
Maria Hybinette, UGA

CSCI 6730 / 4730
 Operating Systems

Processes

Maria Hybinette, UGA
2

Review

  Operating System Fundamentals
» What is an OS?
» What does it do?
» How and when is it invoked?

  Structures
» Monolithic
»  Layered
» Microkernels
» Virtual Machines
» Modular

Maria Hybinette, UGA
3

Chapter 3: Processes: Outline

  Process Concept: views of a process
  Process Basics Scheduling
  Operations on Processes

»  Life of a process: from birth to death

  Cooperating Processes
»  Interprocess Communication

–  Mailboxes
–  Shared Memory
–  Sockets

Maria Hybinette, UGA
4

What is a Process?

  A process is a program in execution (an
active entity, i.e. it is a running program)

» Basic unit of work on a computer, a job, a task.
» A container of instructions with some resources:

–  e.g. CPU time (CPU carries out the instructions),
memory, files, I/O devices to accomplish its task

» Examples: compilation process, word processing
process, scheduler (sched, swapper) process or
daemon processes: ftpd, httpd

  System view…

Maria Hybinette, UGA
5

What are Processes?

  Multiple processes:
»  Several distinct processes can execute the SAME

program
  Time sharing systems run several processes by

multiplexing between them
  ALL “runnables” including the OS are organized into a

number of “sequential processes”

Scheduler

0 1 2

…
n-1

Processes

Maria Hybinette, UGA
6

Our Process Definition

A process is a ‘program in execution’, a
sequential execution characterized by trace. It
has a context (the information or data) and
this ‘context’ is maintained as the process
progresses through the system.

Maria Hybinette, UGA
7

Activity of a Process

Process A

Process B

Process C

A

B

C

Time
Multiprogramming:
  Solution: provide a programming counter.
  One processor (CPU).

1 CPU

Maria Hybinette, UGA
8

Activity of a Process: Time Sharing

Process A

Time

Process B

Process C

B A C

Maria Hybinette, UGA
9

What Does the Process Do?

  Created
  Runs
  Does not run (but ready to run)
  Runs
  Does not run (but ready to run)
 ….
  Terminates

Maria Hybinette, UGA
10

‘States’ of a Process

  As a process executes, it changes state
»  New: The process is being created.
»  Running: Instructions are being executed.
»  Ready: The process is waiting to be assigned to a

processor (CPU).
»  Terminated: The process has finished execution.
»  Waiting: The process is waiting for some event to occur.

Ready

New

Running

Waiting

Terminated

Maria Hybinette, UGA
11

State Transitions

  A process may change state as a result:
» Program action (system call)
» OS action (scheduling decision)
» External action (interrupts)

Ready

New

Running

Waiting

Terminated

Scheduler pick
I/O or event wait

exit
Interrupt (time) and

scheduler picks
another process

admitted

I/O or event
completion

Maria Hybinette, UGA
12

OS Designer’s Questions?

  How is process state represented?
» What information is needed to represent a process?

  How are processes selected to transition
between states?

  What mechanism is needed for a process to
run on the CPU?

Maria Hybinette, UGA
13

What Makes up a Process?

User resources/OS Resources:
  Program code (text)
  Data

»  global variables
»  heap (dynamically allocated memory)

  Process stack
»  function parameters
»  return addresses
»  local variables and functions

  OS Resources, environment
»  open files, sockets
»  Credential for security

  Registers
»  program counter, stack pointer

User Mode
Address
Space

heap

stack

data

routine1
var1
var2

main
 routine1
 routine2

arrayA
arrayB

text

address space are the shared resources
of a(ll) thread(s) in a program

Maria Hybinette, UGA
14

What is needed to keep track of a Process?

  Memory information:
»  Pointer to memory segments needed

to run a process, i.e., pointers to the
address space -- text, data, stack
segments.

  Process management information:
»  Process state, ID
»  Content of registers:

–  Program counter, stack pointer,
process state, priority, process ID,
CPU time used

  File management & I/O information:
»  Working directory, file descriptors

open, I/O devices allocated
  Accounting: amount of CPU used.

Process Number

Program Counter

Registers

Process State

Memory Limits

Page tables

List of opened files

I/O Devices allocated

Accounting

Process control
Block (PCB)

Maria Hybinette, UGA
15

Process Representation

Initial P0

Process P1

Process P2

Process P3

Memory mappings

Pending requests

…

Memory base

Program counter

…

Process P2 Information System Memory

Kernel Process Table

P2 : HW state: resources

P0 : HW state: resources

P3 : HW state: resources

P1 : HW state: resources

…

Maria Hybinette, UGA
16

OS View: Process Control Block
(PCB)

  How does an OS keep track of the state of a
process?

» Keep track of ‘some information’ in a structure.
–  Example: In Linux a process’ information is kept in a

structure called struct task_struct declared in
#include linux/sched.h!

–  What is in the structure?!

struct task_struct

 pid_t pid; /* process identifier */

 long state; /* state for the process */

 unsigned int time_slice /* scheduling information */

 struct mm_struct *mm /* address space of this process */

Maria Hybinette, UGA
17

State in Linux

volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */!
!
#define TASK_RUNNING 0!
#define TASK_INTERRUPTIBLE 1!
#define TASK_UNINTERRUPTIBLE 2!
#define TASK_ZOMBIE 4!
#define TASK_STOPPED 8!
#define TASK_EXCLUSIVE 32!

•  traditionally ‘zombies’ are child processes of parents that have not
processed a wait() instruction.

•  Note: processes that have been ‘adopted’ by init are not zombies (these
are children of parents that terminates before the child). Init
automatically calls wait() on these children when they terminate.

•  this is true in LINUX.
• What to do: 1) Kill the parent 2) Fix the parent (make it issue a wait) 2)
Don’t care

Maria Hybinette, UGA
18

Process Table in MINIX

  Microkernel design - process table
functionality (monolithic) partitioned into four
tables:

» Kernel management (kernel/proc.h)
» Memory management (VM server vm/vmproc.h)

–  Memory part of fork, exit etc calls
–  Used/unused part of memory

»  File management (FS) (FS server fs/fproc.h
» Process management (PM server pm/mproc.h)

HERE

Maria Hybinette, UGA
19

Running Processes

Running

Ready

Waiting Process A

Process B

Process C

Scheduler

Time

1 CPU

Maria Hybinette, UGA
20

Why is Scheduling important?

  Goals:
» Maximize the ‘usage’ of the computer system
» Maximize CPU usage (utilization)
» Maximize I/O device usage
» Meet as many task deadlines as possible (maximize

throughput).

Maria Hybinette, UGA
21

Scheduling

  Approach: Divide up scheduling into task levels:
»  Select process who gets the CPU (from main memory).
»  Admit processes into memory

–  Sub problem: How?

  Short-term scheduler (CPU scheduler):
»  selects which process should be executed next and

allocates CPU.
»  invoked frequently (ms) ⇒ (must be fast).

  Long-term scheduler (look at first):
»  selects which processes should be brought into the

memory (and into the ready state)
»  invoked infrequently (seconds, minutes)
»  controls the degree of multiprogramming.

Maria Hybinette, UGA
22

Process Characteristics

 Processes can be described as either:
» I/O-bound process – spends more time doing I/

O than computations, many short CPU bursts.
» CPU-bound process – spends more time doing

computations; few very long CPU bursts.

Maria Hybinette, UGA
23

Observations

  If all processes are I/O bound, the ready
queue will almost always be empty (little
scheduling)

  If all processes are CPU bound the I/O
devices are underutilized

  Approach (long term scheduler): ‘Admit’ a
good mix of CPU bound and I/O bound
processes.

Maria Hybinette, UGA
24

Big Picture (so far)

CPU

Main
Memory

Arriving Job

Input Queue

Long term
scheduler

Short term
scheduler

Maria Hybinette, UGA
25

Exhaust Memory?

  Problem: What happens when the number of
processes is so large that there is not enough
room for all of them in memory?

  Solution: Medium-level scheduler:
»  Introduce another level of scheduling that removes

processes from memory; at some later time, the
process can be reintroduced into memory and its
execution can be continued where it left off

» Also affect degree of multi-programming.

Maria Hybinette, UGA
26

Disk

CPU

Main
Memory

Arriving Job

Input Queue

Long term
scheduler

Short term
scheduler

Medium term
scheduler

Maria Hybinette, UGA
27

Which processes should be
selected?

 Processor (CPU) is faster than I/O so
all processes could be waiting for I/O

» Swap these processes to disk to free up
more memory

 Blocked state becomes suspend state
when swapped to disk

» Two new states
– waiting, suspend
– Ready, suspend

Maria Hybinette, UGA
28

Suspending a Process

Ready

New

Running

Waiting

Terminated

Waiting,
Suspended

Ready,
Suspended

  Which to suspend?
  Others?

Suspended Processes (possibly on backing store)

Main memory

Maria Hybinette, UGA
29

Possible Scheduling Criteria

  How long since process was swapped in our
out?

  How much CPU time has the process had
recently?

  How big is the process (small ones do not get
in the way)?

  How important is the process (high priority)?

Maria Hybinette, UGA
30

OS Implementation: Process
Scheduling Queues

  Job queue – set of all processes in the system.
  Ready queue – set of all processes residing in

main memory, ready and waiting to execute on
CPU

  Device queues – set of processes waiting for an I/O
device.

  Process migration between the various queues.

Maria Hybinette, UGA
31

Representation of Process
Scheduling

Maria Hybinette, UGA
32

Ready Queue, I/O Device Queues

Maria Hybinette, UGA
33

Context Switch

 When CPU switches to another
process, the system must save the
state of the old process and load the
saved state for the new process.

 Context-switch time is overhead; the
system does no useful work while
switching.

 Time dependent on hardware support.

Maria Hybinette, UGA
34

CPU Context Switches

Maria Hybinette, UGA
35

Process Creation

  Process Cycle: Parents create children; results
in a (inverse) tree of processes.

»  Forms an ancestral hierarchy

  Address space models:
» Child duplicate of parent.
» Child has a program loaded into it.

  Execution models:
» Parent and children execute concurrently.
» Parent waits until children terminate.

  Examples

Maria Hybinette, UGA
36

Continuing the Boot Sequence…

  After loading in the Kernel and it does a
number of system checks it creates a number
of ‘dummy processes’ -- processes that
cannot be killed -- to handle system tasks.

  Usually ….

Maria Hybinette, UGA
37

Process Life Cycle: UNIX (cont)

  PID 0 is usually the scheduler process (often called
swapper)

»  is a system process -- **** it is part of the kernel *****
»  the grandmother of all processes).

  init - Mother of all user processes, init is started at
boot time (at end of the boot strap procedure) and is
responsible for starting other processes

»  It is a user process (not a system process that runs
within the kernel like swapper) with PID 1 (but runs with
root privileges)

»  init uses file inittab and directory /etc/rc?.d
»  brings the user to a certain specified state (e.g., multiuser

mode)
  getty - login process that manages login sessions

Maria Hybinette, UGA
38

Processes Tree on a typical UNIX
System

Process 1
(init)

OS Kernel

Process 0
(sched - ATT, swapper - BSD)

Process 2 (BSD)
pagedaemon

deamon (e.g. httpd) getty

login

bash

getty

login

ksh

mother of all user processes

Maria Hybinette, UGA
39

Other Systems

HP-UX 10.20

UID PID PPID C STIME TTY TIME COMMAND

 root 0 0 0 Apr 20 ? 0:17 swapper

 root 1 0 0 Apr 20 ? 0:00 init

 root 2 0 0 Apr 20 ? 1:02 vhand

Solaris:

 UID PID PPID C STIME TTY TIME CMD

 root 0 0 0 Apr 19 ? 0:00 sched

 root 1 0 0 Apr 19 ? 0:22 /etc/init -

 root 2 0 0 Apr 19 ? 0:00 pageout

* sched - dummy process which provides swapping services

* pageout - dummy process which provides virtual memory (paging)
services

Linux RedHat 6.0:

 UID PID PPID C STIME TTY TIME CMD

 root 1 0 0 09:59 ? 00:00:07 init

 root 2 1 0 09:59 ? 00:00:00 [kflushd]

 root 3 1 0 09:59 ? 00:00:00 [kpiod]

 root 4 1 0 09:59 ? 00:00:00 [kswapd]

 root 5 1 0 10:00 ? 00:00:00
[mdrecoveryd]

Page handler

Process spawner

Scheduler

Buffering/Flushing I/O

Maria Hybinette, UGA
40

Running Processes

 {atlas:maria} ps -efjc | sort -k 2 -n | more
 UID PID PPID PGID SID CLS PRI STIME TTY TIME CMD
 root 0 0 0 0 SYS 96 Mar 03 ? 0:01 sched
 root 1 0 0 0 TS 59 Mar 03 ? 1:13 /etc/init -r
 root 2 0 0 0 SYS 98 Mar 03 ? 0:00 pageout
 root 3 0 0 0 SYS 60 Mar 03 ? 4786:00 fsflush
 root 61 1 61 61 TS 59 Mar 03 ? 0:00 /usr/lib/sysevent/syseventd
 root 64 1 64 64 TS 59 Mar 03 ? 0:08 devfsadmd
 root 73 1 73 73 TS 59 Mar 03 ? 30:29 /usr/lib/picl/picld
 root 256 1 256 256 TS 59 Mar 03 ? 2:56 /usr/sbin/rpcbind
 root 259 1 259 259 TS 59 Mar 03 ? 2:05 /usr/sbin/keyserv
 root 284 1 284 284 TS 59 Mar 03 ? 0:38 /usr/sbin/inetd -s
 daemon 300 1 300 300 TS 59 Mar 03 ? 0:02 /usr/lib/nfs/statd
 root 302 1 302 302 TS 59 Mar 03 ? 0:05 /usr/lib/nfs/lockd
 root 308 1 308 308 TS 59 Mar 03 ? 377:42 /usr/lib/autofs/automountd
 root 319 1 319 319 TS 59 Mar 03 ? 6:33 /usr/sbin/syslogd

  Print out status information of various processes in the system:
ps -axj (BSD) , ps -efjc (SVR4)

  Daemons (background processes) with root privileges, no
controlling terminal, parent process is init

Maria Hybinette, UGA
41

Process Creation: Execution &
Address Space in UNIX

  In UNIX process fork()-exec()
mechanisms handles process creation and its
behavior:
» fork() creates an exact copy of itself (the parent)

and the new process is called the child process
» exec() system call places the image of a new

program over the newly copied program of the
parent

Maria Hybinette, UGA
42

fork() a child

Shared
 Program
(read only)

Copied
Data, heap

& stack

Data, heap,
& stack

Parent

pid = fork()

pid == 0 pid == 5

Child (can only
have 1 parent) Parent

Maria Hybinette, UGA
43

Example: parent-child.c

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main()
 {
 int i;
 pid_t pid;

 pid = fork();
 if(pid > 0)

 { /* parent */
 for(i = 0; i < 1000; i++)
 printf(“\tPARENT %d\n”, i);

}
 else

 { /* child */
 for(i = 0; i < 1000; i++)

 printf(“\t\tCHILD %d\n”, i);

}
 }

{saffron} parent-child
 PARENT 0
 PARENT 1
 PARENT 2
 CHILD 0
 CHILD 1
 PARENT 3
 PARENT 4
 CHILD 2
 .
 .

Maria Hybinette, UGA
44

Things to Note

  i is copied between parent and child
  The switching between parent and child

depends on many factors:
» Machine load, system process scheduling, …

  I/O buffering effects the output shown
» Output interleaving is non-deterministic

–  Cannot determine output by looking at code

Maria Hybinette, UGA
45

Process Creation: Windows

  Processes created via 10 params CreateProcess()
  Child process requires loading a specific program into

the address space.
BOOL WINAPI CreateProcess(

 LPCTSTR lpApplicationName,

 LPTSTR lpCommandLine,

 LPSECURITY_ATTRIBUTES lpProcessAttributes,

 LPSECURITY_ATTRIBUTES lpThreadAttributes,

 BOOL bInheritHandles,

 DWORD dwCreationFlags,

 LPVOID lpEnvironment,

 LPCTSTR lpCurrentDirectory,

 LPSTARTUPINFO lpStartupInfo,

 LPPROCESS_INFORMATION lpProcessInformation);

Maria Hybinette, UGA
46

Process Termination

  Process executes last statement and asks the operating
system to delete it by using the exit() system call.

»  Output data from child to parent (via wait).
»  Process’ resources are deallocated by operating system.

  Parent may terminate execution of children processes
(abort).

»  Child has exceeded allocated resources.
»  Task assigned to child is no longer required.
»  Parent is exiting.

–  Some Operating system does not allow child to continue if its
parent terminates.

  Cascading termination (initiated by system to kill of children of
parents that exited).

–  If a parents terminates children are adopted by init() - so they
still have a parent to collect their status and statistics

Maria Hybinette, UGA
47

Cooperating Processes

  Independent process cannot affect or be affected by
the execution of another process.

  Cooperating process can affect or be affected by
the execution of another process

» Advantages of process cooperation
–  Information sharing
–  Computation speed-up
–  Modularity
–  Convenience

» Requirement: Inter-process communication (IPC)
mechanism.

Maria Hybinette, UGA
48

Two Communicating Processes

  Concept that we want to implement

Process
Chat
Maria
“A”

Process
Chat

Gunnar
“B”

Hello Gunnar!

Hi Nice to Hear
from you!

Maria Hybinette, UGA
49

On the path to communication…

  Want: A communicating processes
  Have so far: Forking – to create processes
  Problem:

» After fork() is called we end up with two independent
processes.

» Separate Address Spaces

  Solution? How do we communicate?

Maria Hybinette, UGA
50

File: The Unix Way

  One easy way to communicate is to use files.
» Process A writes to a file and process B reads from

it

  File descriptors
» Mechanism to work with files
» Used by low level I/O

–  Open(), close(), read(), write()
»  file descriptors generalize to other communication

devices such as pipes and sockets

Maria Hybinette, UGA
51

File Descriptor Table

Big Picture

Stack Pointer

Program Counter

fd 0
fd 1
fd 2
fd 3

File status flags

offet

Vnode pointer

File Table Entry

PCB

Maria Hybinette, UGA
52

Other Methods (Right now assume
we are on a ‘local’ computer)

  Pipes
  Sockets (starting thursday)
  Signal
  Shared Memory
  Messages (this paradigm also extends to

Remote Machines)

Maria Hybinette, UGA
53

Communication Models

  Shared memory model
» Share memory region for communication
» Read and write data to shared region
» Requires synchronization (e.g., locks)
»  faster
» Setup time

  Message Passing model
» Communication via exchanging messages

Maria Hybinette, UGA
54

Communication Models

…

Kernel

Process A M

Process B M

M

1

2

…

Kernel

Process A

Process B

1

2
Shared memory

Message Passing Shared Memory

Maria Hybinette, UGA
55

Communication Examples

  Within a single computer
» Pipes,

–  Unamed: only persist as long as process lives
–  Named Pipes (FIFO)- looks like a file (mkfifo filename,
attach, open, close, read, write)!

  http://developers.sun.com/solaris/articles/named_pipes.html

» Message Passing (Queues)
» Shared Memory (next HW)

  Distributed System (remote computers, connected via
cable, air e.g., WiFi) - Later

»  TCP/IP sockets (Project)
» Remote Procedure Calls (next, to next HW)
» Remote Method Invocations (RMI, maybe HW)
» Message passing libraries: MPI, PVM

Maria Hybinette, UGA
56

Message Passing Systems

  NO shared state
» Communicate across address spaces and

protection
» Agreed protocol

  Generic API
» send(dest, &msg)
» recv(src, &msg)

  What is the dest and src?
»  pid
»  File: e.g., pipe
» Port, network address,
» Unspecified source (any source, any message)

Maria Hybinette, UGA
57

Direct Communication

  Explicitly specify dest and src process by an
identifier

  Multiple buffers:
» Receiver

–  If it has multiple senders (then need to search
through a ‘buffer(s)’ to get a specific sender)

» Sender

  What is the dest and src?
»  pid
»  File: e.g., pipe
» Port, network address,
» Unspecified source (any source, any message)

To: Amy

To: Homer

Maria Hybinette, UGA
58

Indirect Communication

  dest and src are (unique) queues
  Uses a unique shared queue, allows many

to many communication :
» messages sorted FIFO
» messages are stored as a sequence of bytes
»  get a message queue identifier:

!int queue_id = msgget (key, flags)

  sending messages:
» msgsnd(queue_id, buffer, size, flags)!

  receiving messages (type is priority):
» msgsnd(queue_id, buffer, size, type,
flags)!

Maria Hybinette, UGA
59

Mailboxes vs Pipes

  Same machine: Are there any differences
between a mailbox and a pipe?

» Message types
–  mailboxes may have messages of different types
–  pipes do not have different types

  Buffer
» Pipes: Messages stored in contiguous bytes
» Mailbox – linked list of messages of different types

  Number of processes
»  Typically 2 for pipes (one sender & one receiver)
» Many processes typically use a mailbox (understood

paradigm)

Maria Hybinette, UGA
60

Shared Memory

  Efficient and fast way for processes to communicate
»  After setting up a shared memory segment

  Multiple processes can attach a segment of physical memory to
their virtual address space

»  Process: Create, Attach an Populate

  create a shared segment shmid = shmget(key, size, flags)!
  attach a sm to a data space: shmat(shmid, *shmaddr, flags)!
  detach (close) a shared segment: shmdt(*shmaddr)

 if more than one process can access segment, an outside protocol

or mechanism (like semaphores) should enforce consistency/
avoid collisions

Simple Example: shm_server.c and shm_client.c

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSZ 27

main()
{
 int shmid;
 key_t key;
 char *shm, *s;

 key = 5678; /* selected key by server */

 /* Locate the segment. */
 if ((shmid = shmget(key,SHMSZ,0666)) < 0)

 {
 perror("shmget"); exit(1);
 }

 /* Now we attach the segment to our data space. */
 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {
 perror("shmat"); exit(1);
 }

 /* read what the server put in the memory. */
 for (s = shm; *s != NULL; s++) putchar(*s);
 putchar('\n');

 /* change the first character in segment to '*' */
 shm = '';

 exit(0);
}

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSZ 27

main()
{
 int shmid;
 key_t key;
 char c, *shm, *s;

 key = 5678; /* selected key */

 /* Create the segment.*/
 if ((shmid = shmget(key,SHMSZ,IPC_CREAT | 0666)) < 0)

 {
 perror("shmget"); exit(1);
 }

 /* Now we attach the segment to our data space.*/
 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {
 perror("shmat"); exit(1);
 }

 /* put some things into the memory */
 for (s = shm, c = 'a'; c <= 'z'; c++) *s++ = c;
 *s = NULL;

 /* wait until first character is changed to '*' */
 while (*shm != '*') sleep(1);

 exit(0);
}

Maria Hybinette, UGA
62

Synchronization

  Synchronous – e.g., blocking (wait until command
is complete)

»  E.g.: Synchronous Receive:
–  receiver process waits until message is copied into user level

buffer

  Asynchronous – e.g., non-blocking (don’t wait)
»  E.g.,: Asynchronous Receive

–  Receiver process issues a receive operation and then carries on
with task

  Polling – comes back tosee if receive as completed
  Interrupt – OS issues an interrupt when receive has completed

Maria Hybinette, UGA
63

Synchronous:
OS view vs Programming Languages

  OS View:
»  synchronous send ⇒ sender blocks until message has

been copied from application buffers to kernel
» Asynchronous send ⇒ sender continues processing

after notifying OS of the buffer in which the message is
stored; have to be careful to not overwrite buffer until it
is safe to do so

  PL view:
»  synchronous send ⇒ sender blocks until message has

been received by the receiver
»  asynchronous send ⇒ sender carries on with other

tasks after sending message

Maria Hybinette, UGA
64

Buffering

  Queue of messages attached to link:
»  Zero capacity

–  0 message - link cannot have any messages waiting
–  Sender must wait for receiver (rendezvous)

» Bounded capacity
–  n messages - finite capacity of n messages
–  Sender must wait if link is full

» Unbounded capacity
–  infinite messages -
–  Sender never waits

Maria Hybinette, UGA
65

Remote Machine
Communication

  Socket communication
  Remote Procedure Calls (next week)
  Remote Method Invocation (Java)

