
 perror("shmget"); exit(1);
 }

 /* Now we attach the segment to our data space.*/
 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {
 perror("shmat"); exit(1);
 }

 /* put some things into the memory */
 for (s = shm, c = 'a'; c <= 'z'; c++) *s++ = c;
 *s = NULL;

 /* wait until first character is changed to '*' */
 while (*shm != '*') sleep(1);

 exit(0);
}

Maria Hybinette, UGA
62

Synchronization

  Synchronous – e.g., blocking (wait until command
is complete)

»  E.g.: Synchronous Receive:
–  receiver process waits until message is copied into user level

buffer

  Asynchronous – e.g., non-blocking (don’t wait)
»  E.g.,: Asynchronous Receive

–  Receiver process issues a receive operation and then carries on
with task

  Polling – comes back tosee if receive as completed
  Interrupt – OS issues an interrupt when receive has completed

Maria Hybinette, UGA
63

Synchronous:
OS view vs Programming Languages

  OS View:
»  synchronous send ⇒ sender blocks until message has

been copied from application buffers to kernel
» Asynchronous send ⇒ sender continues processing

after notifying OS of the buffer in which the message is
stored; have to be careful to not overwrite buffer until it
is safe to do so

  PL view:
»  synchronous send ⇒ sender blocks until message has

been received by the receiver
»  asynchronous send ⇒ sender carries on with other

tasks after sending message

Maria Hybinette, UGA
64

Buffering

  Queue of messages attached to link:
»  Zero capacity

–  0 message - link cannot have any messages waiting
–  Sender must wait for receiver (rendezvous)

» Bounded capacity
–  n messages - finite capacity of n messages
–  Sender must wait if link is full

» Unbounded capacity
–  infinite messages -
–  Sender never waits

Maria Hybinette, UGA
65

Remote Machine
Communication

  Socket communication
  Remote Procedure Calls (next week)
  Remote Method Invocation (Java)

