
Maria Hybinette, UGA

CSCI [4|6] 730
 Operating Systems

Virtual Memory

Maria Hybinette, UGA
2

Virtual Memory Questions?

!  What is virtual memory and when is it useful?
!  What is demand paging?
!  What pages should be

»  resident in memory, and
» which should be replaced?

!  What is the working set model?

Maria Hybinette, UGA
3

Operating System’s Goals

!  Support processes when there is not enough
physical memory

»  Single process with very large address space
» Multiple processes with combined address spaces

!  User code should be independent of amount
of physical memory

» Correctness, if not performance

Maria Hybinette, UGA
4

The Illusion: “Virtual” Memory

!  OS provides an illusion of more
memory than is physically
available:

»  Large logical space but really
»  small physical memory

!  Why does this work?
» Only part of the program needs to

be in memory (at a particular
time) for execution

» Relies on key properties of user
processes

–  workload and
–  machine architecture (hardware)

Maria Hybinette, UGA
5

The Million Dollar Question?

!  How do the OS decide what is in “main”

memory and what is on disk?
!  How can we decide?

» Memory Access Patterns

Maria Hybinette, UGA
7

Observations: Memory Access
Patterns

!  Sequential memory accesses of a process are
predictable and tend to have locality of reference:

»  Spatial: reference memory addresses near previously
referenced addresses (in memory)

»  Temporal: reference memory addresses that have
referenced in the past

!  Processes spend majority of time in small portion
of code

»  Estimate: 90% of time in 10% of code
!  Implication:

»  Process only uses small amount of address space at any
moment

» Only small amount of address space must be resident in
physical memory

Maria Hybinette, UGA
8

Approach: Demand Paging

!  Bring in pages into
memory only when needed

»  Less memory
»  Less I/O
»  Faster response time?

!  Process viewed as a
sequence of page
accesses rather than
contiguous address space

Maria Hybinette, UGA
9

Virtual Memory Approach:
Intuition

!  Idea: OS keeps unreferenced pages on disk
»  Slower, cheaper backing store than memory

!  Process can run when not all pages are loaded into
main memory

!  OS and hardware cooperate to provide illusion of large
disk as fast as main memory

»  Same behavior as if all of address space in main memory
»  Hopefully have similar performance

!  Requirements:
»  OS must have mechanism to identify location of each

page in address space in memory or on disk
»  OS must have policy for determining which pages live in

memory and which (remain) on disk

Maria Hybinette, UGA
10

Virtual Address Space
Mechanisms

!  Each page in virtual address space maps to one of three
locations:

»  Physical main memory: Small, fast, expensive
»  Disk (backing store): Large, slow, cheap
»  Nothing (error): Free

Disk Storage

main memory

cache

registers

Smaller, faster
and more
expensive

Bigger, slower
and cheaper

Leverage memory
hierarchy of machine
architecture
Each layer acts as
“backing store” for the
layer above

Maria Hybinette, UGA
11

Virtual Address Space
Mechanisms

Extend page tables with an extra bit
to indicate whether it is in memory
or on disk (a resident bit):

!  valid (or invalid)!
!  Page in memory: valid bit set in page

table entry (PTE)
!  Page out to disk: valid bit cleared

(invalid)
–  PTE points to block on disk
–  Causes trap into OS when page is

referenced
–  Trap: page fault

1"
1"
1"
1"
0"

0"
0"

!"

Frame #" valid-invalid bit"

page table"

Maria Hybinette, UGA
12

Virtual Memory Mechanisms (cont)

The TLB factor: Hardware and OS cooperate to translate addresses
!  First, hardware checks TLB for virtual address

»  TLB hit: Address translation is done; page in physical memory
»  TLB miss:

–  Hardware or OS walk page tables
–  If PTE designates page is valid, then page in physical memory

!  Main Memory Miss: Not in main memory: Page fault (i.e.,
invalid)

»  Trap into OS (not handled by hardware)
»  [if memory is full)] OS selects victim page in memory to replace

–  Write victim page out to disk if modified (add dirty bit to PTE)
»  OS reads referenced page from disk into memory
»  Page table is updated, valid bit is set
»  Process continues execution

PTE in TLB?

CPU checks TLB

PTE in TLB?

Access page table

Page in MM?
OS Instructs CPU
to read the page

from disk

CPU generates
physical address

Update TLB
CPU activates
I/O hardware

Page transferred
from disk to

main memory

Memory
Full?

Page replacement

Page tables
updated

Yes

Yes

Yes

No

No

No

Page fault routine

Flow of “Paging” Operations

Maria Hybinette, UGA
14

Virtual Memory Policies

!  OS needs to decide on policies on page faults
concerning:

»  Page selection (When to bring in)
–  When should a page (or pages) on disk be brought into memory?
–  Two cases

!  When process starts, code pages begin on disk
!  As process runs, code and data pages may be moved to disk

»  Page replacement (What to replace)
–  Which resident page (or pages) in memory should be thrown out

to disk?

!  Goal: Minimize number of page faults
»  Page faults require milliseconds to handle (reading from disk)
»  Implication: Plenty of time for OS to make good decision

Maria Hybinette, UGA
15

The When: Page Selection

!  When should a page be brought from disk into memory?
!  Request paging: User specifies which pages are needed

for process
»  Problems:

–  Manage memory by hand
–  Users do not always know future references
–  Users are not impartial (and infact they may be wrong)

!  Demand paging: Load page only when page fault occurs
»  Intuition: Wait until page must absolutely be in memory
»  When process starts: No pages are loaded in memory
»  Advantage: Less work for user
»  Disadvantage: Pay cost of page fault for every newly

accessed page

Maria Hybinette, UGA
16

Page Selection Continued

!  Prepaging (anticipatory, prefetching): OS loads page
into memory before page is referenced

»  OS predicts future accesses (oracle) and brings pages
into memory ahead of time

–  How?
–  Works well for some access patterns (e.g., sequential)

»  Advantages: May avoid page faults
»  Problems? :

!  Hints: Combine demand or prepaging with user-
supplied hints about page references

»  User specifies: may need page in future, don’t need this
page anymore, or sequential access pattern, ...

»  Example: madvise() in Unix (1994 4.4 BSD UNIX)

Maria Hybinette, UGA
17

Virtual Page Optimizations

!  Copy-on-Write: on process creation allow
parent and child to share the same page in
memory until one modifies the page.

copy page C

Maria Hybinette, UGA
18

What happens if there is no free
frame?

!  Page replacement
»  find some page in memory, that is not really in use,

and swap it out.

!  Observation: Same page may be brought into
memory several times (so try to keep that one
in memory)

Maria Hybinette, UGA
19

Page Replacement Strategies
!  Which page in main memory should selected as victim?

»  Write out victim page to disk if modified (dirty bit set)
»  If victim page is not modified (clean), just discard (cheaper to

replace)

!  OPT: Replace page not used for longest time in future
»  Advantage: Guaranteed to minimize number of page faults
»  Disadvantage: Requires that OS predict the future

–  Not practical, but is good to use comparison (best you can do)

!  Random: Replace any page at random
»  Advantage: Easy to implement
»  Surprise?: Works okay when memory is not severely over-

committed (recall lottery scheduling, random is not too
shabby, in many areas)

D A B B A B A C D

3 Frames

Future

A
B
C

Maria Hybinette, UGA
20

Page Replacement Continued

!  FIFO: Replace page that has been in memory the longest
»  Intuition: First referenced long time ago, done with it now
»  Advantages:

–  Fair: All pages receive equal residency
–  Easy to implement (circular buffer)

»  Disadvantage: Some pages may always be needed
!  LRU: Replace page not used for longest time in past

»  Intuition: Use the past to predict the future
»  Advantages:

–  With locality, LRU approximates OPT (but look backwards)
»  Disadvantages:

–  Harder to implement, must track which pages have been
accessed

–  Does not handle all workloads well

MFR, LFU

MRU

LRU

Maria Hybinette, UGA
21

How to Evaluate Page Replacement
Algorithms?

!  Want: lowest page-fault rate (least #misses)
!  Idea: Keep track of memory references – test with

particular string of memory references and count
page faults (based on real data or generated)

!  Algorithm: Convert address to page location
»  Example: Assume 100 bytes per page and

–  Step 1: Assume the address sequence:
!  0100, 0210, 0250, 0300, 0350, 0380, 0400, 0160, 0250, 0505, 0100,

0110, 0230, 0350, 0450, 0450, 0500, 0500
–  Step 2: Convert address to a page reference string:

!  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
–  Step 3: Count page faults.

Maria Hybinette, UGA
22

Example: Counting Faults of
FIFO Page Replacement Algorithm

!  3 Frames are available
!  FIFO: Replace page that has been in memory the

longest
!  Count page faults ?

First IN is the one that is first out

Maria Hybinette, UGA
23

Page Replacement Example

OPT FIFO LRU
ABC

B

D

A

D

B

C

B

A

Page reference string: A B C A B D A D B C B
Three pages of physical memory

Maria Hybinette, UGA
24

Page Replacement Example

OPT FIFO LRU
ABC

B

D

A

D

B

C

B

A

A B C

D B C

D A C

D A B

C A B

A B C

A B D

B

A B C

A B D

C B D

Page reference string: A B C A B D A D B C B
Three pages of physical memory

5 7 5

Maria Hybinette, UGA
25

Page Replacement:
Adding More Memory

!  Add more physical memory, what happens to
performance?

»  Ideally the numbers of page faults should should decrease
as the number of available frames increases

»  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
»  If 1 page frame : Number of page faults? (lots)

–  12 page faults, one fault for every page
»  If 12 frames : Number of page faults? (fewer)

–  5 page faults

Maria Hybinette, UGA
26

First-In-First-Out (FIFO) Algorithm: Add
Memory (3 Frames to 4 Frames)

!  4 frames

1 2 3

4 1 2
5 3 4

!  Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
!  3 frames (3 pages can be in memory at a time per process)

1 2 3 4

5 1 2 3
4 5

!  FIFO Replacement – Belady’s Anomaly
»  Violates the Principle: More frames ! less page faults
»  9 PF -> 10 PF (more page faults as we increase memory)
»  There is some string that have more page faults)

Maria Hybinette, UGA
27

Summary : Page Replacement:
Add memory

!  Add more physical memory, what happens to
performance?

»  Ideally the numbers of page faults should should
decrease as number of available frames increases

»  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
»  If 1 page frame : 12 faults every access is fault
»  If 3 page frame: 9 faults
»  If 4 page frame: 10 faults
»  If 12 frames : 5 faults

Maria Hybinette, UGA
28

Page Replacement Comparison

!  Add more physical memory, what happens to
performance?

»  LRU, OPT: Add more memory, guaranteed to have
fewer (or same number of) page faults

–  Smaller memory sizes are guaranteed to
contain a subset of larger memory sizes

»  FIFO: Add more memory, usually have fewer page
faults

–  Belady’s anomaly: But may actually have more page
faults!

Maria Hybinette, UGA
29

Implementing LRU

!  Software Perfect LRU (Stack)
»  OS maintains ordered list of physical pages by reference time
»  When page is referenced: Move page to front of list (top) (slow, search

is n to find page).
»  When need victim: Pick page at back of list (bottom) (fast (1)
»  Trade-off: Slow on memory reference (find it), fast on replacement

!  Hardware Perfect LRU
»  Associate register with each page (fast access)
»  When page is referenced: Store system clock in register (fast)
»  When need victim: Scan through registers to find oldest clock (slow)
»  Trade-off: Fast on memory reference, slow on replacement (especially

as size of memory grows)
!  In practice, do not implement Perfect LRU

»  LRU is an approximation anyway, so approximate it more!
»  Goal: Find an old page, but not necessarily the very oldest (just old

enough)

Maria Hybinette, UGA
30

Clock or Second Chance
Algorithm

!  Hardware (use a reference bit)
»  Keep use (or reference) bit for each page frame

initialized to 0.
»  When page is referenced: set use bit (1), making it less

likely to be replaced.
!  Operating System

»  Page replacement: Look for page with use bit cleared (0)
(has not been referenced for a while)

»  Implementation:
–  Keep pointer to last examined page frame
–  Traverse pages in circular buffer
–  Clear use bits while searching for replacement
–  Stop when find page with already cleared use bit, replace

this page

Maria Hybinette, UGA
31

Clock Algorithm Example

!  Worst Case:
» All bits are set -> FIFO (slow)

Maria Hybinette, UGA
32

Clock Extensions

!  Replace multiple pages at once
»  Intuition: Expensive to run replacement algorithm and to

write single block to disk
»  Find multiple victims each time (multiple zeros)

!  Use a Two-handed clock
»  Intuition (problem of 1 handed clock)

–  If it takes long time for clock hand to sweep through pages,
then all use bits might be set (all are 1s)

–  Traditional clock cannot differentiate between usage of
different pages (only between 1s and 0s).

»  Allow smaller time between clearing use bit and testing
–  First hand: Clears use bit
–  Second hand: Looks for victim page with use bit still

cleared

Maria Hybinette, UGA
33

More Clock Extensions

!  Add a software byte (to keep a bit mask)
»  Intuition: Keep track of history when last used

!  Implementation: Reference bit
» With each page associate a bit, initially = 0
» When page is referenced bit set to 1.
» Keep a history of reference bit in an (8 bits) byte:

–  Shift reference bit for each page to high order bit, and
other bits right one bit.

–  11000100 (more recently used than below)
–  01110111

Maria Hybinette, UGA
34

More Clock Extensions (R/W)

!  Use dirty bit to give preference to dirty pages (to stay)
»  Intuition: More expensive to replace dirty pages

–  Dirty pages must be written to disk, clean pages do not
»  Replace pages that have use bit and dirty bit cleared

0, 0 Not recently used, not modified Best to replace
0, 1 Not recently used, but modified Needs to be written out
1, 0 Recently used, not modified Probably used again soon

1, 1 Recently used and modified Probably used again soon and
need to be written out

Maria Hybinette, UGA
35

Problems with
LRU-based Replacement

!  Locality of reference:
»  Same pages referred frequently (warm pages)
»  Example: 2, 1, 3, 2, 4, 2, 4, 1, 5, 6, 2, !

!  LRU takes advantage of this!
!  Leading question:

»  Is a page that has been accessed once in the past
as likely to be accessed in the future as one that
has been accessed N times?

Maria Hybinette, UGA
36

Problems with
LRU-based Replacement

!  Example: 2, 1, 3, 2, 4, 2, 4, 1, 5, 6, 2, !
!  Problem:

»  Dislodges warm pages if a long sequence of one time
page references occur.

–  In the above ex, page 2 may get dislodged by the access
pattern !, 4, 1, 5, 6,

»  LRU does not consider frequency of accesses
!  Solution: Track frequency of accesses to page

»  Pure LFU (Least-frequently-used) replacement
!  Problem: but LFU can never forget pages from the far

past! (so we need to add aging to the algorithm!.)

Maria Hybinette, UGA
37

Questions

!  How to allocate memory across competing
processes?

!  What is thrashing? What is a working set?
!  How to ensure working set of all processes

fit?

Maria Hybinette, UGA
38

Allocating Memory across
Processes

!  Problem:
»  2 processes and 25 free frames how are these frames

divided up between processes?

!  Three General Approaches:
» Global Replacement
»  Per-Process Replacement
»  Per-User Replacement (set of processes linked to a user)

Maria Hybinette, UGA
39

Global Replacement

!  Global replacement
»  Pages from all processes lumped into single replacement

pool
»  Each process competes with other processes for frames
»  Advantages:

–  Flexibility of allocation
–  Minimize total number of page faults

»  Disadvantages:
–  One memory-intensive process can hog memory, hurt all

other processes (not fair)
–  Paging behavior of one process depends on the behavior of

other processes

Maria Hybinette, UGA
40

Per-process replacement

!  Per-process free pool of pages:
»  Equal, Fixed Allocation: Fixed number of pages per

process
–  100 frames and 5 processes, give each 20 pages.
–  Fixed fraction of physical memory

»  Proportional Allocation:
–  Proportional to size of address space of a process.
–  Adjust size allocated if a process have higher priority

!  Page fault in one process only replaces frame of that
process

!  Advantage: Relieves interference from other processes
!  Disadvantage: Potentially inefficient allocation of

resources

Maria Hybinette, UGA
41

Per-User Replacement

!  Advantages: Users running more processes
cannot hog memory

!  Disadvantage: Inefficient allocation

Maria Hybinette, UGA
42

Over Committing Memory

!  When does the Virtual Memory illusion break?
!  Example:

»  Set of processes frequently referencing 33 important
pages - more than the memory available (then you are
stuck with always replacing a page that is frequently
referenced).

–  Physical memory can fit 32 pages

!  What happens?
»  System Repeat Cycle:

–  Reference page not in memory
–  Replace a page in memory with newly referenced page
–  Replace another page right away again, since all its pages

are in active use!

Maria Hybinette, UGA
43

Thrashing

!  Thrashing:
» Definition: Spends more time paging than

execution, i.e. system reading and writing pages
instead of executing useful instructions

» Observation - Global replacement algorithm
aggravates.

»  Symptom: Average memory access time equals to
disk access time

–  Breaks the virtual memory illusion because memory
appears as slow as disk rather than disk appearing
fast as memory (system is reading/writing instead of
executing)

–  Memory appears as slow as disk, instead of disk
appearing as fast as memory

»  Processes execute less – system admits more processes
-> thrashing gets worse Maria Hybinette, UGA

44

System does not know it is
thrashing

!  If a process does not have “enough” pages, the page-fault rate is very
high.

»  low CPU utilization.
»  operating system thinks that it needs to increase the degree of

multiprogramming.
»  another process added to the system

!  Why the CPU utilization decreases:
»  Suppose a process need more frames, starts faulting, removing frames

from others, in turn making the other processes fault
»  Processes queue up for the paging device, CPU decreases
»  OS add processes that immediately need new frames further taking away

pages from running processes

Maria Hybinette, UGA
45

Thrashing: Solutions

!  Limit thrashing by using a local replacement
»  Process does not steal frames from other and cause

others to thrash
»  Average service time for a page fault can still increase!

!  Admission Control:
»  Determine of much memory each process needs
»  Long-term scheduling policy:

–  Run only processes whose memory requirement can be
satisfied

!  What if memory requirement of one process is too
high?

»  Observation: a process moves through different
``localities’’ through out is lifetime

–  Locality: Set of pages that are actively used together
»  Solution: Idea: Amortize page allocated so that a

process get enough page for its current locality!.
Maria Hybinette, UGA

46

Motivation for Solution

!  Thrashing cannot be fixed with better replacement policies
»  Page replacement policies do not indicate that a page must be

kept in memory
»  Only show which pages are better than others to replace

!  Student’s analogy to thrashing: Too many courses
»  Solution: Drop a course (focus on other remaning courses)

!  OS solution: Admission control
»  Determine how much memory each process needs
»  Long-term scheduling policy

–  Run only those processes whose memory requirements can be
satisfied

»  What if memory needs of one process are too large?

Maria Hybinette, UGA
47

Working Set

!  Informal definition
»  Collection of pages the process is referencing frequently
»  Collection of pages that must be resident to avoid

thrashing
!  Formal definition

»  Assume locality; use recent past to predict future
»  Pages referenced by process in last T seconds of

execution
»  Working set changes slowly over time

!  Example (figure out number of frames needed by
inspecting the past using a window based approach)

A A B C B B B C D C D E B B E E D F B F D B B E D B !

A B C" B D E F"

Time!" = 8#

Maria Hybinette, UGA
48

- Balance Set -

!  Motivation: Process should not be scheduled unless
current working set can be resident in main memory

!  Divide runnable processes into two groups:
»  Active: Working set is loaded
»  Inactive: Working set is swapped to disk

!  Balance set: Sum of working sets of all active
processes

!  Interaction with scheduler
»  If balance set exceeds size of memory, move some

process to inactive set
–  Which process???

»  If balance set is less than size of memory, move some
process to active set

–  Which process?
»  Any other considerations?

Maria Hybinette, UGA
49

Working Set Implementation

!  Leverage use bits (as in the clock algorithm)
!  OS maintains idle time for each page

» Amount of CPU received by process since last
access to page

»  Periodically scan all resident pages of a process
–  If use bit is set, clear page’s idle time
–  If use bit is clear, add process CPU time (since last

scan) to idle time
»  If idle time < "T , page is in working set

Maria Hybinette, UGA
50

Thought Questions

!  How should value of "T be configured?
»  What if "T is too large?

!  How should working set be defined when pages are
shared?

»  Put jobs sharing pages in same balance set
!  What processes should compose balance set?
!  How much memory is needed for a “balanced

system”?
»  Balanced system: Each resource (e.g., CPU, memory,

disk) becomes bottleneck at nearly same time
»  How much memory is needed to keep the CPU busy?
»  With working set approach, CPU may be idle even with

runnable processes

Maria Hybinette, UGA
51

Page-Fault Frequency Scheme

!  Observation: Thrashing has a high page-fault rate
!  Idea: Control page fault-rate by controlling # frames that are allocated to

a process
»  Too high page fault rate : process need more frames
»  Too low : process has too many frames

!  Approach: Establish “acceptable” page-fault rate (upper and lower
bound)

»  If actual rate falls below lower limit, process loses frame.
»  If actual rate exceeds upper limit, process gains frame.

Maria Hybinette, UGA
52

Current Trend: Thoughts?

!  VM code is not as critical
»  Reason #1: Personal vs. time-shared machine

–  Why does this matter? Clouds?
»  Reason #2: Memory is more affordable, more memory

!  Less hardware support for replacement policies
»  Software emulation of use and dirty bits

!  Larger page sizes
»  Better TLB coverage
»  Smaller page tables
»  Disadvantage: More internal fragmentation

–  Multiple page sizes

