Chapter 3: Processes: Outline

CSCI 6730/ 4730
Operating Systems

RPC: Processes

1785

Maria Hybinette, UGA

Client-Server Remote Machine
Communication Mechanisms

@ Process Concept: views of a process
® Process Scheduling
e Operations on Processes
e Cooperating Processes
@ Inter Process Communication (IPC)
» Local
— Pipe
— Shared Memory
— Messages (Queues)
» Remote

— Lower Level: Sockets, MPI, Myrinet
— Higher Level: RPC, RMI, WebServices, CORBA,

Maria Hybinette, UGA

Remote Procedure Calls (RPC)

@ Socket communication (Possible bonus project)
® Remote Procedure Calls (Today, Project)
® Remote Method Invocation (Briefly, Project?)

Maria Hybinette, UGA

Remote Procedure Calls (RPC)

@ Inter-machine process to process
communication

» Abstract procedure calls over a network:
» rusers, rstat, rlogin, rup => daemons at ports
— Registered library calls (port mapper)
» Hide message passing I/O from programmer
@ Looks (almost) like a procedure call -- but
client invokes a procedure on a server.
» Pass arguments — get results

» Fits into high-level programming language
constructs

» Well understood

Maria Hybinette, UGA

Remote Procedure Calls

o RPC High level view:

» Calling process attempt to call a ‘remote’ routine on
server

» Calling process (client) is suspended

» Parameters are passed across network to a process
server

» Server executes procedure
» Return results across network
» Calling process resumes

Maria Hybinette, UGA

o Usually built on top sockets (IPC)

e stubs - client-side proxy for the actual procedure on
the server.

o The client-side stub locates the server and marshalls the
parameters.

o The server-side stub receives this message, unpacks
the marshalled parameters, and performs the procedure
on the server.

Maria Hybinette, UGA

Association 5 tuple { 1, local , local-p:

, ig , ign-p.)
Client/Server Model Using RPC
XDR pack
pl XDR unpack Each RPC
call paremeEE parameters | cal invocation by a
client/’m server client process calls
stub stub server a client stub,
return M K return which builds a
pac message and
results results h
sends it to a server
| kernel kernel stub

network

@ The server stub uses the message to generate a local procedure call to
the server

e If the local procedure call returns a value, the server stub builds a
message and sends it to the client stub, which receives it and returns the
result(s) to the client

Maria Hybinette, UGA

Binding

Registration data flow

Client Process Portmapper
—

Server Process

Procedure Call data flow

® RPC application is packed into a program and
is assigned an identifier (Port)

e Portmap : allocate port numbers for RPC
programs

Maria Hybinette, UGA

Remote Procedure Calls

@ Machine independent representation of data:

» Differ if most/least significant byte is in the high memory
address

» External data representation (XDR)

— Allows more complex representation that goes beyond:
o htonl() routines.

e Fixed or dynamic address binding

» Dynamic: Matchmaker daemon at a fixed address (given
name of RPC returns port of requested daemon)

Maria Hybinette, UGA

RPC Association Between
Machines

® Association between remote and local host
» 5 tuple

— {protocol, local-address, local-process, foreign-address,
foreign-process}

— Protocol : transport protocol typically TCP or UDP, needs to
be common between hosts

— Local/foreign address: Typically the IP address
— Local/foreign process: Typically the port number (not PID)

Maria Hybinette, UGA

Execution of RPC

Tllent Tessages Server

find port number|

Kernel places
port Pin user

//\\
/ From: client
To: server.

o:
Port: port P
<c0n(snls>/

—
kernel receives Port: P
itto user Qm kemel

Maria Hybinette, UGA

Tutorial (linux journal)

® rpcgen generates C code from a file written in
‘RPC language’ <name>. x,e.g., avg.x

Default output rpcgen Syntax Example
Header file <name>.h avg.h
XDR data type translate <name>_xdr.c avg._xdr.c

routines (from type in .h file)
stub program for server

<name>_svc.c avg_svc.c

stub program for client <name> clnt.c avg_clnt.c

@ Application programmer (you) write code for:
» Client routine (main program)
— ravg <host> <parameters>
» Server program (e.g., actual code to compute average)

Maria Hysineti, UGA - avg_proc.c

Application Routines of Interest

avg.x : RPC language file

e Server Routine:
» average_1_svc(input_data,):
— A avg_proc.c routine that is called from the server
stub that was generated by rpcgen
o Client Routine:

» average_prog_1()

— Local routine that parse parameter and that ultimately
calls a ‘local’ average_1 routine from generated
code in avg_clnt.c that packs parameters (also uses
routines in avg_xdr.c and sends code to server.

Maria Hybinette, UGA

ravg.c :Client Program(1)

const MAXAVGSIZE = 200;
struct input data
{
double input_data<200>;
}i

typedef struct input_data input data;

program AVERAGEPROG {
version AVERAGEVERS {
double AVERAGE (input data) = 1;
}=1;
} = 22855; /* ‘port number’ */

Maria Hybinette, UGA

ravg.c :Client Program (2)

/* client code - calls client stub, xdr client, xdr xerver, server stub, server routine */
#include "avg.h" /* header file generated by rpcgen */
#include <stdlib.h>

/* local routine client prototype can be whatever you want */
void averageprog_1(char* host, int argc, char *argv[])
{

CLIENT *clnt; /* client handle, rpc.h */
double £, kkkkkk *result 1, *dp,

char *endptr;

int i;

input_data average_1_arg; /* input data rpc struct */
average_1_arg.input_data.input _data_val = (double*) malloc (MAXAVGSIZE* sizeof (double));

dp = average_1_arg.input data.input data val; /* ptr to beginning of data */
average_1_arg.input_data.input _data len = argc - 2; /* set number of items */

for(i =1; i <= (argc - 2); i++)
{ /* str to d ASCII string to floating point nubmer */
£ = strtod(argv[i+l], &endptr);
printf("value = %e\n", f);
*dp = £;
dptt;

/* clnt_create(host, program, version, protocol)

* generic client create routine from rpc library

* program = AVERAGEPROG is the number 22855

* version = AVERAGEVERS is 1

* protocol = transfer protocol */

clnt = clnt_create(host, AVERAGEPROG, AVERAGEVERS, "udp");

if (clnt == NULL)

{ clnt_pcreateerror(host); /* rpc error library */
exit(1);

/* now call average routine 'just' like a local routine, but this will now go over network

* average 1 is definined in the client stub in avg_clnt.c that was generated by rpcgen
* send in ptr to the parameters or args in first field, and client handle in second
* field (created in clnt_create) average_l ultimately calls clnt_call() macro see
* man rpc, then calls the remote routine associated with the client handle
so AVERAGEPROG, VERSION */
result 1 = average 1(&average_l_arg, clnt);
if (result_1 == NULL)
{
clnt_perror(clnt, "call failed:");
}

*

clnt_destroy(clnt);
printf("average = %e\n", *result 1);

} /* end average 1 prodedure */ /* next slide main() */

ravg.c :Client Program (3)

avg proc.c : Server Program (1)

int main(int arge, char* argv[])
{
char *host;

/* check correct syntax */

if(arge < 3)

{
printf("usage: %s server_host value ...\n", argv[0]);
exit(1);

if (argc > MAXAVGSIZE + 2)

{
printf ("Two many input values\n");
exit(2);

/* host name is in first parameter (after program name) */
host = argv[1];
averageprog_1(host, arge, argv);

#include <rpc/rpc.h>
#include "avg.h” /* avg.h generated rpcgen */
#include <stdio.h>

/* run locally on 'server' called by a remote client. */

static double sum avg;

/* routine notice the _1 the version number and notice the client handle, not used here, but

* still needs to be a parameter */
double * average_1(input_data *input, CLIENT *client)

{

/* input is parameters were marshaled by generated routine */

/* a pointer to a double, set to beginning of data array */

double *dp = input->input_data.input_data_val;

u_int i;

sum_avg = 0;

for(i = 1; i <= input->input_data.input data_len; i++) /* iterate over input */
{
sum_avg = sum avg + *dp; /* add what ptrs points to ('*' gets content) */
dp++;
}

sum_avg = sum avg / input->input data.input_data_len;
return(&sum_avg) ;

} /* end average 1 */ /* next is routine called from server stub generated by rpcgen */

avg proc.c : Server Program (1)

#include <rpc/rpc.h>
#include "avg.h” /* avg.h generated rpcgen */
#include <stdio.h>

/* run locally on 'server' called by a remote client. */

static double sum avg;

/* routine notice the _1 the version number and notice the client handle, not used here, but
* still needs to be a parameter */
double * average_1(input_data *input, CLIENT *client)
{
/* input is parameters were marshaled by generated routine */
/* a pointer to a double, set to beginning of data array */
double *dp = input->input_data.input_data_val;
u_int i;
sum_avg = 0;
for(i = 1; i <= input->input_data.input data_len; i++) /* iterate over input */
{
sum_avg = sum avg + *dp; /* add what ptrs points to ('*' gets content) */
dp++;
}

sum_avg = sum avg / input->input data.input_data_len;
return(&sum_avg) ;

} /* end average 1 */ /* next is routine called from server stub generated by rpcgen */

Compilation on client

avg_proc.c :Server Program (2)

* server stub 'average_l_svc function handle called in avg_svc that was
* generated by rpcgen

* FYI:

* result = (*local) ((char *)sargument, rqgstp);

* where local is (char *(*) (char *, struct svc_req *)) average 1_svc;
&)

double * average 1 _svc(input _data *input, struct svc_req *svc)
{
CLIENT *client;
return(average 1(input, client));

}

Compilation on server

rpcgen avg.x # generates:
avg_clnt.c, avg_svc.c, avg_xdr.c, avg.h
gcc ravg.c —c # generates .o
gcc avg_clnt.c -c
gcc avg_xdr.c -c

gcc -c ravg ravg.o avg_clnt.o avg_xdr.o -lnsl

Maria Hybinette, UGA

.thost

rpcgen avg.x # generates:

avg_clnt.c, avg_svc.c, avg_xdr.c, avg.h
gcc avg_proc.c -c
gcc avg_svc.c -c

gcc -o avg_svc avg_proc.o avg_svc.o avg_xdr.o -lnsl

Maria Hybinette, UGA

Running

@ Directly under your home directory on each
machine (client and server) create a file
named:

.rhost

® Add two or more lines in the format:

<machine name> <loginname>
® For example I added 3 lines:
odin maria
herc maria
atlas maria

Maria Hybinette, UGA

{maria:herc} avg_svc

{maria:odin} ravg atlas.cs.uga.edu12345

Maria Hybinette, UGA

See Textbook

Resources Remote Method Invocation

1. ® Remote Method Invocation (RMI) is a Java mechanism
similar to RPCs.
2. o RMI allows a Java program on one machine to invoke a
method on a remote object.
o Possible to Pass Objects(remote, local) as parameters
to remote methods (via serialization).

JVM
(1) Nice tutorial on RPC
(2) Linux journal tutorial uses avg.x o= ol) remose methog, JUM
(3) Sun’ s (now Oracle) original RPC user manual el “ocation
s

Maria Hybinette, UGA Maria Hybinette, UGA

Marshalling Parameters

o Client invoke method: someMethod on a
remote object Server

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)

{

implementation of someMethod

}

‘ stub | skeleton

A, B, someMethod
boolean return value 2

Maria Hybinette, UGA

