
Maria Hybinette, UGA 

CSCI 6730/ 4730 
 Operating Systems 

Dup & Pipe 

Maria Hybinette, UGA 
2 

Two Communicating Processes 

!  Concept that we want to implement 

Process  
Chat 
Maria 
“A” 

Process  
Chat 

Gunnar 
“B” 

Hello Gunnar! 

Hi Nice to Hear 
from you! 

Maria Hybinette, UGA 
3 

On the path to communication… 

!  Want: Comminicating processes 
» We start with 2  

!  Have so far: Forking – to create processes 
!  Problem: 

» After fork() is called we end up with two independent 
processes. 

»  Separate Address Spaces 

!  Solution? How do we communicate? 

Maria Hybinette, UGA 
4 

Review 1730 - File: The Unix Way  

!  One easy way to communicate is to use files. 
»  Process A writes to a file and process B reads from 

it 

!  File descriptors 
» Mechanism to work with files 
» Used by low level I/O 

–  Open(), close(), read(), write() 
»  file descriptors  (the UNIX way) are generalized to 

other communication devices such as pipes and 
sockets 

 

Maria Hybinette, UGA 
5 

File Descriptor Table 

Big Picture ( more on this later ) 

Stack Pointer 

Program Counter 

fd 0 
fd 1 
fd 2 
fd 3 

File status flags 

offet 

Vnode pointer 

File Table Entry 

PCB 

in 

out 

Maria Hybinette, UGA 
6 

Pipe: Producer & Consumer 

!  Simple example: who | sort 
» Both the writing process (who) and the reading 

process (sort) of a pipeline that executes 
concurrently. 

!  A pipe is usually implemented as an internal 
OS buffer with 2 file descriptors. 

»  It is a resource that is concurrently accessed 
–  by the reader and the writer, so it must be managed 

carefully (by the Kernel) 



Maria Hybinette, UGA 
7 

Buffering: Programming with Pipes 

#include <unistd.h> 

int pipe( int fd[2] ); 
 

!  pipe() binds fd[]to two file descriptors: 
» fds[0] used to read from pipe 
» fds[1] used to write (stuff) to pipe 

!  Half-Duplex (one way) Communication 
!  Returns 0 if OK and -1 on error. 
 

fd[0] fd[1] 

pipe 

User process 

Kernel 
Maria Hybinette, UGA 

8 

Example: pipe-yourself.c 

#include <stdio.h> 
#include <unistd.h> 
#define MSGSIZE  16   /* null */ 
 
char *msg1=“hello, world #1”; 
char *msg2=“hello, world #2”; 
char *msg3=“hello, world #3”; 

 
int main() 

{  
 char inbuf[MSGSIZE]; 
int  p[2], i; 
 

 if( pipe( p ) < 0 )  
  {  /* open pipe */ 
     perror( “pipe” ); 
     exit( 1 ); 
  } 
 
 

write( p[1], msg1, MSGSIZE ); 
write( p[1], msg2, MSGSIZE ); 
write( p[1], msg3, MSGSIZE ); 

 
for( i=0; i < 3; i++ ) 

 {  /* read pipe */ 
read( p[0], inbuf, MSGSIZE ); 
printf( “%s\n”, inbuf ); 
} 

return 0; 
}   

{saffron:ingrid:4} pipe-yourself 
hello, world #1 
hello, world #2 
hello, world #3 

process 
p[0] (read) 

p[1] (write) 

pipe p 

Maria Hybinette, UGA 
9 

Things to Note 

!  Pipes uses FIFO ordering: first-in first-out. 
!  Read / write amounts do not need to be the 

same, but then text will be split differently. 
!  Pipes are most useful with fork() which  

creates an IPC connection between the parent 
and the child (or between the parents children) 

Maria Hybinette, UGA 
10 

What Happens After Fork? 

!  Design Question: 
» Decide on : Direction of data flow – then close 

appropriate ends of pipe (at both parent and child) 

fd[0]          fd[1] 

User Process (Parent) 

Pipe 

After Fork 

fd[0]          fd[1] 

User Process (Child) 

fd[0]          fd[1] 

User Process (Parent) 

Pipe 

Before Fork 

Maria Hybinette, UGA 
11 

!  A forked child 
»   Inherits file descriptors from its parent 

!  pipe()  
» Creates an internal system buffer and two file 

descriptors, one for reading and one for writing. 

!  After the pipe call, 
»  The parent and child should close the file 

descriptors for the opposite direction (that it 
doesn’t need).  

»  Leaving them open does not permit full-duplex 
communication. 

Maria Hybinette, UGA 
12 

Example: Parent Writes/Child Reads 
pipe-fork-close.c 

#include <stdio.h> 
#include <sys/wait.h> 
#include <unistd.h> 
#define MSGSIZE  16   
 
char *msg1=“hello, world #1”; 
char *msg2=“hello, world #2”; 
char *msg3=“hello, world #3”; 

 
int main() 

{  
 char inbuf[MSGSIZE]; 
int p[2], i, pid; 
 

    if( pipe( p ) < 0 )  
  {  /* open pipe */ 
     perror( “pipe” ); 
     exit( 1 ); 
   } 

  if( (pid = fork()) < 0 ) 
  { 
  perror( “fork” ); 
     exit( 2 );   

  }    
 

if( pid > 0 ) /* parent */ 
 { 
 close( p[0] ); /* read link */ 
 write( p[1], msg1, MSGSIZE ); 
 write( p[1], msg2, MSGSIZE ); 
 write( p[1], msg3, MSGSIZE ); 
 wait( (int *) 0 ); 
 } 

if( pid == 0 ) /* child */ 
 { 
 close( p[1] ); /* write link */ 
 for( i=0; i < 3; i++ ) 
  { 
  read( p[0], inbuf, MSGSIZE ); 

 printf( “%s\n”, inbuf ); 
 } 

 } return 0; 
} 

parent 

p[0] (close read) 

p[1] (close write) 

child 



Maria Hybinette, UGA 
13 

Some Rules of Pipes 

!  Every pipe has a size limit 
»  POSIX minimum is 512 bytes -- most systems makes this 

figure larger 
 

!  read() blocks if pipe is empty and there is a a write 
link open to that pipe [it hangs] 

!  read() from a pipe whose write() end is closed and is 
empty returns 0 (indicates EOF) [but it doesn’t hang] 

»  Lesson Learned: 
–   Close write links or read() will never return  ***** 

!  write() to a pipe with no read() ends returns -1 and 
generates SIGPIPE and errno is set to EPIPE 

!  write() blocks if the pipe is full or there is not enough 
room to support the write(). 

»  May block in the middle of a write() 
Maria Hybinette, UGA 

14 

Pipes and exec() 

How can we code who | sort ? 
 

Observation: Writes to stdout and reads 
from stdin. 
1.  Use exec() to ‘run’ code in two 

processes (one runs who [child] and the 
other sort [parent] ) which share a 
pipe (exec in child starts a new program 
within a copy of the ‘parent’ process). 
 

2.  Connect the pipe to stdin and stdout 
using dup2(). 

Maria Hybinette, UGA 
15 

Dup2 

! Duplicate a pipe file descriptor to stdin or 
stdout (whichever is appropriate), e.g., 

» dup2(pipefd, stdin), or  
» dup2(pipefd, stdout) 

! Now processes connected to pipe can 
read and write like it is from stdin and 
stdout 

» Caveat: Beware of hanging on the ‘pipe’ 
–  Solution: Close all file descriptors that comprise its pipes 

so that the pipes don't hang. 

Maria Hybinette, UGA 
16 

Duplicate File Descriptors 

#include <unistd.h> 
int dup2( int old-fd, int new-fd ); 

!  Set one FD to the value of another. 
!  new-fd and old-fd now refer to the 

same file 
!  if new-fd is open [before copied over], 

it is first automatically closed 
!  Note that dup2() refer to fds not 

streams 
!  Example: 

» dup2( fd[1], fileno(stdout));  

new-fd 
old fd 

File 

Pipeline.c 

Maria Hybinette, UGA 
17 

Example : sort < file1.txt | uniq 

!  What does this look like? How would a shell 
be programmed to process this? 

» Well we know we need a parent & child to 
communicate though the pipe! 

»  Parent 
» Child 
» We need to open a file and read from it – and then 

read it as we read it from standard input. 

Maria Hybinette, UGA 
18 

Want: sort < file1.txt | uniq 

!  Want: How do we get there? 

Parent        uniq 
 
stdin        fd[0] 
stdout       fd[1] 

Child         sort 
 
stdin        fd[0] 
stdout       fd[1] 

Pipe 

File 1 



Maria Hybinette, UGA 
19 

Want: “sort < file1 | uniq” 

fileDES = open( ”file1.txt", O_RDONLY );!
 

Parent 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 1 

Maria Hybinette, UGA 
20 

Want: “sort < file1 | uniq” 

fileDES = open( "myfile.txt", O_RDONLY );!
dup2( fileDES, fileno( stdin) );!

Parent 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 1 

Maria Hybinette, UGA 
21 

Want: “sort < file1 | uniq” 

fileDES = open( "myfile.txt", O_RDONLY );!
dup2( fileDES, fileno( stdin) );!
close( fileDES );!

Parent 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 1 

Maria Hybinette, UGA 
22 

Want: “sort < file1 | uniq” 

pipe( fd );!
… fork() …!

Parent 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 1 

Pipe 

Maria Hybinette, UGA 
23 

Want: “sort < file1 | uniq” 

fork();!
/* now do the plumbing */!

Parent 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 1 

Pipe 

Child 
 
stdin        fd[0] 
stdout       fd[1] 

Maria Hybinette, UGA 
24 

Want: “sort < file1 | uniq” 

fork();!
/* decide who does what */ 

Parent           uniq 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 1 

Pipe 

Child         sort 
 
stdin        fd[0] 
stdout       fd[1] 



Maria Hybinette, UGA 
25 

Want: “sort < file1 | uniq” 

/* make writing to the pipe the same!
/* as writing to stdout */!
dup2( fd[1], fileno(stdout)); /* in green */!

Parent           uniq 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 1 

Pipe 

Child         sort 
 
stdin        fd[0] 
stdout       fd[1] 

Maria Hybinette, UGA 
26 

Want: “sort < file1 | uniq” 

close(fd[0]); close(fd[1]);  /* child */!
/* leaving the ---- connections for child */!

Parent           uniq 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 1 

Pipe 

Child         sort 
 
stdin        fd[0] 
stdout       fd[1] 

Maria Hybinette, UGA 
27 

Want: “sort < file1 | uniq” 

dup2(fd[0], fileno(stdin));  /* parent */!
/* parent reads from pipe */!

Parent           uniq 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 1 

Pipe 

Child         sort 
 
stdin        fd[0] 
stdout       fd[1] 

Maria Hybinette, UGA 
28 

Want: “sort < file1 | uniq” 

close(fd[1]); close(fd[0]);  /* parent */!

Parent           uniq 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 1 

Pipe 

Child         sort 
 
stdin        fd[0] 
stdout       fd[1] 

Maria Hybinette, UGA 
29 

Example : “sort < file1 | uniq” 
pid = fork();!
if( pid < 0 )!
  {!
  perror("fork");!
  exit(1);!
  }!
else if( pid == 0 ) // child!
  {!
  close( pipeDES[0] );!
  dup2( pipeDES[1], fileno(stdout) );!
  close( pipeDES[1]);!
  execl( "/usr/bin/sort", "sort", (char *) 0 );!
  }!
else if( pid > 0 ) // parent!
  {!
  close( pipeDES[1] );!
  dup2( pipeDES[0], fileno(stdin) ); !
  close( pipeDES[0]);!
  execl( "/usr/bin/uniq", "uniq", (char *) 0 );!
  }!
}!

# include <stdio.h>!
# include <stdlib.h>!
# include <unistd.h>!
# include <fcntl.h>!
!
/* child            | parent */!
/* sort < file1.txt | uniq */!
int main()!
{!
int status;!
int fileDES;!
int pipeDES[2];!
pid_t pid;!
!
fileDES = open( "myfile.txt", O_RDONLY );!
dup2( fileDES, fileno( stdin) );!
!
/* don't need to read via this one anymore */!
close( fileDES ) ; !
!
/* create a child that communicate via a pipe */!
/* parent reads from pipe, child writes to pipe */!
pipe( pipeDES );!

Maria Hybinette, UGA 
30 

Thought questions 

!  Other ways of designing this task? 


