
Maria Hybinette, UGA

CSCI [4|6] 730
 Operating Systems

CPU Scheduling

Maria Hybinette, UGA
2

Status

!! Scheduling (3 lectures)

»!Next project – may be simplified from the ‘preview’
assignment (multi-level / lottery scheduler).

!! Exam 1 coming up – Thursday Oct 7 (2 weeks from

today)

»!OS Fundamentals & Historical Perspective

»!OS Structures (Micro/Mono/Layers/Virtual Machines)

»! Processes/Threads (IPC, local & remote)

»! Scheduling (up to)

»!ALL Summaries (all – form a group to review) 30%

»!MINIX

!! Grading Criteria Adjustment – to reflect effort on HW

(Now 15%)

Maria Hybinette, UGA
3

CPU Scheduling Questions?

!! Why is scheduling needed?

!! What is preemptive scheduling?

!! What are scheduling criteria?

!! What are disadvantages and advantages of
different scheduling policies, including:

»! First-come-first-serve?

»! Shortest job first?

»! Shortest time to completion first?

»!Round robin?

»! Priority based?

Maria Hybinette, UGA
4

Why Schedule?
Management Resources

!! Resource: Anything that can be used by only a

single process at any instant in time

!! Hardware device or a piece of information

»! Examples:

–! CPU (time),

–! Tape drive, Disk space, Memory (spatial)

–! Locked record in a database (information, synchronization)

!! Focus today managing the CPU

Maria Hybinette, UGA
5

Resource Classification

!! Pre-emptable

»!Can forcibly removed the resource from a process
(and possibly return it later) without ill effects.

!! Non-preemptable

»!Cannot take a resource away from its current ‘owner’

without causing the computation to fail.

Maria Hybinette, UGA
6

Resource Classification

!! Preemptable (forcible removable)

»!Characteristics (desirable):

–! small state (so that it is not costly too preempt it).

–! only one resource

»! Examples:

–! CPU or Memory are typically a preemptable resources

!! Non-preemptable (not forcible removable)

»!Characteristics:

–! Complicated state

–! May need many instances of this resource

»! Examples:

–! CD recorder - once starting to burn a CD needs to record
to completion otherwise the end up with a garbled CD.

–! Blocks on disk

Maria Hybinette, UGA
7

Resources Management Tasks

!! Allocation (Space):

»! Space Sharing: Which process gets which resource
(control access to resource)?

!! Scheduling (Time):

»! Time Sharing: In which order should requests be

serviced; Which process gets resource and at what

time (order and time)?

Time and
Space

Maria Hybinette, UGA
8

The CPU Management Team

!! (how?)“The Dispatcher” (low level mechanism – the worker)

»! Context Switch

–! Save execution of old process in PCB

–! Add PCB to appropriate queue (ready or blocked)

–! Load state of next process from PCB to registers

–! Switch from kernel to user mode

–! Jump to instruction in user process

!! (when?) “The Scheduler” (higher level mechanism - upper
management,) (time)

»! Policy to determine when a specific process gets the CPU

!! (where?) Sometimes also “The Allocator” (space)

»! Policy to determine which processes compete for which CPU

»! Needed for multiprocessor, parallel, and distributed systems

Maria Hybinette, UGA
9

I/O Device

CPU

What is the Point?
 Can Scheduling make a difference?

Process A

Process B

I/O

No Schedule

A Schedule

Time

I/O Device

CPU

!! No Schedule vs A Schedule

!! Schedule another waiting process while current CPU
relinquish to CPU due to I/O.

Maria Hybinette, UGA
10

Review : The CPU Workload
Model & Considerations

!! Workload contains collection of jobs (processes)

!! Job model

»! Job alternates between CPU usage and waiting for I/O

»! CPU-bound job:

–! Spends most of its time computing

–! Characteristics: Long CPU bursts and infrequent I/O waits

»! I/O-bound job (UNIX typically favor these processes)

–! Spends most of its time waiting for I/O

–! Characteristics: Short CPU bursts and frequent I/O waits

»! Trend: as CPUs get faster processes tend to get more I/O
bound? (Why?)

!! Do not know type of job before it executes

»! Do not know duration of CPU or I/O burst

!! Need job scheduling for each ready job

»! Schedule each CPU burst

CPUs improve at a
faster rate than disks

Maria Hybinette, UGA
11

I/O and CPU Bound Processes

!! Key factor is the length of the CPU bursts not the length
of the I/O bursts

»! I/O ‘boundiness’ determine if they don’t compute much
between I/O requests not because they have long I/O
requests.

CPU Bound

I/O Bound

Long CPU Burst

Short CPU Burst
Waiting for I/O

Long CPU bursts and infrequent I/O waits

Short CPU bursts and frequent I/O waits

Maria Hybinette, UGA
12

Dispatch Mechanism (Review)

!! OS runs dispatch loop:

while(forever)

{

 run process A for some time slice

 stop process A and save its context

 load context of another process B

 jump to proper location and restart program

}

!! How does the dispatcher gain control?

 Dispatcher is the module that gives control of the CPU to

the process selected by the scheduler.

Maria Hybinette, UGA
13

Same as - How does OS get control?

!! Synchronous interrupts, or traps

»! Event internal to a process that gives control to OS

»! Examples: System calls, page faults (access page not in main
memory), or errors (illegal instruction or divide by zero)

!! Asynchronous interrupts

»! Events external to a process, generated by hardware

»! Examples: Characters typed, or completion of a disk transfer

How are interrupts handled?

!! Each type of interrupt has corresponding routine (handler or

interrupt service routine (ISR)

!! Hardware saves current process and passes control to ISR

Entering System Mode (Review)

Maria Hybinette, UGA
14

Option 1: Cooperative Multi-tasking

!! (internal events) Trust process to relinquish CPU

through traps

»! Trap: Event internal to process that gives control to OS

»! Examples: System call, an explicit yield, page fault

(access page not in main memory), or error (illegal

instruction or divide by zero)

!! Disadvantages: Processes can misbehave

»! By avoiding all traps and performing no I/O, can take over

entire machine

»! Only solution: Reboot!

!! Not performed in modern operating systems

How does the dispatcher run?
(Review)

Maria Hybinette, UGA
15

How does dispatcher run?
(Review)

Option 2: (external stimulus) True Multi-tasking

!! Guarantee OS can obtain control periodically

!! Enter OS by enabling periodic alarm clock

»! Hardware generates timer interrupt (CPU or separate chip)

»! Example: Every 10 ms

!! User must not be able to mask timer interrupt

!! Dispatcher counts interrupts between context switches

»! Example: Waiting 20 timer ticks gives the process 200 ms time

slice

»! Common time slices range from 10 ms to 200 ms (Linux 2.6)

Maria Hybinette, UGA
16

Scheduler Types

!! Non-preemptive scheduler (cooperative multi-tasking)

»! Process remains scheduled until voluntarily relinquishes
CPU (yields) – Mac OS 9.

»! Scheduler may switch in two cases:

–! When process exits

–! When process blocks (e.g. on I/O)

!! Preemptive scheduler (Most modern OS, including
most UNIX variants)

»! Process may be ‘de-scheduled’ at any time

»! Additional cases:

–! Process creation (another process with higher process
enters system)

–! When an I/O interrupt occurs

–! When a clock interrupt occurs

Maria Hybinette, UGA Maria Hybinette, UGA
18

Scheduling Performance Metrics

!! There is a tension between maximizing:

»! System’s point of view: Overall efficiency (favoring
the whole, the forest, the whole system).

»!User’s point of view: Giving good service to

individual processes (favoring the ‘individuals’, the

trees).

Satisfy both : fast process response time

(low latency) and high process throughput.

Maria Hybinette, UGA
19

System View:
Threshold - Overall Efficiency

!! System Load (uptime):

»! The amount of work the system is doing

!! Throughput:

»! Want many jobs to complete per unit time

!! System Utilization:

»! Keep expensive devices busy

»! Jobs arrive infrequently and both
throughput and system utilization is low

!! Example: Lightly loaded system - jobs
arrive infrequently - both throughput and
system utilization is low.

!! Scheduling Goal: Ensure that throughput
increase linearly with load

Offered Load

Maria Hybinette, UGA
20

Utilization / Throughput

!! Problem type:

»! 3 jobs: 1st job enters at 0, 2nd at 4 and third at 8 second

»! Each job takes 2 seconds to process.

»! Each job is processed immediately – unless a job is on

the CPU, then it waits

!! Questions:

»! (1) What is the CPU utilization at time t = 12?

–! CPU utilization from t =0 to t=12.

–! Percentage used over a time period.

»! (2) What is the I/O device utilization at time t = 12?

»! (3) What is the throughput (jobs/sec)

Maria Hybinette, UGA
21

User View: Good Service
(often measured as an average)

!! Ensure that processes quickly start, run and completes.

!! (average) Turnaround time: The time between job arrival and
job completion.

!! (average) Response time: The length of time when the job
arrive and when if first start to produce output

»! e.g. interactive jobs, virtual reality (VR) games, click on mouse
see VR change

!! Waiting time: Time in ready queue - do not want to spend a lot
of time in the ready queue

»! Better ‘scheduling’ quality metric than turn-around time since
scheduler does not have control over blocking time or time a
process does actual computing.

!! Fairness: all jobs get the same amount of CPU over time

!! Overhead: reduce number of context switches

!! Penalty Ratio: Elapsed time / Required Service time
(normalizes according to the ‘ideal’ service time) - next week

Maria Hybinette, UGA
22

Which Criteria is Appropriate?
 Depends on Expectation of the System

!! All Systems:

»! Fairness (give processes a fair shot to get the CPU).

»! Overall system utilization

»! Policy enforcement (priorities)

!! Batch Systems (not interactive)

»! Throughput

»! Turn-around time

»! CPU utilization

!! Real-time system (real time constraints)

»! Meeting deadlines (avoid losing data)

»! Predictability - avoid quality degradation in multimedia
systems.

Maria Hybinette, UGA
23

Gantt Chart (it has a name)!

!! Shows how jobs are scheduled over time on the

CPU.

A

Time

B C D

10 14.2 17.3 22

Maria Hybinette, UGA
24

First-Come-First-Served (FCFS)

!! Idea: Maintain FIFO list of jobs as they arrive

»!Non-preemptive policy

»!Allocate CPU to job at head of list (oldest job).

Time

B C

10

Job Arrival CPU burst

A 0 10

B 1 2

C 2 4

A

Average wait time:

Average turnaround time (enter/exit system):

12 16

0 2 14 4 6 8

Maria Hybinette, UGA
25

First-Come-First-Served (FCFS)

!! Idea: Maintain FIFO list of jobs as they arrive

»!Non-preemptive policy

»!Allocate CPU to job at head of list (oldest job).

Time

B C

10

Job Arrival CPU burst

A 0 10

B 1 2

C 2 4

A

Average wait time:

(0 +(10-1)+(12-2))/3 = 6.33

Average turnaround time (enter/exit system):

 ((10-0) +(12-1)+(16-2))/3 = 11.67

12 16

0 2 14 4 6 8
Maria Hybinette, UGA

26

FCFS Discussion

!! Advantage:

»! Simple implementation (less error prone)

»! Intuitive

!! Disadvantages:

»!Waiting time depends on arrival order

»! Tend to favor long bursts (CPU bound processes)

–! But : better to favor short bursts since they will finish
quickly and not crowd the ready list.

»!Convoy effect: Short jobs stuck waiting for long jobs
(later)

–! Hurt waiting time for short jobs

–! Reduces utilization of I/O devices

»!Does not work on time-sharing systems (kind of).

Maria Hybinette, UGA
27

FCFS Problem

!! Convoy effect -- an imbalance between I/O

bound jobs and CPU bound jobs

»!Recall I/O Jobs have short CPU bursts and spends

most of its time waiting on I/O.

»!CPU bursts are computationally intensive.

!! Example:

»! 1 CPU bound job (jobs with multiple long bursts) and

»! 3 I/O bound jobs (jobs with short bursts)

Maria Hybinette, UGA
28

Convoy Effect…

!! CPU bound job(s) get CPU and holds it

!! I/O bound jobs move onto ready queue and waits

!! Observation: all I/O devices idle even when the system

contains lots of I/O jobs (can we do better?)

CPU bound
CPU

I/O
Empty!

I/O bound

CPU bound

…

Maria Hybinette, UGA
29

Convoy Effect

!! I/O jobs get CPU and finish quickly and goes back to I/O

!! Now the CPU may be idle!

!! Later… I/O bound jobs again wait for CPU

!! CPU idle when even if system contains CPU bound jobs

I/O bound

CPU bound

CPU

I/O

Empty!

Maria Hybinette, UGA
30

Convoy Effect

CPU

I/O

Empty!

I/O bound

CPU bound

CPU

I/O
Empty!

!! All I/O devices idle even when the system contains lots of I/O

jobs

!! CPU may be idle even if the system contains CPU bound jobs

Maria Hybinette, UGA
31

Another Example FIFO

Time

X C

Job Arrival CPU burst

X 0 4

A 1 10

B 3 2

C 2 4

A

Average wait time:

Average turnaround time:

2

B

4 14 18 20

Maria Hybinette, UGA
32

Shortest-Job-First (SJF)

!! Idea: Minimize average wait time by running shortest
CPU-burst next

»! Non-preemptive policy

»! Use FCFS if jobs are of same length

Time

X C

6

Job Arrival CPU burst

X 0 4

A 1 10

B 3 2

C 2 4

A

Average wait time:

Average turnaround time:

2

B

4 10 20

Maria Hybinette, UGA
33

Optimality (Book)

!! Proof Outline: (by contraction) SJF is not optimal

»! Suppose we have a set of bursts ready to run and we run them in

some order OTHER than SJF.

–! OTHER is the one that is Optimal

»! Then there must be some burst b1 that is run before the shortest burst

b2 (otherwise OTHER is SJF).

–! b1 > b2

–! If we reversed the order we would:

!! increase the waiting time of b1 by b2 and (+b2)

!! decrease the waiting time of b2 by b1 (-b1)

»! Net decrease in the total (waiting time)!!!!!

!! Continuing in this manner to move shorter bursts ahead of longer

ones, we eventually end up with the bursts sorted in increasing
order of size (bubble sort). And now we are left with SJF.

b2 b1

Maria Hybinette, UGA
34

Optimality!!!

!! SJF only optimal when all jobs are available

simultaneously.

!! See book for example why this is true.

Maria Hybinette, UGA
35

Shortest-Time-to-Completion-
First (STCF/SCTF)

!! Idea: Add preemption to SJF

»! Schedule newly ready job if it has shorter than
remaining burst for running job

B D

8

Job Arrival CPU burst

A 0 8

B 1 4

C 2 9

D 3 5

A

SJF Average wait:

STCF Average wait:

12 17

C

26

A A B D C

1 5 10 17 26 Maria Hybinette, UGA
36

SJF Discussion

!! Advantages

»! Provably optimal for minimizing average wait time (with no
preemption)

–! Moving shorter job before longer job improves waiting time

of short job more than it harms waiting time of long job

»!Helps keep I/O devices busy

!! Disadvantages

»! Problem: Cannot predict future CPU burst time

»!Approach: Make a good guess - Use past behavior to

predict future behavior

!! Starvation: Long jobs may never be scheduled

Maria Hybinette, UGA
37

Predicting Bursts in SJF

!! Key Idea: The past is a good predictor of the future (an

optimistic idea) – ‘habits’

»!Weighted averages of the most recent burst and the previous

guesses (recursive)

»!Approximate next CPU-burst duration from the durations of the

previous burst and the previous guess). Average them.

»!Where we are going:

–! A recursive formula: accounts for entire past history, previous burst

always important – previous guesses and their importance drops of

‘exponentially’ with the time of their burst.

Maria Hybinette, UGA
38

Example

!! Suppose process p is given default expected burst

length of 5 time units when it is initially run.

!! Assume: The ACTUAL bursts length are:

»! 10, 10, 10, 1, 1,1

»!Note that these are of-course these are not known in

advance.

!! The predicted burst times for this process works as

follows:

»! Let G(1) = 5 as default value

»!When process p runs, its first burst actually runs 10 time

units (see above)

!! so A(1) = 10.

Maria Hybinette, UGA
39

!! We could weigh the importance of the past

with the most recent burst differently (but
they need to add up to 1).

!! w = 1 (past doesn’t matter).

!! How do we get started – no bursts before we

start so what is the ‘previous’ burst G(1).

»!G(1) is a default burst size (e.g., 5).

Maria Hybinette, UGA
40

!! Let b1 be the most recent burst, b2 the burst

before that b3 the burst before that b4

Maria Hybinette, UGA
41

Example

!! G(1) = 5 as default value

!! A(1) = 10.

G(2) = 1/2 * G(1) + 1/2 A(1) = 1/2 * 5.00 + 1/2 * 10 = 7.5!

G(3) = 1/2 * G(2) + 1/2 A(2) = 1/2 * 7.50 + 1/2 * 10 = 8.75!

G(4) = 1/2 * G(3) + 1/2 A(3) = 1/2 * 8.75 + 1/2 * 10 = 9.38!

Maria Hybinette, UGA
42

Round-Robin (RR)

!! Idea: Run each job/burst for a time-slice (e.g.,
q=1) and then move to back of FIFO queue

»! Preempt job if still running at end of time-slice

B

1

Job Arrival CPU burst

A 0 10

B 1 2

C 1 4

A

Average wait:

C

2

A B C A C A C A

Maria Hybinette, UGA
43

RR Discussion

!! Advantages

»! Jobs get fair share of CPU

»! Shortest jobs finish relatively quickly

!! Disadvantages

»! Poor average waiting time with similar job lengths

–! Example: 3 jobs that each requires 3 time slices

–! RR: All complete after about 9 time slices

–! FCFS performs better!

!! ABCABCABC = 2+5+6=13/3

!! AAABBBCCC = 0+3+6=9/3

»! Performance depends on length of time-slice

–! If time-slice too short, pay overhead of context switch

–! If time-slice too long, degenerate to FCFS (see next slide)

Maria Hybinette, UGA
44

RR Time-Slice Consideratoins

!! IF time-slice too long, degenerate to problem of FCFS
(short jobs wait behind long jobs).

»! Example:

–! Job A w/ 1 ms compute and 10 ms I/O

–! Job B always computes

–! Time-slice is 50 ms

!! What about a really short time slices?

B A CPU

Disk Idle

Goal: Adjust length of time-slice to match CPU burst

Time

B A

A A Idle

Maria Hybinette, UGA
45

Priority Based (typical in modern
OSs)

!! Idea: Each job is assigned a priority

»! Schedule highest priority ready job

»! May be preemptive or non-preemptive

»! Priority may be static or dynamic

!! Advantages

»! Static priorities work well for real time systems

»! Dynamic priorities work well for general workloads

!! Disadvantages

»! Low priority jobs can starve

»! How to choose priority of each job?

!! Goal: Adjust priority of job to match CPU burst

»! Approximate SCTF by giving short jobs high priority

Maria Hybinette, UGA
46

How Well do the Algorithms
Stack UP

!! Utilization

!! Throughput

!! Turnaround time: The time between job arrival and job
completion.

!! Response time: The length of time when the job arrive and
when if first start to produce output

»! e.g. interactive jobs, virtual reality (VR) games, click on mouse
see VR change

!! Meeting Deadlines (not mentioned)

!! Starvation

Maria Hybinette, UGA
47

How to the Algorithms Stack
Up?

CPU

Utilization

Through

put

Turn

Around

Time

Response

Time

Deadline

Handling

Starvation

Free

FIFO Low Low High High No Yes

Shortest

Remaining
Time

Medium High Medium Medium No No

Fixed

Priority
Preemptive

Medium Low High High Yes No

Round

Robin

High Medium Medium Low No Yes

Maria Hybinette, UGA
48

Penalty Ratio (normalized to an
ideal system)

!! Comparison to an ideal system: How much time worse is
the turn-around time compared to an ideal system that
would only consist of ‘service time’ (includes waiting)

»! Note this really measure of how well the scheduler is doing.

!! Lower penalty ratio is better (actual elapsed time takes the
same time as an idea system).

!! Examples:

»! Value of “1” indicates ‘no’ penalty (the job never waits)

»! 2 indicates it takes twice as long than an ideal system.

Total elapsed time (actual)

Service time: doing actual work (on CPU + doing I/O)

Penalty ratio

Maria Hybinette, UGA
49

Example using

!! First Come First Serve

!! Penalty Ratio – turn-around

time (over ideal)

Job Arrival CPU burst

A 0 3

B 1 5

C 3 2

D 9 5

E 12 5

Job
Start

Time

Finish

Time

Waiting

Time

Penalty

Ratio

A 0 3 0 1.0

B 1 5 2 1.4

C 3 2 5 3.5

D 9 5 1 1.2

E 12 5 3 1.6

avg 2.2 1.74

A B
3

C
8 10

D E
15 20

Maria Hybinette, UGA
50

!! First Come First Serve

!! Penalty Ratio – turn-around

time (over ideal – the burst
itself)

Job Arrival CPU burst

A 0 3

B 1 5

C 3 2

D 9 5

E 12 5

Job
Start

Time

Finish

Time

Waiting

Time

Penalty

Ratio

A 0 3 0 1.0

B 1 5 2 1.4

C 3 2 5 3.5

D 9 5 1 1.2

E 12 5 3 1.6

avg 2.2 1.74

A B
3

C
8 10

D E
15 20

!! Shortest Burst worst PR.

!! Even worse:

!! long burst at 0, takes

100 units

!! short burst at 1

!! Wait 99.

!! (101-1)/1 = 100

3/3

7/5

Maria Hybinette, UGA
51

Multilevel Queue Scheduling

!! Classify processes and put them in different

scheduling queues

»! Interactive, batch, etc.

!! Different scheduling priorities depending on

process group priority

!! Schedule processes with highest priority first,

then lower priority processes.

!! Other possibility : Time slice CPU time

between the queues (higher priority queue

gets more CPU time).

Maria Hybinette, UGA
52

Multilevel Queue Scheduling

Maria Hybinette, UGA
53

Multilevel Feedback Queue

!! Give new processes

high priority and small
time slice (preference to

smaller jobs)

!! If process doesn’t finish

job bump it to the next

lower level priority
queue (with a larger

time-slice).

!! Common in interactive

system

Maria Hybinette, UGA
54

Case Studies: Early Scheduling
Implementations

!! Windows and Early MS-DOS

»!Non-Multitasking (so no scheduler needed)

!! Mac OS 9

»!Kernel schedule processes:

–! A Round Robin Preemptive (fair, each process gets a
fair share of CPU

»! Processes

–! schedules multiple (MACH) threads that use a

cooperative thread schedule manager

!! each process has its own copy of the scheduler.

Maria Hybinette, UGA
55

Case Studies: Modern
Scheduling Implementations

!! Multilevel Feedback Queue w/ Preemption:

»! FreeBSD, NetBSD Solaris, Linux pre 2.5

»! Example Linux: 0-99 real time tasks (200ms quanta),
100-140 nice tasks (10 ms quanta -> expired queue)

!! Cooperative Scheduling (no preemption)

»! Windows 3.1x, Mac OS pre3 (thread level)

!! O(1) Scheduling

»! time to schedule independent of number of tasks in

system

»! Linux 2.5-2.6.24 ((v2.6.0 first version ~2003/2004)

!! Completely Fair Scheduler

»! Maximizes CPU utilization while maximizing interactive

performance / Red/Black Tree instead of Queue

»! Linux 2.6.23+

