How do I learn C?

In addition to syntax you need to learn:

CSCI [4 | 6]730:

the Tools.
A C Refresher or Introduction o e oo

o the Libraries.
@ And the Documentation.

Hello Word!
~/Ctest/

(i)

17785

Waria Hybinete, UGA 1 Waria Hybinete, UGA 2

Diving In: A Simple C Program Diving In: A Simple C Program

l-hello-word.c l-hello-word.c
/* header files go up here -- specifies headers needed for routines */ % /* header files go up here -- specifies headers needed for routines */ %
/* note that C comments are enclosed within a slash o /* note that C comments are enclosed within a slash o
and a star, and may wrap over lines */ P(and a star, and may wrap over lines */ P(
// but if you use the latest gcc, two slashes will work too, like C++ Ef // but if you use the latest gcc, two slashes will work too, like C++ Er
#include <stdio.h> /* prototypes processed by cpp */ g #include <stdio.h> /* prototypes processed by cpp */ g
[[
© /* main returns an integer */ -
g int main(int argc, char *argv[]) g
g : g
g /* printf is our output function; by default it writes to standard out */ g
B /* printf returns an integer, but we ignore it here */ 9
= /*1 [stout] >& redirect stout and stderr */ =
/* main returns an integer */ /* >& /dev/null - suppress all output */ /*(cat £1 > myout) >& myerror */
int main(int arge, char *argv[])
{ E printf(“hello, world\n”); E
printf(“hello, world\n”); i /* return 0 by conventions indicates all went well */ i
return(0) ; /* returns 0 by conventions indicates all went well */ = return(0) ; =
})
Maria Hybinete, UGA 3 Maria Hybinete, UGA 4
.
How to Compile and Run a
.
* ¢ File Name C-program: 1-hello-world.c
cpp [f cel as .
. _ expanded Assembly Machine
@ Naming the program (e.g., 1-hello-world.c, mpe— . ———
main.c) ® gcc 1l-hello-world.c a
& — H H - H . “ ”
» Arbitrary N9t L!ke in Java where file name is ® gcc starts the compile “process
connected with file content (class name). L Machine
i 1. Executes cpp (processes # directives) Code
H - H *
» Constraint: Need to end with a *.c — Creates source code (default path where to look: /usr
include)

2. Compilation (cc1)
— Transforms C code to assembly code
3. Assembler (as) runs
— Transforms assembly code to machine code
4. Linker (Id) runs
— Links code together to create the final executable

° faout O,
5 6

Maria Hybinette, UGA veipteintrmain (int argec, char *argv[])

Compile Command line & ‘flags’

Linking Libraries

® prompt> gcc -o first first.c # -o
lets you specify the executable name

® prompt> gcc -Wall first.c # -Wall
gives much better warnings

® prompt> gcc -g first.c # use -g to
enable debugging with gdb

® prompt> gcc -0 first.c # use -0 to
turn on optimization

Maria Hybinette, UGA

Lets say that again....

o Example: fork () requires a library, namely the C-
library. The C library is automatically linked, so all we
need then is :

» The ‘including’ the right #include file “<>”, -i, -l to to find
the prototype of the function (return type, date types of
parameters).

» How to find out:
-man fork
» CAVEAT: the controversial and dreaded LD_LIBRARY PATH

»

» May fix (e.g., readline) problems

Maria Hybinette, UGA

Other Libraries: The Math
Library

o fork() requires the C-library (c1ib). The C library is
automatically linked in, so all we need then is :
» How do you know what to include?
» man fork

» BUT — Wait a minute why a library - Fork is a system call! [a
request of ‘service’ by the OS from the application]

—C library provides C -wrappers for
all system calls - which simply traps
into the OS

—The ‘real’ system call in Linux e.g., is
sys_fork()

Maria Hybinette, UGA g

Multiple Files
(hw.c, helper.c Makefile2)

e gcc [flag ...] file ... -Im [library ...]
o #include <math.h>
» In lusr/lib
» Statically linked .a (compile time)
—Combines code (copies) directly into
executable
» Dynamically linked shared library .so (run time)

— Smaller code base (can be shared by multiple processes)

— A reference and only links when needed, smaller code
base (some work), hooks in code triggers the run time
system to load in the library, only when needed

» lusr/libm.a & /usr/libm.so
» Link editor searches for library in a certain order.
» -Im directory path include) and -L(directory path) 1o

Maria Hybinette, UGA

Separate Compilation

prompt> gcc -o hw hw.c helper.c -1m

Problem: Remake everything (2 programs here)
every time, even if the change is only in hw.c

Approach: Separate 2 step compilation process
that only re-compiles source files that have
been modified

o Create object files then link *.o files
® Then link these files into an executable

Maria Hybinette, UGA

"

note that we are using -Wall for
warnings and -O for optimization

prompt> gcc -Wall -O -c hw.c
prompt> gcc -Wall -O -c helper.c
prompt> gcc -o hw hw.o helper.o -1m

e -c flag produces an object file
@ Machine level code (not executable)
o Need to link to make an executable

prompt> gcc -o hw hw.c helper.c -1m

Maria Hybinette, UGA

Make & Makefiles

Make - Makefiles (be aware of the
dreaded white space phenomena)

o Make make things easier to handle the
compilation process.

target: prerequisitel prerequisite2
commandl

command2

e Target usually the name of executable of (1)
the object file or (2) the action (like clean)

Maria Hybinette, UGA

OK what is going on here?

hw: hw.o helper.o

gcc -o hw hw.o helper.o -1m
hw.o: hw.c

gcc -O -Wall -c hw.c
helper.o: helper.c

gcc -O -Wall -c helper.c
clean:

rm -f hw.o helper.o hw

Weria Hybinete, UGA 14

Make macros

hw: hw.o helper.o
gcc -o hw hw.o helper.o -1lm
hw.o: hw.c
gcc -0 -Wall -c hw.c
helper.o: helper.c
gcc -0 -Wall -c helper.c
clean:

rm -f hw.o helper.o hw

o Goes to target hw (first target) need the
prerequisites

® Check them in turn (according to date) and
see if they need to be re-made

Maria Hybinette, UGA

Debugging

e Also you can create macros:
» CC =gcc
» OBJECTS = data.o main.o
» Project1: $(OBJECTS)
e Examples of Special macros
» CC, CFLAGS (compiler, and compiler flags)
» $@ short cut for full name of current target

%.0 : %.cC
$(CC) —c —o $@ $(CFLAGS)

Maria Hybinete, UGA 16

Debugging

#include <stdio.h>

struct Data {

int x;

}i

int main(int argc, char *argv[])
{

struct Data *p = NULL;

printf ("$d\n", p->x);

}

Maria Hybinette, UGA

@ gcc —-g -o 3-buggy 3-buggy.c
® {odin:maria:428} 3-buggy
® Segmentation Fault (coredump)
® gdb 3-buggy

—run

-print p

—break main

Maria Hybinete, UGA 18

GDB

Man

® (gdb) help

® Help running

® Help files

® Help breakpoints

Maria Hybinette, UGA

Lets get going: Create A Child
2-lets-fork.c

® man XXX
® man -k

#include <stdio.h> /* printf */ %
#include <unistd.h> /* fork is defined here */ E‘
o
pid_t childpid = 0 ; /* descriptive variables makes code readable */ E
N . N o
int main(int argec, char *argv[]) s'
{ -]
printf(“I have no children, but I need one\n”); o
if((childpid = fork()) == 0)
H
{ e
printf("\nHello from child\n"); g
fflush(stdout) ; E
) 5
else 2
{ /* what is childpid? Here? */ =
printf("\nHello from parent\n");
££1ush (stdout) ;
printf(”(A) my child (%d) is on his own -- exiting \n", childpid); E
} 5
/* printf(”(B) my child (%d) is on his own -- exiting \n", childpid); */ =
return(0); // well that was fun!
}
e FiyBete, UCK 21
The Ultimate C Reference
.
Guides
® “The C book” or the “K & R Book ™
» The C Programming Language, by Brian Kernighan
and Dennis Ritchie (thin, concise and all you really
need...)
® The GDB Booklet
» Debugging with GDB: The GNU Source-Level
Debugger, by Richard M. Stallman, Roland H. Pesch
® The Unix System Programming Book
» Advanced Programming in the UNIX Environment,
by W. Richard Stevens
23

Maria Hybinette, UGA

Maria Hybinette, UGA 20
o Parent ‘waiting’ for the child add a wait
» 3-lets-fork.c
22

Maria Hybinette, UGA

