

Maria Hybinette, UGA

Chapter 10-11: File System

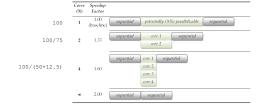
• What are files? What is file meta-data?

- How are directories organized?
- What operations can be performed on files?
- How are directories organized?
- What is the difference between hard & soft links?
- How are files protected?

Maria Hybinette, UGA

CSCI [4|6]730 Operating Systems

File System

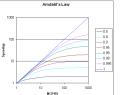

Motivation: I/O is Important

- How could we get applications to run faster?
 - » 'speedup' applications by running them on multiple processors:
 - 1 processor runs in 10 seconds.
 - 4 processors runs in 5 seconds.
 - Speedup = T(1)/ T(n) = 2.
- Applications have two essential components:
 - » Processing
 - » Input/Output (I/O)
- I/O performance is the bottleneck and therefore it predicts application performance

3

I/O performance predicts application performance

• Amdahl's Law: (Speedup is limited by the slowest component) For a fixed problem size - if continually improve only part of application (e.g., processing), then achieve diminishing returns in speedup.



» Another Way to Look at IT: infinite speedup and affect only 15% of the overall task roughly: 1/(1-0.15) =1.18 times faster is max!

I/O performance predicts application performance

- Amdahl's Law: If continually improve only part of application (e.g., processing), then achieve diminishing returns in speedup
- » Example: infinite speedup and affect only 15% of the overall task roughly: 1/(1-0.15) = 1.18 times faster is max!
- f: portion of application that is improved (e.g., processing)
- speedup_f: speedup of portion of application
- Speedup_{Application} = 1/ ((1-f) + (f/speedup_f)) » Examples:
 - f = .15, speedup_f = 2, speedup_{app} = 1.08
 - f = 1/3, speedup_f = 2, speedup_{app} = 1.20
 - f = 1/2, speedup_f = 2, speedup_{app} = 1.33

Example: When only 10% of the application is sequential the maximum speedup using infinite number of processors is 10. 1/(1-9/10) = 10.

F (Percent of Seau	N ential Code) (Processors)	Improvement (as a factor)
10% (.1)	,, ,	3.57
10% (.1)	10	5.26
10% (.1)	20	6.90
10% (.1)	100	9.17
10% (.1)	100,000	9.99 (~10)
25% (.25)	5	2.50
25% (.25)	10	3.08
25% (.25)	20	3.48
25% (.25)	100	3.88
25% (.25)	100,000	3.99 (~4)
40% (.40)	5	1.92
40% (.40)	10	2.17
40% (.40)	20	2.33
40% (.40)	100	2.46
40% (.40)	100,000	2.50

Maria Hybinette, UGA

Maria Hybinette, UGA

Maria Hybinette UGA

5

6

2

4

Role of OS for I/O

- Standard library
- Provide abstractions, consistent interface
 Simplify access to hardware devices
- Resource coordination
 - » Provide protection across users/processes
 - » Provide fair and efficient performance
 - Requires understanding of underlying device characteristics
- User processes do not have direct access to devices
 - » Could crash entire system
 - » Could read/write data without appropriate permissions
 » Could hog device unfairly
- OS exports higher-level functions
 - » File system: Provides file and directory abstractions
 - » File system operations: mkdir, create, read, write

9

11

Maria Hybinette, UGA

Abstraction: File

• User view

- » Named collection of bytes (defined by user)
 - Untyped or typed
 - Examples: text, source, object, executables,
 - application-specific
- » Permanently and conveniently available

Operating system view

- » Map bytes as collection of blocks on physical nonvolatile storage device
 - Magnetic disks, tapes, NVRAM, battery-backed RAM
 - Persistent across reboots and power failure

Maria Hybinette, UGA

Files Attributes: Meta-Data

System information associated with each file:

- Name only information kept in human-readable form.
- Type needed for systems that support different types.
- Location pointer to file location on device/disk.
- Size current file size.
- Protection bits controls who can do reading, writing, executing.
- Time, date, and user identification data for protection, security, and usage monitoring.
- Special file?
 - » Directory, Symbolic link...

Meta-data is stored on disk:

» Conceptually: meta-data can be stored as an array on disk (e.g., directory)

{atlas:maria:143} ls -lig ch11.ppt 231343 -rw-r-r-- 1 profs 815616 Nov 4 2002 ch11.ppt Marks Hydnets. UGA

Directory Implementation

- Directory system function: Maps ASCII names onto what is needed to locate the data
- Where do we store the files' attributes?
- » A simple directory: fixed sized entries attributes stored with the entry

games	attributes
mail	attributes
news	attributes
work	attributes

» Directory in each entry just refers to an i-node (UNIX

Directory Structure

 A directory "file" is a sequence of lines; each line holds an i-node number (index-node) and a file name

···//
<i>``″</i>
"maria.html"
"gunnar.txt"

• The data is stored as binary so we cannot simply cat to view it:

» but some UNIXs allow an "octal dump" (other formats also available) :

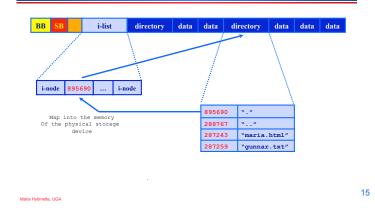
{a	{atlas:maria:187} od -c .																	
00	00000	\0	۱r	252	312	\0	۱f	\0	001		\0	\0	\0	\0	004	g	377	
00	00020	\0	۱f	\0	002			\0	\0	\0	004	b	013	\0	024	\0	\n	
00	00040	m	а	r	i	а		h	t	m	1	\0	\0	\0	004	b	033	
00	00060	\0	024	\0	\n	g	u	n	n	a	r	1.	t	x	t	\0	\0	

8

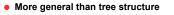
10

Directory Organization

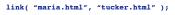
- Organization technique: Map file name to blocks of file data on disk
 - (which enables one to find data on disk)
- Simplest approach: Single-level directory » Each file has unique name
- Two-level directory


aria Hybinette, UGA

- » Directory for each user
- » Disadvantage: Each user cannot organize files

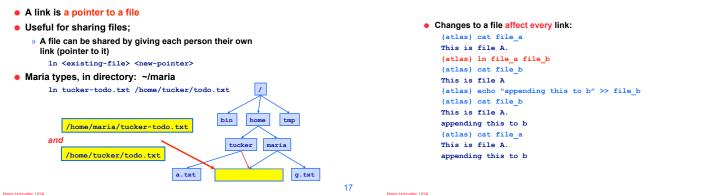

Directories: Tree-Structured

 Directory listing contains <name, index>, but name can be directory » Directory is stored and treated like a file Actually (indirectly), map file name to file meta-data » Special bit set in meta-data for directories User programs can read directories - Only system programs can write directories Specify full pathname by separating directories and files with special » Special part of disk holds directory listing characters (e.g., \ or /) Contains <file name, meta-data index> pairs Special directories – How should this data structure be organized??? Root '/': Fixed index for meta-data (e.g., 2) » This directory: . » Parent directory: .. » Specify file with user name and file name Example: mkdir /a/b/c » Read meta-data 2 'P' (by default 2 is root in linux), look for "a": find <"a", 5> Read 5, look for "b": find <"b", 9> $\,\,{}^{\,\,}$ Read 9, verify no "c" exists; allocate c and add "c" to directory 13 ria Hybinette UG4


File System Expanded

Acyclic-Graph Directories

- » Add connections across the tree (no cycles) » Create links from one file (or directory) to another
- Hard link: "1n a b" ("a" must exist already)
- » Idea: Can use name "a" or "b" to get to same file data » Implementation: Multiple directory entries point to same meta-data



Creating Links

16

14

Why Links?

Seeing Links

- Compare status information : (saffron:maria:104) ls -l file_a file_b file_c -rw-r-rr-2 maria 36 May 24 10:52 file a -rw-r-rr-2 maria 36 May 24 10:52 file_b -rw-r-rr-1 maria 16 May 24 10:55 file_c File mode, # links, owners name, group name, #bytes, date, pathname
- Look at i-node number: [saffron:maria:105] ls -i file_a file_b file_c 3534 file_a 3534 file_b 5800 file_c

 Directories may appear to have more links:
- Directories may appear to have more links: {saffron:maria:106} ls -ld dir drwur-xr-x 2 maria users 68 Apr 7 17:57 dir/ {saffron:maria:107} mkdir dir/hello {saffron:maria:108} ls -ld dir drwxr-xr-x 3 maria users 68 Apr 7 17:58 dir/
- This is because subdirectories (e.g. directories inside dir/) have a link back to their parent.

Removing a Link

- Removing or deleting a link does not necessarily remove the file (why?)
- Only when the file *and* every link is gone will the file be removed

- Symbolic Links
- The links described so far are hard links
 - » A hard link is a pointer to a file which must be on the same file system
- A symbolic link is an *indirect pointer* to a file
 - » Stores the pathname of the file that it points to
 - » Symbolic links can link across file systems
- Symbolic links are listed differently:

{saffron:ingrid:62} ln -s dir ~/unix/d/Sdir {saffron:ingrid:62} ls -lPd dir ~/unix/d/Sdir lrwxr-xr-x 1 ingrid staff 31 Apr 21:51 /home/ingrid/unix/d/Sdir@ -> dir drwxr-xr-x 3 ingrid staff 102 1 Apr 21:39 dir/

Maria Hybinette, UGA

aria Hybinette, UGA

19

Maria Hybinette, UGA

Review: File Operations

- Create file with given pathname /a/b/file
 Traverse pathname, allocate meta-data and directory
 entry
- Read from (or write to) offset in file
 » Find (or allocate) blocks of file on disk; update meta-data
- Delete
 - » Remove directory entry, free disk space allocated to file
 Truncate file (set size to 0, keep other attributes)
 - » Free disk space allocated to file
 - Rename file
 » Change directory entry
 - Copy file
 - » Allocate new directory entry, find space on disk and copy
- Change access permissions
- » Change permissions in meta-data Maria Hybinette, UGA

20

Hard Linking Directories?

