
Maria Hybinette, UGA

CSCI [4|6] 730
 Operating Systems

Synchronization Part 1 : The Basics

Maria Hybinette, UGA
2

Chapter 6: Process [& Thread]
Synchronization

!  Why is synchronization needed?
!  Synchronization Language/Definitions:

» What are race conditions?
» What are critical sections?
» What are atomic operations?

!  How are locks implemented?

Maria Hybinette, UGA
3

Why does cooperation require
synchronization? (Review)

!  Example: Two threads: Maria and Tucker share an
account with shared variable ‘balance’ in memory.

!  Code to deposit():

!  Both Maria & Tucker deposits money into account:
»  Initialization: balance = 100
» Maria: deposit(200)
»  Tucker: deposit(10)

void deposit(int amount)

{
balance = balance + amount;

}

deposit:

 load RegisterA, balance
 add RegisterA, amount

 store RegisterA, balance

!  Compiled to assembly:

Which variables are
shared? Which are private?

Maria Hybinette, UGA
4

Example Execution

1.  Initialization: balance = 100
2.  Maria: deposit(200)
3.  Tucker: deposit(10)

deposit:

 load RegisterA, balance
 add RegisterA, amount

 store RegisterA, balance

deposit (Maria):

 load RegisterA, 100
 add RegisterA, 200

 store RegisterA, balance

deposit (Tucker):

 load RegisterA, 300
 add RegisterA, 10

 store RegisterA, balance Ti
m

e
Memory:

 balance = 100
 RegisterA = 0

Memory:

 balance = 100
 RegisterA = 100

Memory:

 balance = 100
 RegisterA = 300

Memory:

 balance = 300
 RegisterA = 300

Memory:

 balance = 300
 RegisterA = 300

Memory:

 balance = 300
 RegisterA = 310

Memory:

 balance = 310
 RegisterA = 310

1,2, 3..
deposit

deposit(amount) { balance = balance + amount; }

Maria Hybinette, UGA
5

Concurrency
!  What happens if M & T deposit
“concurrently”?

»  Assume any interleaving is possible
»  No assumption about scheduler
»  Observation: When a thread is interrupted

content of registers are saved (and restored) by
interrupt handlers (dispatcher/context switcher)

–  Initialization: balance = 100
–  Maria: deposit(200)
–  Tucker: deposit(10)

deposit (Maria):

 load RegisterA, balance

 add RegisterA, 200

 store RegisterA, balance

deposit (Tucker):

 load RegisterA, balance

 add RegisterA, 10

 store RegisterA, balance

Ti
m

e

1. Memory:

 balance = 100
 RegisterA = 0

1. Memory:

 balance = 100
 RegisterA = 0

2. Memory:

 balance = 100
 RegisterA = 100

2. Memory:

 balance = 100
 RegisterA = 100

3. Memory:

 balance = 100
 RegisterA = 300

3. Memory:

 balance = 100
 RegisterA = 110

4. Memory:

 balance = 300
 RegisterA = 300

4. Memory:

 balance = 110
 RegisterA = 110

deposit:

 load RegisterA, balance
 add RegisterA, amount

 store RegisterA, balance

310? 300? 110?

deposit(amount) { balance = balance + amount; }

M
T
M

T
M
T

Maria Hybinette, UGA
6

What program data is (or is not)
shared?

!  Local variables are not shared (private)
»  Each thread has its own stack
»  Local variables are allocated on private stack

!  Global variables and static objects are shared
»  Stored in the static data segment, accessible by any

threads
»  Pass by (variable) ‘reference’ : &data1

!  Dynamic objects and other heap objects are shared
»  Allocated from heap with malloc/free or new/delete

Beware of Weird Bugs: Never pass, share, or store
a pointer * to a local variable on another threads
stack

Maria Hybinette, UGA
7

Race Condition

!  Results depends on the order of execution
» Result in non-deterministic bugs, hard to fine!

–  Deterministic : Input alone determines results, i.e., the
same inputs always produce the same results

!  Intermittent –
» A time dependent `bug’
»  a small change may hide the real bug (e.g., print

statements can hide the real bug because they slow
down processing time and consequently impact the
timing of the threads).

Maria Hybinette, UGA
8

How to avoid race conditions

!  Idea: Prohibit one or more threads from
reading and writing shared data at the same
time! ! Provide Mutual Exclusion (what?)

!  Critical Section: Part of program (or ‘slice”)
where shared memory is accessed

void credit(int amount)

{
int x = 5;

printf(“Adding money”);

balance = balance + amount;

}

void debit(int amount)

{
int i;

balance = balance - amount;

for(i = 0; i < 5; i++);

}

Critical Section

Maria Hybinette, UGA
9

THE Critical Section Problem?

!  Problem: Avoiding race conditions (i.e., provide
mutual exclusion) is not sufficient for having
threads cooperate correctly (no progress) and
efficiently:

» What about if no one gets into the critical section even if
several threads wants to get in? (No progress at ALL!)

» What about if someone waits outside the critical section
and never gets a turn? (starvation, NOT FAIR!)

Maria Hybinette, UGA
10

What We Want:
 Mutual Exclusion (!)

Process Maria

Process Tucker

Time

Maria enters her critical section
Maria leaves her critical section

Tucker attempts to enter
his critical section

Tucker is blocked,
and waits Tucker enters his

critical section Tucker leaves his
critical section

void deposit(int amount)
{

balance = balance + amount;
}

Maria Hybinette, UGA
11

Critical Section Problem: Properties

Memorize

Required Properties:
!  Mutual Exclusion:

» Only one thread in critical section at a time

!  Progress (e.g., someone gets the CS):
» Not block others out: if there are requests to enter the

CS must allow one to proceed
» Must not depend on threads outside critical section

–  If no one is in CS then someone must be let in!

!  Bounded waiting (starvation-free):
» Must eventually allow each waiting thread
»  to enter

It’s
Available

Maria Hybinette, UGA
12

Solve: THE Critical Section
Problem: “Proper” Synchronization

Required “Proper”ties :
!  Mutual Exclusion
!  Progress (someone gets the CS)
!  Bounded waiting (starvation-free, eventually you will run)

Desirable Properties:
!  Efficient:

»  Don’t consume substantial resources while waiting. Do
not busy wait (i.e., spin wait)

!  Fair:
»  Don’t make some processes wait longer than others

!  Simple: Should be easy to reason about and use

Maria Hybinette, UGA
13

Critical Section Problem: Need
Atomic Operations

!  Basics: Need atomic operations:
»  No other instructions can be interleaved (low level)
»  Completed in its entirety without interruption (no craziness)

!  Examples of atomic operations:
»  Loads and stores of words

–  load register1, B
–  store register2, A

»  Idea: : Code between interrupts on uniprocessors
–  Disable timer interrupts, don’t do any I/O

»  Special hardware instructions (later)
–  “load, store” in one instruction
–  Test&Set
–  Compare&Swap

Maria Hybinette, UGA
14

Disabling Interrupts

!  Kernel provides two system calls:
»  Acquire() and
»  Release()

!  No preemption when interrupts are off!
»  No clock interrupts can occur

!  Disadvantage:
»  unwise to give processes power to turn of

interrupts
–  Never turn interrupts on again!

»  Does not work on multiprocessors
!  When to use?:

»  But it may be good for kernel itself to disable
interrupts for a few instructions while it is
updating variables or lists

void Aquire()

{
disable interrupts

}

void Release()

{
enable interrupts

}

Who do you trust?
Do you trust your kernel?

Do you trust your friend’s kernel?
Do you trust your kernel’s friends?

Maria Hybinette, UGA
15

Software Solutions

!  Assumptions:
» We have an atomic load operation (read)
» We have an atomic store operation (assignment)

!  Notation [lock=true, lock=false]
»  True: means un-available (lock is set, someone has

the lock)
»  False: means available (e.g., lock is not set, as the

CS is available, no one is in the CS)

Maria Hybinette, UGA
16

Attempt 1: Shared Lock Variable

!  Single shared lock variable

!  Uses busy waiting
!  Does this work?

» Are any of the principles violated (i.e., does it ensure
mutual, progress and bounded waiting)?

boolean lock = false; // lock available shared variable
void deposit(int amount)
 {
 while(lock == true) {} /* while lock is set : wait */ ;
 lock = true; /* gets the lock */

 balance += amount; // critical section

 lock = false; /* release the lock */
 }

Entry CS:

CS:

Exit CS:

Maria Hybinette, UGA
17

Attempt 1: Shared Variable

!  M reads lock sees it as false
!  T reads lock sets it as false
!  M sets the lock
!  T sets the lock

Process Maria

Process Tucker

boolean lock = false; // shared variable
void deposit(int amount)
 {
 while(lock == true) {} /* wait */ ;
 lock = true;
 balance += amount; // critical section
 lock = false;
 }

Time

Enter CS

Enter CS

Two threads in critical section

Maria Hybinette, UGA
18

Attempt 1: Lock Variable
Problem & Lesson

Mutual
Exclusion

Progress
someone

gets the CS

Bounded
Waiting No
Starvation

Shared Lock
Variable X

!  Problems:
»  No mutual exclusion: Both processes entered the CS.

!  Lesson learned: Failed because two threads read the
lock variable simultaneously and both thought it was
its ‘turn’ to get into the critical section

Idea: Take Turns:
Add a variable that determine if it
is its turn or not!

Maria Hybinette, UGA
19

Attempt 2: Alternate (we want to be
fair)

!  Idea: Take turns (alternate) via a turn variable that
determines which thread’s turn it is to be in the CS

»  (set to thread ID’s: 0 or 1). We are assuming only 2 threads!

!  Does this work?
» Mutual exclusion?
»  Progress (someone gets the CS if empty)
»  Bounded waiting! it will become next sometime?

int turn = 0; // shared variable
void deposit(int amount)
 {
 while(turn == 1-tid) {} /* wait */ ; [me=0; 0 == 1]

 balance += amount; // critical section

 turn = 1-tid;
 }

Entry CS:

CS:

Exit CS:

Maria Hybinette, UGA
20

int turn = 0; // shared variable
void deposit(int amount)
 {
 while(turn == 1-tid) {} /* wait */ ;

 balance += amount; // critical section

 turn = 1-tid;
 }

Attempt 2: Alternate – Does it
work?

!  Initialize: Maria is ‘0’ & Tucker is
‘1’

!  M reads turn sees her turn
!  M done and change turn to other
!  T never requests CS no money!

0: Process Maria

1: Process Tucker

Time

Tucker is not interested in the CS (not deadlocked)?

Maria is blocking!

No progress!

Maria Hybinette, UGA
21

Attempt 2: Strict Alternation

!  Problems:
»  No progress:

–  if no one is in a critical section and a thread wants
in -- it should be allowed to enter

»  Also not efficient:
–  Pace of execution: Dictated by the slower of the

two threads. IF Tucker uses its CS only one per
hour while Maria would like to use it at a rate of 1000
times per hour, then Maria has to adapt to Tucker’s
slow speed.

Mutual
Exclusion

Progress
someone

gets the CS

Bounded
Waiting No
Starvation

Shared Lock
Variable No

Strict Alteration Yes No No Pace limited to slowest
process

Maria Hybinette, UGA
22

Attempt 2: Strict Alternation

!  Problem: Need to fix the problem of progress!

!  Lesson: Why did strict alternation fail?

»  Pragmatically: Problem with the turn variable is that
we need state information about BOTH processes.

–  We should not wait for a thread that is not interested!

!  Idea:
» We need to know the needs of others!
» Check to see if other needs it.

–  Don’t get the lock until the ‘other’ is done with it.

Maria Hybinette, UGA
23

Attempt 3: Check “other thread’s”
State then Lock

!  Idea: Each thread has its own lock; lock
indexed by tid (0, 1). Check other’s needs

!  Does this work? Mutual exclusion? Progress (someone
gets the CS if empty, no deadlock)? Bounded Waiting
(no starvation)?

boolean lock[2] = {false, false} // shared
void deposit(int amount)
 {
 while(lock[1-tid] == true) {} /* wait */ ;
 lock[tid] = true;

 balance += amount; // critical section

 lock[tid] = false;
 }

Entry CS:

CS:

Exit CS:

Maria Hybinette, UGA
24

boolean lock[2] = {false, false} // shared
void deposit(int amount)
 {
 while(lock[1-tid] == true) {} /* wait */;

 lock[tid] = true;

 balance += amount; // critical section

 lock[tid] = false;
 }

Attempt 3: Check then Lock

!  M checks if Tucker is interested and
he isn’t

!  T checks if Maria is interested and she
isn’t

!  Switch back to Maria she now sets his
lock

!  Switch Back to Tucker he sets his lock

0: Process Maria

1: Process Tucker

Time

Enter CS

Enter CS

Maria Hybinette, UGA
25

Attempt 3: Check then Lock

!  Problems:
»  No Mutual Exclusion

!  Lesson: Process locks the critical section
AFTER the process has checked it is available
but before it enters the section.

!  Idea: Lock the section first! then lock!

Mutual
Exclusion

Progress
someone

gets the CS

Bounded
Waiting No
Starvation

Shared Lock
Variable No

Strict Alteration Yes No No

Check then Lock No

Pace limited to slowest
process

Maria Hybinette, UGA
26

Attempt 4: Lock then Check

!  Idea: Each thread has its own lock; lock
indexed by tid (0, 1). Check other’s needs

!  Does this work? Mutual exclusion? Progress (someone
gets the CS if empty, no deadlock)? Bounded Waiting
(no starvation)?

boolean lock[2] = {false, false} // shared
void deposit(int amount)
 {
 lock[tid] = true; /* express interest */
 while(lock[1-tid] == true) {} /* wait */ ;

 balance += amount; // critical section

 lock[tid] = false;
 }

Entry CS:

CS:

Exit CS:

Maria Hybinette, UGA
27

boolean lock[2] = {false, false} // shared
void deposit(int amount)
 {
 lock[tid] = true;

 while(lock[1-tid] == true) {} /* wait */;

 balance += amount; // critical section

 lock[tid] = false;
 }

Attempt 4: Lock then Check

Mutual Exclusion?
!  Maria’s View: Once Maria sets her

lock:
»  Tucker cannot enter until Maria is done
»  Tucker already in CS, then Maria

blocks until Tucker leaves the CS
(someone always spins)

!  Tucker’s View: Same thing

Time

0: Process Maria

1: Process Tucker spins

So YES it Provided for Mutual Exclusion
Maria Hybinette, UGA

28

boolean lock[2] = {false, false} // shared
void deposit(int amount)
 {
 lock[tid] = true;

 while(lock[1-tid] == true) {} /* wait */;

 balance += amount; // critical section

 lock[tid] = false;
 }

Attempt 4: Lock then Check

!  Mutual Exclusion: Yes
!  Deadlock: Each thread waits for the

other. Each one thinks that the other
is in the critical section

Time

0: Process Maria

1: Process Tucker

Maria waits for Tucker

Tucker waits for Maria

Maria Hybinette, UGA
29

Attempt 4: Lock then Check

!  Problems:
»  No one gets the critical section!
»  Each thread ‘insisted’ on its right to get the CS and did

not back off from this position.
!  Lesson: Again a ‘state’ problem, a thread

misunderstood the state of the other thread
!  Idea: Allow a thread to back off to give the other a

chance to enter its critical section.

Mutual
Exclusion

Progress
someone gets

the CS

Bounded Waiting
No Starvation

Shared Lock
Variable No

Strict Alteration Yes No No

Check then Lock No

Lock then Check Yes No (deadlock)

Pace limited to slowest
process

Maria Hybinette, UGA
30

Attempt 5: Defer, back-off lock

!  Idea: Add an delay
boolean lock[2] = {false, false} // shared
void deposit(int amount)
 {
 lock[tid] = true;
 while(lock[1-tid] == true) /* spin for other to finish */
 {
 lock[tid] = false;
 delay;
 lock[tid] = true;
 }

 balance += amount; // critical section

 lock[tid] = false;
 }

Entry CS:

CS:

Exit CS:

Maria Hybinette, UGA
31

boolean lock[2] = {false, false}
void deposit(int amount)
 {
 lock[tid] = true;

 while(lock[1-tid] == true)
 lock[tid] = false;
 delay;
 lock[tid] = true;

 balance += amount; //critical section

 lock[tid] = false;
 }

Attempt 5: Deferral

!  Mutual Exclusion: Yes
!  Live Lock: sequence can be broken if

you are lucky!
»  Not really a deadlock (guaranteed not

to be able to proceed)
»  Not starvation - threads starves when a

process repeatedly loose to the other
threads, here both loose

Time

0: Process Maria

1: Process Tucker

OK: after you OK I go!

OK I go!

You go!

OK: after you OK: after you

Maria Hybinette, UGA
32

Attempt 5: Deferral

!  Problems:

Mutual
Exclusion

Progress
someone gets

the CS

Bounded Waiting
No Starvation

Shared Lock
Variable No

Strict Alteration Yes No No

Check then Lock No

Lock then Check Yes No (deadlock)

Deferral Yes
No

(not deadlock)
Not really

Pace limited to slowest
process

Maria Hybinette, UGA
33

Lessons

!  We need to be able to observe the state of
both processes

»  Lock not enough

!  We most impose an order to avoid this
‘mutual courtesy’; i.e., after you-after you

!  Idea:
»  use turn variable to avoid mutual courtesy

–  Indicates who has the right to insist on entering his
critical section.

Maria Hybinette, UGA
34

Attempt 6: Careful Turns

boolean lock[2] = {false, false} // shared
int turn = 0; // shared variable – arbitrarily set
void deposit(int amount)
 {
 lock[tid] = true; // I am interested in the lock
 while(lock[1-tid] == true) // *IS* the OTHER interested? If not get in!
 { //* WE know he is interested! (we both are)
 if(turn == 1-tid) // is it HIS turn then *I* SPIN

 // NOTE if it is MY turn keep the lock
 lock[tid] = false; // it is – so I will LET him get the lock.

 while(turn == 1 - tid) {}; // wait to my turn
 lock[tid] = true; // my turn – still wants the lock
 }
 balance += amount; // critical section
 turn = 1 - tid; // Set it to the other’s turn so he stops spinning */
 lock[tid] = false;
 }

Maria Hybinette, UGA
35

Dekker’s Algorithm

!  Mutual Exclusion: Two threads cannot be in
the critical region simultaneously. Suppose
they are then for each point of view:

»  P0 :
–  1. lock[0] = true
–  2. lock[1] = false

»  P1 :
–  3. lock[1] = true
–  4. lock[0] = false

!  P0 enters CS no later than P1
»  t2 < t4 (so P0 check lock[1] is false before

entering its CS)
»  t2 ? t3

–  after 3. lock[1] = true it remains true so t2 < t3
»  So: t1 < t2 < t3 < t4
»  But lock[0] cannot become false until P0 exits

and we assumed that both P0 and P1 were in
the CS at the same time. Thus it is impossible to
have checked flag at t4.

boolean lock[2] = {false, false}
int turn = 0;
void deposit(int amount)
 {
 lock[tid] = true;
 while(lock[1-tid] == true)
 {
 if(turn == 1-tid)
 lock[tid] = false;
 while(turn == 1 - tid){};
 lock[tid] = true;
 }
 balance += amount; // CS
 turn = 1 - tid;
 lock[tid] = false;
 }

Maria Hybinette, UGA
36

Attempt 6: Dekker’s Algorithm
(before 1965)

!  Take ‘careful’ turns

boolean lock[2] = {false, false} // shared
int turn = 0; // shared variable
void deposit(int amount)
 {
 lock[tid] = true;
 while(lock[1-tid] == true) // check other
 {
 if(turn == 1-tid) // Whose turn?
 lock[tid] = false; // then I defer

 while(turn == 1 - tid) {};
 lock[tid] = true;
 }
 balance += amount; // critical section
 turn = 1 - tid;
 lock[tid] = false;
 }

Maria Hybinette, UGA
37

Attempt 7: Peterson’s Simpler
Lock Algorithm

!  Idea: combines turn and separate locks (turn taking
avoids the deadlock)

!  When 2 processes enters simultaneously, setting turn
to the other releases the ‘other’ process from the
while loop (one write will be last).

!  Mutual Exclusion: Why does it work?
»  Key Observation: turn cannot be both 0 and 1 at the same time

boolean lock[2] = {false, false} // shared
int turn = 0; // shared variable
void deposit(int amount)
 {
 lock[tid] = true;
 turn = 1-tid; // set turn to other process
 while(lock[1-tid] == true && turn == 1-tid) {};
 balance += amount; // critical section
 lock[tid] = false;
 }

Maria Hybinette, UGA
38

Peterson’s Algorithm Intuition
(1981)

!  Mutual exclusion: Enter critical section if and only if
»  Other thread does not want to enter
»  Other thread wants to enter, but your turn

!  Progress: Both threads cannot wait forever at while() loop
»  Completes if other process does not want to enter
»  Other process (matching turn) will eventually finish

!  Bounded waiting
»  Each process waits at most one critical section

boolean lock[2] = {false, false} // shared
int turn = 0; // shared variable
void deposit(int amount)
 {
 lock[tid] = true;
 turn = 1-tid;
 while(lock[1-tid] == true && turn == 1-tid) {};
 balance += amount; // critical section
 lock[tid] = false;
 }

Maria Hybinette, UGA
39

Summary: Software Solutions

Mutual
Exclusion

Progress
someone gets

the CS

Bounded Waiting
No Starvation

Shared Lock
Variable No

Strict Alteration Yes No No

Check then Lock No

Lock then Check Yes No (deadlock)

Deferral Yes
No

(not deadlock)
Not really

Dekker Yes Yes Yes

Peterson Yes Yes Yes

Pace limited to slowest
process

Simpler

Maria Hybinette, UGA
40

2 Processes

!  So far, only 2 processes and it was tricky!
!  How about more than 2 processes?

Maria Hybinette, UGA
41

Lamport’s Bakery Algorithm
(1974)

!  Idea: Bakery -- each thread picks next highest ticket
(may have ties –ties broken by a thread’s priority
number)

!  A thread enters the critical section when it has the
lowest ticket.

!  Data Structures (size N):
»  choosing[i] : true iff Pi in the entry protocol
»  number[i] : value of ‘ticket’, one more than max
»  Threads may share the same number

!  Ticket is a pair: (number[tid], i)!
!  Lexicographical order: !

»  (a, b) < (c, d) : !
if(a < c) or if(a == c AND b < d)!

»  (number[j],j) < (number[tid],tid))
Maria Hybinette, UGA

42

Bakery Algorithm

choosing[tid] = true; // Enter bakery shop and get a number
(initialized to false)
number[tid] = max(number[0], … , number[n-1]) + 1; /*starts at
0 */
choosing[tid] = false;
for(j = 0; j < n; j++) /* checks all threads */
 {
 while(choosing[j]){}; // wait until j receives its number

 // iff j has a lower number AND is interested then WAIT
 while(number[j]!= 0 && ((number[j],j) < (number[tid],tid)));
 }
balance += amount;
number[tid] = 0; / //* unlocks

!  Pick next highest ticket (may have ties)
!  Enter CS when my ticket is the lowest (combination of number and

my tid)

Maria Hybinette, UGA
43

Baker’s Algorithm Intuition

!  Mutual exclusion:
»  Only enters CS if thread has smallest number

!  Progress:
»  Entry is guaranteed, so deadlock is not possible

!  Bounded waiting
»  Threads that re-enter CS will have a higher number than threads

that are already waiting, so fairness is ensured (no starvation)

choosing[tid] = true;
number[tid] = max(number[0], … , number[n-1]) + 1;
choosing[tid] = false;
for(j = 0; j < n; j++)
 while(choosing[j]){}; // wait until j is done choosing
 // wait until number[j] = 0 (not interested) or me smallest number
 while(number[j]!= 0 && ((number[j],j) < (number[tid],tid)));
balance += amount;
number[tid] = 0;

