
Maria Hybinette, UGA

CSCI [4|6] 730
 Operating Systems

CPU Scheduling

Maria Hybinette, UGA
2

Status

!  Next project (after exam) – will be similar to last year BUT
using a different strategy – perhaps stride scheduling.

!  Scheduling (2-3 lectures, 2 before the exam – 3rd lecture
(if needed) will not on the exam)

!  Exam 1 coming up – Thursday Oct 6
» OS Fundamentals & Historical Perspective
» OS Structures (Micro/Mono/Layers/Virtual Machines)
»  Processes/Threads (IPC,/ RPC, local & remote)
»  Scheduling (material/concepts covered in 2 lectures, Tu, Th)
» ALL Summaries (all – form a group to review) 30%
» What you read part of HW
» Movie
» MINIX structure

Maria Hybinette, UGA
3

Scheduling Plans

!  Introductory Concepts
!  Embellish on the introductory concepts
!  Case studies, real time scheduling.

»  Practical system have some theory, and lots of
tweaking (hacking).

Maria Hybinette, UGA
4

CPU Scheduling Questions?

!  Why is scheduling needed?
!  What is preemptive scheduling?
!  What are scheduling criteria?
!  What are disadvantages and advantages of

different scheduling policies, including:
»  Fundamental Principles:

–  First-come-first-serve?
–  Shortest job first?
–  Preemptive scheduling?

»  Practical Scheduling:
–  Hybrid schemes (Multilevel feedback scheduling?) that

includes hybrids of SJF, FIFO, Fair Schedulers

!  How are scheduling policies evaluated?

Maria Hybinette, UGA
5

Why Schedule?
Management Resources

!  Resource: Anything that can be used by only a
single [set] process(es) at any instant in time

» Not just the CPU?

!  Hardware device or a piece of information
»  Examples:

–  CPU (time),
–  Tape drive, Disk space, Memory (spatial)
–  Locked record in a database (information, synchronization)

!  Focus today managing the CPU

Maria Hybinette, UGA
6

I/O Device

CPU

What is the Point?
 Can Scheduling make a difference?

Process A

Process B

I/O

No Schedule

A Schedule

Time

I/O Device

CPU

!  No Schedule vs A Schedule
!  Schedule another waiting process while current CPU

relinquish to CPU due to I/O.

Maria Hybinette, UGA
7

Resource Classification

!  Pre-emptable
» Can forcibly removed the resource from a process

(and possibly return it later) without ill effects.

!  Non-preemptable
» Cannot take a resource away from its current ‘owner’

without causing the computation to fail.

Maria Hybinette, UGA
8

“Resource” Classification

!  Preemptable (forcible removable)
» Characteristics (desirable):

–  small state (so that it is not costly too preempt it).
–  only one resource

»  Examples:
–  CPU or Memory are typically a preemptable resources

!  Non-preemptable (not forcible removable)
» Characteristics:

–  Complicated state
–  May need many instances of this resource

»  Examples:
–  CD recorder - once starting to burn a CD needs to record

to completion otherwise the end up with a garbled CD.
–  Blocks on disk

Maria Hybinette, UGA
9

Resources Management Tasks

!  Allocation (Space):
»  Space Sharing: Which process gets which resource

(control access to resource)?

!  Scheduling (Time):
»  Time Sharing: In which order should requests be

serviced; Which process gets resource and at what
time (order and time)?

Time and
Space

Maria Hybinette, UGA
10

The CPU Management Team

!  (how?)“The Dispatcher” (low level mechanism – the worker)
»  Context Switch

–  Save execution of old process in PCB
–  Add PCB to appropriate queue (ready or blocked)
–  Load state of next process from PCB to registers
–  Switch from kernel to user mode
–  Jump to instruction in user process

!  (when?) “The Scheduler” (higher level mechanism - upper
management,) (time)

»  Policy to determine when a specific process gets the CPU
!  (where?) Sometimes also “The Allocator” (space)

»  Policy to determine which processes compete for which CPU
»  Needed for multiprocessor, parallel, and distributed systems

Maria Hybinette, UGA
11

Dispatch Mechanism

!  OS runs dispatch loop:
while(forever)
{
 run process A for some time slice
 stop process A and save its context
 load context of another process B

 jump to proper location and restart program
}

!  How does the dispatcher gain control?

 Dispatcher is the module that gives control of the CPU to
the process selected by the scheduler.

Maria Hybinette, UGA
12

Same as - How does OS (scheduler) get control?
!  Synchronous interrupts, or traps

»  Event internal to a process that gives control to OS
»  Examples: System calls, page faults (access page not in main

memory), or errors (illegal instruction or divide by zero)
!  Asynchronous interrupts

»  Events external to a process, generated by hardware
»  Examples: Characters typed, or completion of a disk transfer

How are interrupts handled?
!  Each type of interrupt has corresponding routine (handler or

interrupt service routine (ISR)
!  Hardware saves current process and passes control to ISR

Entering System Mode

Maria Hybinette, UGA
13

Option 1: Cooperative Multi-tasking
!  (internal events) Trust process to relinquish CPU

through traps
»  Trap: Event internal to process that gives control to OS
»  Examples: System call, an explicit yield, page fault

(access page not in main memory), or error (illegal
instruction or divide by zero)

!  Disadvantages: Processes can misbehave
»  By avoiding all traps and performing no I/O, can take over

entire machine
»  Only solution: Reboot!

!  Not performed in modern operating systems

How does the dispatcher run?

Maria Hybinette, UGA
14

How does dispatcher run?

Option 2: (external stimulus) True Multi-tasking
!  Guarantee OS can obtain control periodically
!  Enter OS by enabling periodic alarm clock

»  Hardware generates timer interrupt (CPU or separate chip)
»  Example: Every 10 ms

!  User must not be able to mask timer interrupt
!  Dispatcher counts interrupts between context switches

»  Example: Waiting 20 timer ticks gives the process 200 ms time
slice

»  Common time slices range from 10 ms to 200 ms (Linux 2.6)

Maria Hybinette, UGA
15

Scheduler Types

!  Non-preemptive scheduler (cooperative multi-tasking)
»  Process remains scheduled until voluntarily relinquishes

CPU (yields) – Mac OS 9.
»  Scheduler may switch in two cases:

–  When process exits
–  When process blocks (e.g. on I/O)

!  Preemptive scheduler (Most modern OS, including
most UNIX variants)

»  Process may be ‘de-scheduled’ at any time
»  Additional cases:

–  Process creation (another process with higher process
enters system)

–  When an I/O interrupt occurs
–  When a clock interrupt occurs

Maria Hybinette, UGA

Maria Hybinette, UGA
17

Scheduling Goals:
Performance Metrics

!  There is a tension between maximizing:
»  System’s point of view: Overall efficiency (favoring

the whole, the forest, the whole system).
» User’s point of view: Giving good service to

individual processes (favoring the ‘individuals’, the
trees).

Satisfy both : fast process response time
(low latency) and high process throughput.

Maria Hybinette, UGA
18

System View:
Threshold - Overall Efficiency

!  System Load (uptime):
»  The amount of work the system is doing

!  Throughput:
»  Want many jobs to complete per unit time

!  System Utilization:
»  Keep expensive devices busy
»  Jobs arrive infrequently and both

throughput and system utilization is low
!  Example: Lightly loaded system - jobs

arrive infrequently - both throughput and
system utilization is low.

!  Scheduling Goal: Ensure that throughput
increase linearly with load

Offered Load

Th
ro

ug
hp

ut

Maria Hybinette, UGA
19

Utilization / Throughput
!  Problem type:

»  3 jobs:
–  1st job enters at time 0,
–  2nd job at time 4, and
–  3rd job at 8 second

»  Each job takes 2 seconds to process.
»  Each job is processed immediately – unless a job is on

the CPU, then it waits

!  Questions:
»  (1) What is the CPU utilization at time t = 12?

–  Consider the CPU utilization from t =0 to t=12.
–  Percentage used over a time period.

»  (2) What is the I/O device utilization at time t = 12?
»  (3) What is the throughput (jobs/sec) at time = 12 – (10)

Job 1 Job 2 Job 3

0 4 8 12

Maria Hybinette, UGA
20

User View: Good Service
(often measured as an average)

!  Ensure that processes quickly start, run and completes.
!  (average) Turnaround time: The time between job arrival and

job completion.
!  (average) Response time: The length of time when the job

arrive and when if first start to produce output
»  e.g. interactive jobs, virtual reality (VR) games, click on mouse

see VR change
!  Waiting time: Time in ready queue - do not want to spend a lot

of time in the ready queue
»  Better ‘scheduling’ quality metric than turn-around time since

scheduler does not have control over blocking time or time a
process does actual computing.

!  Fairness: all jobs get the same amount of CPU over time
!  Overhead: reduce number of context switches
!  Penalty Ratio: Elapsed time / Required Service time

(normalizes according to the ‘ideal’ service time) - next week

Maria Hybinette, UGA
21

Which Criteria is Appropriate?
 Depends on Expectation of the System

!  All Systems:
»  Fairness (give processes a fair shot to get the CPU).
»  Overall system utilization
»  Policy enforcement (priorities)

!  Batch Systems (not interactive)
»  Throughput
»  Turn-around time
»  CPU utilization

!  Real-time system (real time constraints)
»  Meeting deadlines (avoid losing data)
»  Predictability - avoid quality degradation in multimedia

systems.

Maria Hybinette, UGA
22

Gantt Chart (it has a name)!

!  Shows how jobs are scheduled over time on the
CPU.

A

Time

B C D
0 10 14.2 17.3 22

Maria Hybinette, UGA
23

A Simple Policy: First-Come-
First-Served (FCFC)

!  The most basic scheduling policy is first-
come-first-served, also called first-in-first-out
(FIFO).

»  FCFS is just like the checkout line at the Publix.
Maintain a queue ordered by time of arrival.
GetNextToRun selects from the front of the queue.

!  FCFS with pre-emptive time slicing is called
round robin (more on that later)

A Simple Policy: FCFSA Simple Policy: FCFS

The most basic scheduling policy is first-come-first-served,
also called first-in-first-out (FIFO).
• FCFS is just like the checkout line at the QuickiMart.

Maintain a queue ordered by time of arrival.
GetNextToRun selects from the front of the queue.

• FCFS with preemptive timeslicing is called round robin.

Wakeup or
ReadyToRun GetNextToRun()

ready list

List::Append

RemoveFromHead

CPU

Maria Hybinette, UGA
24

Evaluate: First-Come-First-
Served (FCFS)

!  Idea: Maintain FIFO list of jobs as they arrive
» Non-preemptive policy
» Allocate CPU to job at head of list (oldest job).

Time

B C

0 10

Job Arrival CPU burst
A 0 10
B 1 2

C 2 4

A

Average wait time:

Average turnaround time (enter/exit system):

12 16
0 2 14 4 6 8

Maria Hybinette, UGA
25

First-Come-First-Served (FCFS)

!  Idea: Maintain FIFO list of jobs as they arrive
» Non-preemptive policy
» Allocate CPU to job at head of list (oldest job).

Time

B C

0 10

Job Arrival CPU burst
A 0 10
B 1 2

C 2 4

A

Average wait time:
(0 +(10-1)+(12-2))/3 = 6.33

Average turnaround time (enter/exit system):
 ((10-0) +(12-1)+(16-2))/3 = 11.67

12 16
0 2 14 4 6 8

Maria Hybinette, UGA
26

FCFS Discussion

!  Advantages:
»  Simple implementation (less error prone)
»  Throughput is as good as any non-pre-emptive policy, if the

CPU is the only schedulable resource in the system
»  Fairness – sort of – everybody eventually gets served (but

not in terms of favoring long jumps NOT FAIR!).
»  Intuitive

!  Disadvantages:
» Waiting time depends on arrival order
» Response time: Tend to favor long bursts (CPU bound

processes)
–  But : better to favor short bursts since they will finish quickly

and not crowd the ready list.
» Does not work on time-sharing systems (kind of! unless it

is ‘pre-emptive’).

Maria Hybinette, UGA
27

!  Response time rise rapidly with load and are
unbounded.

» At 50% utilization, a 10% load increase, increase
response time by 10% (this is OK!)

» At 90% utilization, a 10% load increase, increase
response time by 10 times. (Oh my!).

Behavior of FCFS QueuesBehavior of FCFS Queues
Assume: stream of task arrivals with mean arrival rate ?.

Poisson distribution: exponentially distributed inter-arrival gap.
At any time, average time to next arrival is 1/ ?.

Tasks have normally distributed service demands with mean D, i.e., each
task requires D units of time at the service center to complete.

Then: Utilization U = ?D (Note: 0 <= U <= 1)
Probability that service center is busy is U, idle is 1-U.

R

U 1(100%)

Service center saturates as 1/ ?
approaches D: small increases
in ? cause large increases in the
expected response time R.

service
center

“Intuitively”, R = D/(1-U)

Small increase in load
c a u s e s a l a r g e
i n c r e a s e i n t h e
expected response
time

Maria Hybinette, UGA
28

Pre-emptive FCFC: Round-Robin (RR)

!  Idea: Run each job/burst for a time-slice (e.g.,
q=1) and then move to back of FIFO queue

»  Preempt job if still running at end of time-slice

B
0 1

Job Arrival CPU burst
A 0 10
B 1 2

C 1 4

A

Average wait:

C
2

A B C A C A C A

Maria Hybinette, UGA
29

Pre-emptive FCFC: Round-Robin (RR)

!  Another Example (quantum 1): Suppose jobs
arrives at ‘about’ the same time (0), but A is
before B and B is before C (time difference is
insignificant, but not in terms of ordering)

B
0

Job Arrival CPU burst
A 0 3
B 0 2

C 0 1

A

Average response time:

A B

C

A C A

A A B
E: preemptive overhead

B

Maria Hybinette, UGA
30

Pre-emptive FCFC: Round-Robin (RR)

!  Another Example (quantum 1): Suppose jobs
arrives at ‘about’ the same time (0), but A is
before B (time difference is insignificant, but
not in terms of ordering)

B
0

Job Arrival CPU burst
A 0 5
B 0 1

A

Average response time:
 (5+6)/2 = 5.5

(2+6+e)/2 = 4 + e

A B A A

A

E: preemptive overhead

A A

A A A

•  Response time: RR reduces response
time for short jobs

•  Fairness: RR reduces variance in wait
time (but older jobs wait for newly
arrived jobs)

•  Throughput: extra context switch
overhead (a Q is 5-100 ms, e is on the
order of micro seconds (us)

Maria Hybinette, UGA
31

RR Discussion

!  Advantages
»  Jobs get fair share of CPU
»  Shortest jobs finish relatively quickly

!  Disadvantages
»  Poor average waiting time with similar job lengths

–  Example: 3 jobs that each requires 3 time slices
–  RR: All complete after about 9 time slices
–  FCFS performs better!

!  ABCABCABC = 2+5+6=13/3
!  AAABBBCCC = 0+3+6=9/3

»  Performance depends on length of time-slice
–  If time-slice too short, pay overhead of context switch
–  If time-slice too long, degenerate to FCFS (see next slide)

Maria Hybinette, UGA
32

RR Time-Slice Consideratoins

!  IF time-slice too long, degenerate to problem of FCFS
(short jobs wait behind long jobs).
»  Example:

–  Job A w/ 1 ms compute and 10 ms I/O
–  Job B always computes
–  Time-slice is 50 ms

!  What about a really short time slices?

B A CPU

Disk Idle

Goal: Adjust length of time-slice to match CPU burst

Time

B A

A A Idle

Maria Hybinette, UGA
33

Minimizing Response Time: SJF

!  Shortest job first, optimal if the goal is to
minimize response time or/and wait time.

»  Express lanes at public (fewer groceries, prioritize
those customers).

!  Idea: get short jobs out of the way quickly to
minimize the number of jobs waiting while a
long job runs.

!  Lets review FCFC and see how SJF improves
on FCFC (hopefully!).

Maria Hybinette, UGA
34

Another Example FIFO

Time

X C

0

Job Arrival CPU burst
X 0 4

A 1 10

B 3 2

C 2 4

A

Average wait time:

Average turnaround time:

2

B
4 14 18 20

Maria Hybinette, UGA
35

Shortest-Job-First (SJF)

!  Idea: Minimize average wait time by running shortest
CPU-burst next

»  Non-preemptive policy
»  Use FCFS if jobs are of same length

Time

X C

0 6

Job Arrival CPU burst
X 0 4

A 1 10

B 3 2

C 2 4

A

Average wait time:

Average turnaround time:

2
B

4 10 20

Maria Hybinette, UGA
36

Optimality (Book)

!  Proof Outline: (by contraction) SJF is not optimal
»  Suppose we have a set of bursts ready to run and we run them in

some order OTHER than SJF.
–  OTHER is the one that is Optimal

»  Then there must be some burst b1 that is run before the shortest burst
b2 (otherwise OTHER is SJF).

–  b1 > b2

–  If we reversed the order we would:
!  increase the waiting time of b1 by b2 and (+b2)
!  decrease the waiting time of b2 by b1 (-b1)

»  Net decrease in the total (waiting time)!!!!!
!  Continuing in this manner to move shorter bursts ahead of longer

ones, we eventually end up with the bursts sorted in increasing
order of size (bubble sort). And now we are left with SJF.

b2 b1

Maria Hybinette, UGA
37

Optimality!!!

!  SJF only optimal when all jobs are available
simultaneously.

!  See book for example why this is true.

Maria Hybinette, UGA
38

Shortest-Time-to-Completion-
First (STCF/SCTF)

!  Idea: Add preemption to SJF
»  Schedule newly ready job if it has shorter than

remaining burst for running job

B D
0 8

Job Arrival CPU burst
A 0 8
B 1 4

C 2 9

D 3 5

A

SJF Average wait:

STCF Average wait:

12 17
C

26

A A B D C
0 1 5 10 17 26

Maria Hybinette, UGA
39

SJF Discussion

!  Advantages
»  Provably optimal for minimizing average wait time (with no

preemption)
–  Moving shorter job before longer job improves waiting time

of short job more than it harms waiting time of long job
» Helps keep I/O devices busy

!  Disadvantages
»  Problem: Cannot predict future CPU burst time
» Approach: Make a good guess - Use past behavior to

predict future behavior

!  Starvation: Long jobs may never be scheduled

Maria Hybinette, UGA
40

Predicting Bursts in SJF

!  Key Idea: The past is a good predictor of the future (an
optimistic idea) – ‘habits’

» Weighted averages of the most recent burst and the previous
guesses (recursive)

» Approximate next CPU-burst duration from the durations of the
previous burst and the previous guess). Average them.

» Where we are going:
–  A recursive formula: accounts for entire past history, previous burst

always important – previous guesses and their importance drops of
‘exponentially’ with the time of their burst.

guess =
previous burst

2
+

previous guess
2

Maria Hybinette, UGA
41

Example

!  Suppose process p is given default expected burst
length of 5 time units when it is initially run.

!  Assume: The ACTUAL bursts length are:
»  10, 10, 10, 1, 1,1
» Note that these are of-course these are not known in

advance.

!  The predicted burst times for this process works as
follows:

»  Let G(1) = 5 as default value
» When process p runs, its first burst actually runs 10 time

units (see above)

!  so A(1) = 10.

G(n + 1) = w ∗A(n) + (1− w)G(n)

Maria Hybinette, UGA
42

!  We could weigh the importance of the past
with the most recent burst differently (but
they need to add up to 1).

!  w = 1 (past doesn’t matter).
!  How do we get started – no bursts before we

start so what is the ‘previous’ burst G(1).
» G(1) is a default burst size (e.g., 5).

G(n + 1) = w ∗A(n) + (1− w)G(n)

Maria Hybinette, UGA
43

!  Let b1 be the most recent burst, b2 the burst
before that b3 the burst before that b4

guess =
previous burst

2
+

previous guess
2

guess =
b1

2
+

b2

4
+

b3

8
+

b4

16

Maria Hybinette, UGA
44

Example

!  G(1) = 5 as default value
!  A(1) = 10.

G(2) = 1/2 * G(1) + 1/2 A(1) = 1/2 * 5.00 + 1/2 * 10 = 7.5!
G(3) = 1/2 * G(2) + 1/2 A(2) = 1/2 * 7.50 + 1/2 * 10 = 8.75!
G(4) = 1/2 * G(3) + 1/2 A(3) = 1/2 * 8.75 + 1/2 * 10 = 9.38!

G(n + 1) = w ∗A(n) + (1− w)G(n)

Maria Hybinette, UGA
45

Priority Based (typical in modern
OSs)

!  Idea: Each job is assigned a priority
»  Schedule highest priority ready job
»  May be preemptive or non-preemptive
»  Priority may be static or dynamic

!  Advantages
»  Static priorities work well for real time systems
»  Dynamic priorities work well for general workloads

!  Disadvantages
»  Low priority jobs can starve
»  How to choose priority of each job?

!  Goal: Adjust priority of job to match CPU burst
»  Approximate SCTF by giving short jobs high priority

Maria Hybinette, UGA
46

How Well do the Algorithms
Stack UP

!  Utilization
!  Throughput
!  Turnaround time: The time between job arrival and job

completion.
!  Response time: The length of time when the job arrive and

when if first start to produce output
»  e.g. interactive jobs, virtual reality (VR) games, click on mouse

see VR change
!  Meeting Deadlines (not mentioned)
!  Starvation

Maria Hybinette, UGA
47

How to the Algorithms Stack
Up?

CPU
Utilization

Through
put

Turn
Around
Time

Response
Time

Deadline
Handling

Starvation
Free

FIFO Low Low High High No Yes

Shortest
Remaining
Time

Medium High Medium Medium No No

Fixed
Priority
Preemptive

Medium Low High High Yes No

Round
Robin

High Medium Medium Low No Yes

Maria Hybinette, UGA
48

Penalty Ratio (normalized to an
ideal system)

!  Comparison to an ideal system: How much time worse is
the turn-around time compared to an ideal system that
would only consist of ‘service time’ (includes waiting)

»  Note this really measure of how well the scheduler is doing.
!  Lower penalty ratio is better (actual elapsed time takes the

same time as an idea system).
!  Examples:

»  Value of “1” indicates ‘no’ penalty (the job never waits)
»  2 indicates it takes twice as long than an ideal system.

Total elapsed time (actual)

Service time: doing actual work (on CPU + doing I/O)
Penalty ratio

Maria Hybinette, UGA
49

Example using

!  First Come First Serve

!  Penalty Ratio – turn-around

time (over ideal)

Job Arrival CPU burst
A 0 3
B 1 5

C 3 2

D 9 5

E 12 5

Job Start
Time

Finish
Time

Waiting
Time

Penalty
Ratio

A 0 3 0 1.0
B 1 5 2 1.4

C 3 2 5 3.5

D 9 5 1 1.2

E 12 5 3 1.6

avg 2.2 1.74

A B
3

C
8 10

D E
15 20

Maria Hybinette, UGA
50

Example using (CPU Only)

!  First Come First Serve

!  Penalty Ratio – turn-around

time (over ideal – the burst
itself)

Job Arrival CPU burst
A 0 3
B 1 5

C 3 2

D 9 5

E 12 5

Job Start
Time

Finish
Time

Waiting
Time

Penalty
Ratio

A 0 3 0 1.0
B 1 5 2 1.4

C 3 2 5 3.5

D 9 5 1 1.2

E 12 5 3 1.6

avg 2.2 1.74

A B
3

C
8 10

D E
15 20

!  Shortest Burst worst PR.
!  Even worse:

!  long burst at 0, takes
100 units

!  short burst at 1
!  Wait 99.
!  (101-1)/1 = 100

3/3

7/5

Maria Hybinette, UGA
51

Multilevel Queue Scheduling

!  Classify processes and put them in different
scheduling queues

»  Interactive, batch, etc.

!  Different scheduling priorities depending on
process group priority

!  Schedule processes with highest priority first,
then lower priority processes.

!  Other possibility : Time slice CPU time
between the queues (higher priority queue
gets more CPU time).

Maria Hybinette, UGA
52

Multilevel Queue Scheduling

Maria Hybinette, UGA
53

Multilevel Feedback Queue

!  Give new processes
high priority and small
time slice (preference to
smaller jobs)

!  If process doesn’t finish
job bump it to the next
lower level priority
queue (with a larger
time-slice).

!  Common in interactive
system

Maria Hybinette, UGA
54

Case Studies: Early Scheduling
Implementations

!  Windows and Early MS-DOS
» Non-Multitasking (so no scheduler needed)

!  Mac OS 9
» Kernel schedule processes:

–  A Round Robin Preemptive (fair, each process gets a
fair share of CPU

»  Processes
–  schedules multiple (MACH) threads that use a

cooperative thread schedule manager
!  each process has its own copy of the scheduler.

Maria Hybinette, UGA
55

Case Studies: Modern
Scheduling Implementations

!  Multilevel Feedback Queue w/ Preemption:
»  FreeBSD, NetBSD Solaris, Linux pre 2.5
»  Example Linux: 0-99 real time tasks (200ms quanta),

100-140 nice tasks (10 ms quanta -> expired queue)
!  Cooperative Scheduling (no preemption)

»  Windows 3.1x, Mac OS pre3 (thread level)
!  O(1) Scheduling

»  time to schedule independent of number of tasks in
system

»  Linux 2.5-2.6.24 ((v2.6.0 first version ~2003/2004)
!  Completely Fair Scheduler

»  Maximizes CPU utilization while maximizing interactive
performance / Red/Black Tree instead of Queue

»  Linux 2.6.23+

