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Review 

  Operating System Fundamentals 
» What is an OS? 
» What does it do? 
» How and when is it invoked? 

  Structures 
» Monolithic 
»  Layered 
» Microkernels 
» Virtual Machines 
» Modular 
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Chapter 3:  Processes: Outline 

  Process Concept: views of a process 
  Process Basics Scheduling 
  Operations on Processes 

»  Life of a process: from birth to death 

  Cooperating Processes 
»  Interprocess Communication 

–  Mailboxes 
–  Shared Memory 
–  Sockets 
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What is a Process? 

  A process is a program in execution (an 
active entity, i.e. it is a running program ) 

» Basic unit of work on a computer, a job, a task. 
» A container of instructions with some resources: 

–  e.g. CPU time (CPU carries out the instructions), 
memory, files, I/O devices to accomplish its task 

» Examples: compilation process,  word processing 
process, scheduler (sched, swapper) process or 
daemon processes: ftpd, httpd 

  System view… 



Maria Hybinette, UGA 
5 

What are Processes? 

  Multiple processes: 
»  Several distinct processes can execute the SAME 

program 
  Time sharing systems run several processes by 

multiplexing between them 
  ALL “runnables” including the OS are organized into a 

number of “sequential processes” 

Scheduler 

0 1 2 

…
n-1 

Processes 
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Our Process Definition 

A process is a ‘program in execution’, a 
sequential execution characterized by trace. It 
has a context (the information or data) and 
this ‘context’ is maintained as the process 
progresses through the system. 
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Activity of a Process 

Process A 

Process B 

Process C 

A 

B 

C 

Time 
Multiprogramming: 
  Solution: provide a programming counter. 
  One processor (CPU). 

1 CPU 
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Activity of a Process: Time Sharing 

Process A 

Time 

Process B 

Process C 

B A C 
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What Does the Process Do? 

  Created 
  Runs 
  Does not run (but ready to run) 
  Runs 
  Does not run (but ready to run) 
 …. 
  Terminates 
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‘States’ of a Process 

  As a process executes, it changes state 
»  New:  The process is being created. 
»  Running:  Instructions are being executed. 
»  Ready:  The process is waiting to be assigned to a 

processor (CPU). 
»  Terminated:  The process has finished execution. 
»  Waiting:  The process is waiting for some event to occur. 

Ready 

New 

Running 

Waiting 

Terminated 
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State Transitions 

  A process may change state as a result: 
» Program action (system call) 
» OS action (scheduling decision) 
» External action (interrupts) 

Ready 

New 

Running 

Waiting 

Terminated 

Scheduler pick 
I/O or event wait 

exit 
Interrupt (time) and 

scheduler picks 
another process 

admitted 

I/O or event 
completion 
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OS Designer’s Questions? 

  How is process state represented? 
» What information is needed to represent a process? 

  How are processes selected to transition 
between states? 

  What mechanism is needed for a process to 
run on the CPU? 
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What Makes up a Process? 

User resources/OS Resources: 
  Program code (text) 
  Data  

»  global variables 
»  heap (dynamically allocated memory) 

  Process stack 
»  function parameters 
»  return addresses 
»  local variables and functions 

  OS Resources, environment 
»  open files, sockets 
»  Credential for security 

  Registers  
»  program  counter, stack pointer 

User Mode  
Address  
Space 

heap 

stack 

data 

routine1 
var1 
var2 

main 
    routine1 
    routine2 

arrayA 
arrayB 

text 

address space are the shared resources 
of a(ll) thread(s) in a program 
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What is needed to keep track of a Process? 

  Memory information: 
»  Pointer to memory segments needed 

to run a process, i.e., pointers to the 
address space -- text, data, stack 
segments. 

  Process management information: 
»  Process state, ID 
»  Content of registers: 

–  Program counter, stack pointer, 
process state, priority, process ID, 
CPU time used 

  File management & I/O information: 
»  Working directory, file descriptors 

open, I/O devices allocated  
  Accounting: amount of CPU used. 

Process Number 

Program Counter 

Registers 

Process State 

Memory Limits  

Page tables 

List of opened files 

I/O Devices allocated 

Accounting  

Process  control 
Block (PCB) 
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Process Representation 

Initial  P0 

Process  P1 

Process  P2 

Process  P3 

         

Memory mappings 

Pending requests 

… 

Memory base  

Program counter 

… 

Process  P2  Information System Memory 

Kernel Process Table 

P2 : HW state: resources 

P0 : HW state: resources 

P3 : HW state: resources 

P1 : HW state: resources 

… 
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OS View: Process Control Block 
(PCB)  

  How does an OS keep track of the state of a 
process? 

» Keep track of ‘some information’ in a structure.  
–  Example: In Linux a process’ information is kept in a 

structure called struct task_struct declared in  
#include linux/sched.h!

–  What is in the structure?!

struct task_struct 

   pid_t pid;   /* process identifier */ 

   long state;   /* state for the process */ 

   unsigned int time_slice  /* scheduling information */ 

   struct mm_struct *mm  /* address space of this process */ 



Maria Hybinette, UGA 
17 

State in Linux 

volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */!
!
#define TASK_RUNNING            0!
#define TASK_INTERRUPTIBLE      1!
#define TASK_UNINTERRUPTIBLE    2!
#define TASK_ZOMBIE             4!
#define TASK_STOPPED            8!
#define TASK_EXCLUSIVE          32!

•  traditionally ‘zombies’ are child processes of parents that have not 
processed a wait() instruction. 

•  Note: processes that have been ‘adopted’ by init are not zombies (these 
are children of parents that terminates before the child). Init 
automatically calls wait() on these children when they terminate. 

•  this is true in LINUX. 
• What to do: 1) Kill the parent 2) Fix the parent (make it issue a wait) 2) 
Don’t care 
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Process Table in MINIX 

  Microkernel design - process table 
functionality (monolithic) partitioned into four 
tables: 

» Kernel management (kernel/proc.h) 
» Memory management (VM server  vm/vmproc.h) 

–  Memory part of fork, exit etc calls 
–  Used/unused part of memory 

»  File management (FS) (FS server fs/fproc.h 
» Process management (PM server pm/mproc.h) 

HERE 
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Running Processes 

Running 

Ready 

Waiting Process A 

Process B 

Process C 

Scheduler 

Time 

1 CPU 
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Why is Scheduling important? 

  Goals: 
» Maximize the ‘usage’ of the computer system 
» Maximize CPU usage (utilization) 
» Maximize I/O device usage 
» Meet as many task deadlines as possible (maximize 

throughput). 
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Scheduling 

  Approach: Divide up scheduling into task levels: 
»  Select process who gets the CPU (from main memory). 
»  Admit processes into memory  

–  Sub problem: How? 

  Short-term scheduler (CPU scheduler): 
»  selects which process should be executed next and 

allocates CPU. 
»  invoked frequently (ms) ⇒ (must be fast). 

  Long-term scheduler (look at first): 
»  selects which processes should be brought into the 

memory (and into the ready state) 
»  invoked infrequently (seconds, minutes) 
»  controls the degree of multiprogramming. 
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Process Characteristics 

 Processes can be described as either: 
» I/O-bound process – spends more time doing I/

O than computations, many short CPU bursts. 
» CPU-bound process – spends more time doing 

computations; few very long CPU bursts. 
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Observations 

  If all processes are I/O bound, the ready 
queue will almost always be empty (little 
scheduling) 

  If all processes are CPU bound the I/O 
devices are underutilized 

  Approach (long term scheduler):  ‘Admit’ a 
good mix of CPU bound and I/O bound 
processes. 
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Big Picture (so far) 

CPU 

Main 
Memory 

Arriving Job 

Input Queue 

Long term 
scheduler 

Short term  
scheduler 
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Exhaust Memory? 

  Problem: What happens when the number of 
processes is so large that there is not enough 
room for all of them in memory? 

  Solution: Medium-level scheduler:  
»  Introduce another level of scheduling that removes 

processes from memory; at some later time, the 
process can be reintroduced into memory and its 
execution can be continued where it left off 

» Also affect degree of multi-programming. 
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Disk 

CPU 

Main 
Memory 

Arriving Job 

Input Queue 

Long term 
scheduler 

Short term  
scheduler 

Medium term 
scheduler 
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Which processes should be 
selected? 

 Processor (CPU) is faster than I/O so 
all processes could be waiting for I/O 

» Swap these processes to disk to free up 
more memory 

 Blocked state becomes suspend state 
when swapped to disk 

» Two new states 
– waiting, suspend 
– Ready, suspend 
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Suspending a Process 

Ready 

New 

Running 

Waiting 

Terminated 

Waiting,  
Suspended 

Ready, 
Suspended 

  Which to suspend? 
  Others? 

Suspended Processes (possibly on backing store) 

Main memory 
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Possible Scheduling Criteria 

  How long since process was swapped in our 
out? 

  How much CPU time has the process had 
recently? 

  How big is the process (small ones do not get 
in the way)? 

  How important is the process (high priority)? 
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OS Implementation: Process 
Scheduling Queues 

  Job queue – set of all processes in the system. 
  Ready queue – set of all processes residing in 

main memory, ready and waiting to execute on 
CPU 

  Device queues – set of processes waiting for an I/O 
device. 

  Process migration between the various queues. 
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Representation of Process 
Scheduling 
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Ready Queue, I/O Device Queues 
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Context Switch 

 When CPU switches to another 
process, the system must save the 
state of the old process and load the 
saved state for the new process. 

 Context-switch time is overhead; the 
system does no useful work while 
switching. 

 Time dependent on hardware support. 
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CPU Context Switches 
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Process Creation 

  Process Cycle: Parents create children; results 
in a (inverse) tree of processes. 

»  Forms an ancestral hierarchy 

  Address space models: 
» Child duplicate of parent. 
» Child has a program loaded into it. 

  Execution models: 
» Parent and children execute concurrently. 
» Parent waits until children terminate. 

  Examples 
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Continuing the Boot Sequence…  

  After loading in the Kernel and it does a 
number of system checks it creates a number 
of ‘dummy processes’ -- processes that 
cannot be killed -- to handle system tasks. 

  Usually …. 
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Process Life Cycle: UNIX (cont) 

  PID 0 is usually the scheduler process (often called 
swapper)  

»  is a system process -- **** it is part of the kernel ***** 
»  the grandmother of all processes). 

  init - Mother of all user processes, init is started at  
boot time (at end of the boot strap procedure) and is 
responsible for starting other processes 

»  It is a user process (not a system process that runs 
within the kernel like swapper) with PID 1 (but runs with 
root privileges) 

»  init uses file inittab and directory /etc/rc?.d 
»  brings the user to a certain specified state (e.g., multiuser 

mode) 
  getty - login process that manages login sessions 
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Processes Tree on a typical UNIX 
System 

Process 1 
(init) 

OS Kernel 

Process 0 
(sched - ATT, swapper - BSD) 

Process 2 (BSD) 
pagedaemon 

deamon (e.g. httpd) getty 

login 

bash 

getty 

login 

ksh 

mother of all user processes 
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Other Systems 

HP-UX 10.20



UID     PID  PPID C  STIME   TTY       TIME COMMAND

   root     0     0  0  Apr 20  ?         0:17 swapper

   root     1     0  0  Apr 20  ?         0:00 init

   root     2     0  0  Apr 20  ?         1:02 vhand


Solaris:



   UID   PID  PPID  C    STIME TTY      TIME CMD

   root     0     0  0   Apr 19 ?       0:00 sched

   root     1     0  0   Apr 19 ?       0:22 /etc/init -

   root     2     0  0   Apr 19 ?       0:00 pageout



* sched - dummy process which provides swapping services

* pageout - dummy process which provides virtual memory (paging) 
services


Linux RedHat 6.0:



   UID        PID  PPID  C STIME TTY      TIME CMD

   root         1     0  0 09:59 ?        00:00:07 init

   root         2     1  0 09:59 ?        00:00:00 [kflushd]

   root         3     1  0 09:59 ?        00:00:00 [kpiod]

   root         4     1  0 09:59 ?        00:00:00 [kswapd]

   root         5     1  0 10:00 ?        00:00:00 
[mdrecoveryd]


Page handler 

Process spawner 

Scheduler 

Buffering/Flushing I/O 
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Running Processes 

 {atlas:maria} ps -efjc | sort -k 2 -n | more 
     UID   PID PPID  PGID SID  CLS PRI    STIME TTY  TIME CMD 
    root     0    0     0   0  SYS  96   Mar 03 ?    0:01 sched 
    root     1    0     0   0   TS  59   Mar 03 ?    1:13 /etc/init -r 
    root     2    0     0   0  SYS  98   Mar 03 ?    0:00 pageout 
    root     3    0     0   0  SYS  60   Mar 03 ? 4786:00 fsflush 
    root    61    1    61  61   TS  59   Mar 03 ?    0:00 /usr/lib/sysevent/syseventd 
    root    64    1    64  64   TS  59   Mar 03 ?    0:08 devfsadmd 
    root    73    1    73  73   TS  59   Mar 03 ?   30:29 /usr/lib/picl/picld 
    root   256    1   256 256   TS  59   Mar 03 ?    2:56 /usr/sbin/rpcbind 
    root   259    1   259 259   TS  59   Mar 03 ?    2:05 /usr/sbin/keyserv 
    root   284    1   284 284   TS  59   Mar 03 ?    0:38 /usr/sbin/inetd -s 
  daemon   300    1   300 300   TS  59   Mar 03 ?    0:02 /usr/lib/nfs/statd 
    root   302    1   302 302   TS  59   Mar 03 ?    0:05 /usr/lib/nfs/lockd 
    root   308    1   308 308   TS  59   Mar 03 ?  377:42 /usr/lib/autofs/automountd 
    root   319    1   319 319   TS  59   Mar 03 ?    6:33 /usr/sbin/syslogd 
 

  Print out status information of various processes in the system:  
ps -axj (BSD) , ps -efjc (SVR4) 

  Daemons (background processes) with root privileges, no 
controlling terminal, parent process is init  
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Process Creation: Execution & 
Address Space in UNIX 

  In UNIX process fork()-exec() 
mechanisms handles process creation and its 
behavior: 
» fork() creates an exact copy of itself (the parent) 

and the new process is called the child process 
» exec() system call places the image of a new 

program over the newly copied program of the 
parent 
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fork() a child 

Shared 
 Program 
(read only) 

Copied  
Data, heap 

& stack 

Data, heap,  
& stack 

Parent 

pid = fork() 

pid == 0 pid == 5 

Child (can only 
have 1 parent) Parent 
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Example: parent-child.c 

#include <stdio.h> 
#include <sys/types.h> 
#include <unistd.h> 

 
int main() 
  { 
  int i; 
  pid_t pid;  

 pid = fork(); 
 if( pid > 0 ) 

  {   /* parent */ 
  for( i = 0; i < 1000; i++ ) 
   printf( “\tPARENT %d\n”, i ); 

} 
 else 

  {   /* child */ 
  for( i = 0; i < 1000; i++ ) 

  printf( “\t\tCHILD %d\n”, i ); 

} 
 } 

  

{saffron} parent-child 
 PARENT 0 
 PARENT 1 
 PARENT 2 
  CHILD 0 
  CHILD 1 
 PARENT 3 
 PARENT 4 
  CHILD 2 
 . 
 . 
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Things to Note 

  i is copied between parent and child 
  The switching between parent and child 

depends on many factors: 
» Machine load, system process scheduling, … 

  I/O buffering effects the output shown 
» Output interleaving is non-deterministic 

–  Cannot determine output by looking at code 
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Process Creation: Windows 

  Processes created via 10 params CreateProcess() 
  Child process requires loading a specific program into 

the address space. 
BOOL WINAPI CreateProcess( 

  LPCTSTR lpApplicationName, 

  LPTSTR lpCommandLine, 

  LPSECURITY_ATTRIBUTES lpProcessAttributes, 

  LPSECURITY_ATTRIBUTES lpThreadAttributes, 

  BOOL bInheritHandles, 

  DWORD dwCreationFlags, 

  LPVOID lpEnvironment, 

  LPCTSTR lpCurrentDirectory, 

  LPSTARTUPINFO lpStartupInfo, 

  LPPROCESS_INFORMATION lpProcessInformation ); 
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Process Termination 

  Process executes last statement and asks the operating 
system to delete it by using the exit() system call. 

»  Output data from child to parent (via wait). 
»  Process’ resources are deallocated by operating system. 

  Parent may terminate execution of children processes 
(abort). 

»  Child has exceeded allocated resources. 
»  Task assigned to child is no longer required. 
»  Parent is exiting. 

–  Some Operating system does not allow child to continue if its 
parent terminates. 

  Cascading termination (initiated by system to kill of children of 
parents that exited). 

–  If a parents terminates children are adopted by init() - so they 
still have a parent to collect their status and statistics 
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Cooperating Processes 

  Independent process cannot affect or be affected by 
the execution of another process. 

  Cooperating process can affect or be affected by 
the execution of another process 

» Advantages of process cooperation 
–  Information sharing  
–  Computation speed-up 
–  Modularity 
–  Convenience 

» Requirement: Inter-process communication (IPC) 
mechanism. 
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Two Communicating Processes 

  Concept that we want to implement 

Process  
Chat 
Maria 
“A” 

Process  
Chat 

Gunnar 
“B” 

Hello Gunnar! 

Hi Nice to Hear 
from you! 
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On the path to communication… 

  Want: A communicating processes 
  Have so far: Forking – to create processes 
  Problem: 

» After fork() is called we end up with two independent 
processes. 

» Separate Address Spaces 

  Solution? How do we communicate? 
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File: The Unix Way 

  One easy way to communicate is to use files. 
» Process A writes to a file and process B reads from 

it 

  File descriptors 
» Mechanism to work with files 
» Used by low level I/O 

–  Open(), close(), read(), write() 
»  file descriptors  generalize to other communication 

devices such as pipes and sockets 
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File Descriptor Table 

Big Picture 

Stack Pointer 

Program Counter 

fd 0 
fd 1 
fd 2 
fd 3 

File status flags 

offet 

Vnode pointer 

File Table Entry 

PCB 
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Other Methods (Right now assume 
we are on a ‘local’ computer) 

  Pipes 
  Sockets (starting thursday) 
  Signal 
  Shared Memory  
  Messages (this paradigm also extends to 

Remote Machines) 
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Communication Models 

  Shared memory model 
» Share memory region for communication 
» Read and write data to shared region  
» Requires synchronization (e.g., locks) 
»  faster 
» Setup time 

  Message Passing model 
» Communication via exchanging messages 
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Communication Models 

… 

Kernel 

Process A M 

Process B M 

M 

1 

2 

… 

Kernel 

Process A 

Process B 

1 

2 
Shared memory 

Message Passing  Shared Memory 
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Communication Examples 

  Within a single computer 
» Pipes, 

–  Unamed: only persist as long as process lives  
–  Named Pipes (FIFO)- looks like a file (mkfifo filename, 
attach, open, close, read, write)!

  http://developers.sun.com/solaris/articles/named_pipes.html 

» Message Passing (Queues) 
» Shared Memory (next HW) 

  Distributed System (remote computers, connected via 
cable, air e.g., WiFi) - Later 

»  TCP/IP sockets (Project) 
» Remote Procedure Calls (next, to next HW)  
» Remote Method Invocations (RMI, maybe HW) 
» Message passing libraries: MPI, PVM 
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Message Passing Systems 

  NO shared state 
» Communicate across address spaces and 

protection 
» Agreed protocol 

  Generic API 
» send( dest, &msg )  
» recv( src, &msg ) 

  What is the dest and src? 
»  pid 
»  File: e.g., pipe 
» Port, network address,  
» Unspecified source (any source, any message) 
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Direct Communication 

  Explicitly specify dest and src process by an 
identifier  

  Multiple buffers: 
» Receiver 

–  If it has multiple senders (then need to search 
through a ‘buffer(s)’ to get a specific sender) 

» Sender 

  What is the dest and src? 
»  pid 
»  File: e.g., pipe 
» Port, network address,  
» Unspecified source (any source, any message) 

To: Amy 

To: Homer 



Maria Hybinette, UGA 
58 

Indirect Communication 

  dest and src are (unique) queues  
  Uses a unique shared queue, allows many 

to many communication :  
» messages sorted FIFO 
» messages are stored as a sequence of bytes 
»  get a message queue identifier:  

!int queue_id = msgget ( key, flags ) 

  sending messages:  
» msgsnd( queue_id, buffer, size, flags )!

  receiving messages (type is priority):  
» msgsnd( queue_id, buffer, size, type, 
flags )!



Maria Hybinette, UGA 
59 

Mailboxes vs Pipes 

  Same machine: Are there any differences 
between a mailbox and a pipe? 

» Message types 
–  mailboxes may have messages of different types 
–  pipes do not have different types 

  Buffer 
» Pipes: Messages stored in contiguous bytes 
» Mailbox – linked list of messages of different types 

  Number of processes 
»  Typically 2 for pipes (one sender & one receiver) 
» Many processes typically use a mailbox (understood 

paradigm) 
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Shared Memory 

  Efficient and fast way for processes to communicate 
»  After setting up a shared memory segment 

  Multiple processes can attach a segment of physical memory to 
their virtual address space 

»  Process: Create, Attach an Populate 

  create a shared segment  shmid = shmget( key, size, flags )!
  attach a sm to a data space:  shmat( shmid, *shmaddr, flags )!
  detach (close) a shared segment:  shmdt( *shmaddr ) 

 
 if more than one process can access segment, an outside protocol 

or mechanism (like semaphores) should enforce consistency/
avoid collisions 

Simple Example: shm_server.c and shm_client.c 



#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 
#include <stdio.h> 
 
#define SHMSZ     27 
 
main() 
{ 
    int shmid; 
    key_t key; 
    char *shm, *s; 
 
    key = 5678; /* selected key by server */ 
 
    /* Locate the segment. */ 
    if ((shmid = shmget(key,SHMSZ,0666)) < 0)  

 { 
        perror("shmget"); exit(1); 
    } 
 
    /* Now we attach the segment to our data space. */ 
    if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) { 
        perror("shmat"); exit(1); 
    } 
 
    /* read what the server put in the memory. */ 
    for (s = shm; *s != NULL; s++) putchar(*s); 
    putchar('\n'); 
 
    /* change the first character in segment to '*' */ 
    *shm = '*'; 
 
    exit(0); 
} 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 
#include <stdio.h> 
 
#define SHMSZ     27 
 
main() 
{ 
    int shmid; 
    key_t key; 
    char c, *shm, *s; 
 
    key = 5678; /* selected key */ 
 
    /* Create the segment.*/ 
    if ((shmid = shmget(key,SHMSZ,IPC_CREAT | 0666)) < 0)  

 { 
        perror("shmget"); exit(1); 
    } 
 
    /* Now we attach the segment to our data space.*/ 
    if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) { 
        perror("shmat"); exit(1); 
    } 
 
    /* put some things into the memory */ 
    for (s = shm, c = 'a'; c <= 'z'; c++) *s++ = c; 
    *s = NULL; 
 
    /* wait until first character is changed to '*' */ 
    while (*shm != '*') sleep(1); 
 
    exit(0); 
} 
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Synchronization 

  Synchronous – e.g., blocking (wait until command 
is complete) 

»  E.g.:  Synchronous Receive: 
–  receiver process waits until message is copied into user level 

buffer 

  Asynchronous – e.g., non-blocking (don’t wait) 
»  E.g.,: Asynchronous Receive 

–  Receiver process issues a receive operation and then carries on 
with task  

  Polling – comes back tosee if receive as completed 
  Interrupt – OS issues an interrupt when receive has completed 
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Synchronous:  
OS view vs Programming Languages 

  OS View: 
»  synchronous send ⇒ sender blocks until message has 

been copied from application buffers to kernel 
» Asynchronous send ⇒ sender continues processing 

after notifying OS of the buffer in which the message is 
stored; have to be careful to not overwrite buffer until it 
is safe to do so  

  PL view:  
»  synchronous send ⇒ sender blocks until message has 

been received by the receiver  
»  asynchronous send ⇒ sender carries on with other 

tasks after sending message 
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Buffering 

  Queue of messages attached to link: 
»  Zero capacity 

–  0 message - link cannot have any messages waiting 
–  Sender must wait for receiver (rendezvous) 

» Bounded capacity 
–  n messages - finite capacity of n messages 
–  Sender must wait if link is full 

» Unbounded capacity 
–  infinite messages -  
–  Sender never waits 
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Remote Machine 
Communication 

  Socket communication  
  Remote Procedure Calls (next week) 
  Remote Method Invocation (Java) 


