Outline

CSCI 4730/6730
Systems Programming Refresher

Pipes & FIFOs

1785

Maria Hybinette, UGA

What is a Pipe?

What is a pipe?

UNIX System review n
Processes (review)

Pipes

FIFOs

Maria Hybinette, UGA

Example: Shell Pipes

® A pipe is a one-way (half-duplex)
communication channel which can be used
to link processes.

@ Can only be used between processes that
have a common ancestor

@ A pipe is a generalization of the file concept

» can use I/O functions like read () and write () to
receive and send data

SVR4 UNIX - uses full duplex pipes (read/write on both file descriptors)

Maria Hybinette, UGA

{atlas:maria:195} who > tmpfile
{atlas:maria:196} wc -1 < tmpfile

17
{atlas:maria:197} who | wc -1

17
{atlas:maria:197) cat tmpfile
luffman pts/44 Apr 26 10:17 (h198-137-28-67.paws.uga.edu)
imacs pts/25 Apr 26 08:43 (128.192.4.35)
cai pts/38 Apr 26 09:15 (user-1121mOh.dsl.mindspring.com)
maher pts/20 Apr 26 04:57 (ads1-219-4-207.asm.bellsouth.net)
luffman pts/50 Apr 26 09:52 (h198-137-28-67.paws.uga.edu)
moore pts/55 Apr 26 10:43 (ads1-219-226-14.asm.bellsouth.net)
tanner pts/117 Apr 26 08:46 (cmtspool-48.monroeaccess.net)
weaver pts/106 Apr 26 08:12 (creswell-s218h112.resnet.uga.edu)
dimitrov pts/39 Apr 26 09:01 (128.192.42.142)
steward pts/23 Apr 26 09:16 (128.192.101.7)
weaver pts/12 Apr 26 08:14 (creswell-s218hll2.resnet.uga.edu)
dne pts/6 Apr 25 09:34 (128.192.4.136)
ldeligia pts/40 Apr 26 10:10 (128.192.4.72)
brownlow pts/13 Apr 26 09:48 (68-117-218-71.dhcp.athn.ga.charter.com)
misztal pts/30 Mar 27 10:32 (kat.cs.uga.edu)
james pts/51 Apr 26 09:28 (ads1-35-8-252.asm.bellsouth.net)
cs4720 pts/107 Mar 27 15:06 (druid)

3

Example:
» who
— outputs “who” is logged onto the system (e.g. on atlas)
» we -1 hello.txt
— outputs counts the number of lines in the file hello.txt
You have seen pipes at the UNIX shell level already:
» who | we -1
Shell starts the commands who and we -1 to run
concurrently.
| tells the shell to create a pipe to couple standard

output of “who” to the standard input of “wc -1", Recall < and >

logically: redirects
standard input

» {atlas:maria:195} who > tmpfile

and output to a

» {atlas:maria:196} wc -1 < tmpfile

file (i.e., file

» 17 descriptor 0 for
» {atlas:maria:197} input, and 1 for
Maria Hybinette, UGA output.

Programming with Pipes

Hello Gunnar!

Chat >
: : —
#include <unistd.h>

int pipe(int £d4[2]); et
@ pipe () binds £d[]with two file descriptors:
» £4[0] used to read from pipe (consumer)
» £d[1] used to write to pipe (producer)
@ Returns 0 if OK and -1 on error. User process

Process
Chat

© Example error:

» too many fd open already. { }

Kernel

Maria Hybinette, UGA

Example: Pipe within a single
process

Example: pipe-yourself.c

o Simple example:
» creates a pipe called ‘p’
» writes three messages to the pipe (down the pipe)
» reads (receives) messages from the pipe

® Process (user) view:
pipe p
& [

pl0] (read)
pl1l] (write)

Maria Hybinette, UGA

Things to Note

#include <stdio.h>
#include <unistd.h>
#define MSGSIZE 16 /* null */

char *msgl=“hello, world #1”;
char *msg2="hello, world #27;
char *msg3=“hello, world #3”;

write(p[l], msgl, MSGSIZE);
write(p[l], msg2, MSGSIZE);
write(p[1l], msg3, MSGSIZE);

for(i=0; i < 3; i++)
{ /* read pipe */
read(p[0], inbuf, MSGSIZE);
printf(“ss\n”, inbuf);
}

return 0; {saffron:ingrid:4} pipe-yourself
} hello, world #1

int main()
{

hello, world #2
char inbuf [MSGSIZE]; hello, world #3

int p[2], i;

if(pipe(p) < 0_) pipe p
{ /* open pipe */
perror(“pipe”);
exit(1);

plO] (read)
pl1l] (write)

Maria Hybinette, UGA

Example: Pipe between a parent
and child

@ Pipes uses FIFO ordering: first-in first-out.

» messages are read in the order in which they were
written.

» 1lseek () does not work on pipes.

@ Read / write amounts do not need to be the
same, but then text will be split differently.

@ Pipes are most useful with fork () which
creates an IPC connection between the parent
and the child (or between the parents children)

Maria Hybinette, UGA

Example: pipe-fork.c

O==IC)
9

-

Creates a pipe

Creates a new process via fork ()
Parent writes to the pipe (fd 1)
Child reads from pipe (fd 0)

Eal S

Maria Hybinette, UGA

Things to Note

if(pid > 0) /* parent */

#include <stdio.h> {

#include <sys/wait.h>
#include <unistd.h>
#define MSGSIZE 16

char *msgl=“hello, world #1”;
char *msg2=“hello, world #2”;
char *msg3=“hello, world #3";

int main()
{

char inbuf [MSGSIZE];
int p[2], i, pid;

if(pipe(p) <0)
{ /* open pipe */
perror (“pipe’);
exit(1);
}

if((pid = fork()) < 0)

perror(“fork”);
exit(2);
}

write(p[1], msgl, MSGSIZE);
write(p[l], msg2, MSGSIZE);
write(p[1], msg3, MSGSIZE);
wait((int *) 0);

} if(pid == 0) /* child */
{

for(i=0; i < 3; it++)
{

read(p[0], inbuf, MSGSIZE);
printf(“$s\n”, inbuf);

pl[1] (write)

Maria Hybinette, UGA

1"

o Pipes are intended to be unidirectional
channels if parent-child processes both read
and write on the pipe at the same time
confusion.

o Best style is for a process to close the links it
does not need. Also avoids problems
(forthcoming).

pl0] (read)

pl[1] (write)

Maria Hybinette, UGA

Example: pipe-fork-close.c

#include <stdio.h>
#include <sys/wait.h>
#include <unistd.h>
#define MSGSIZE 16

char *msgl=“hello, world #1”;
char *msg2=“hello, world #2”;
char *msg3=“hello, world #37;

int main()
{

char inbuf [MSGSIZE];
int p[2], i, pid;

if(pipe(p) <0)
{ /* open pipe */
perror (“pipe’);
exit(1);
}

if((pid = fork()) < 0)
{
perror(“fork”);
exit(2);
}

if(pid > 0) /* parent */

{

close(p[0]); /* read link */
write(p[1], msgl, MSGSIZE);
write(p[1], msg2, MSGSIZE);
write(p[1], msg3, MSGSIZE);
wait((int *) 0);

}

Some Rules of Pipes X

{

Maria Hybinette, UGA

{

)
pl[0] (read)

pl1l] (write)

if(pid == 0) /* child */

return 0;

close(p[1]); /* write link */
for(i=0; i < 3; i++)

read(p[0], inbuf, MSGSIZE);
printf(“&s\n”, £);
}

13

o Every pipe has a size limit

» POSIX minimum is 512 bytes -- most systems makes this figure
larger

® read () blocks if pipe is empty and there is a a write link open to\
that pipe [it hangs]

® read() from a pipe whose write () end is closed and is empty
returns 0 (indicates EOF) [but it doesn’t hang]

» Lesson Learned: Close write links o/w read () will never return ***

® write () to a pipe with no read () ends returns -1 and generates)
SIGPIPE and errno is set to EPIPE

o write () blocks if the pipe is full or there is not enough room to
support the write () .

» May block in the middle of a write ()

o Perfectly possible to have multiple
readers / writers attached to a pipe

» can cause confusion

Maria Hybinette, UGA

Avoid Interleaving

Waria Hybinets, UGA 14

Example: Several Writers

® In limits.h, the constant PIPE_BUF gives
the maximum number of bytes that can be
output by a write () call without any chance

of interleaving.

e Use PIPE_BUF is there are to be multiple

writers in your code.

Maria Hybinette, UGA

pipe-nonblocking.c

® Since awrite() can suspend in the middle of
its output then output from multiple writers
output may be mixed up (or interleaved).

“maria was great.”

. “.is getting a pizza.”

Maria Hybinette, UGA

“maria is getting big.”

pipe-nonblocking.c

Non-blocking read () & write()

e Problem: Sometimes you want to avoid
read () and write () from blocking.

o Goals:
» want to return an error instead
» want to poll several pipes in turn until one has data

® Approaches:

» Use fstat () on the pipe to get #characters in pipe
(caveat: multiple readers may give a “race
condition”)

» Use fcntl () on the pipe and set it to O_NONBLOCK

Maria Hybinette, UGA pipe-nonblocking.c

Using fcntl ()

Example: Non-blocking with -1 return

#include <sys/types.h>
#include <unistd.h>
#include <fentl.h>

if(fcntl(£d, F_SETFL, O _NONBLOCK) < 0)

perror (“f_cntl")

® Non-blocking write: On a write-only file descriptor, £d,
future writes will never block
» Instead return immediately with a -1 and set errno to EAGAIN
e Non-blocking read: On a read-only file descriptor, £d,
future reads will never block

» return -1 and set errno to EAGAIN unless a flag is set to
O_NDELAY then return 0 if pipe is empty (or closed)

Maria Hybinette, UGA

pipe-nonblocking.c

Example: Non-blocking with -1 return

o Parent “launches’ one child

e Child writes “hello” to parent every 3 seconds (3
times).

o Parent read what the child writes
e Parent does a non-blocking read each second.

@ Child does blocking write — ... there nothing else
to do than write.

“hello” pI0] (read)

Maria Hybinette, UGA pl1] (write)

pipe-nonblocking.c

Example: pipe-nonblocking.c

o Parent’s behavior >
» Need to check for
— No data in pipe

— Pipe is closed
(EOF)

— Errors (in general)
» Continuously Read

@ Child’s behavior >
» Just writes and
blocks if the pipe is
full

pl1l] (write)

Maria Hybinette, UGA

pipe-nonblocking.c

void parent read()

#include <unistd.h>
#include <fcntl.h>

#include <errno.h>

if(fentl(pfd[0], F_SETFL, O_NONBLOCK) < 0)
{ /* read non-blocking */
perror(“fentl”);
exit(2);
#define MSGSIZE 6 }
switch(fork())
{

char *msgl=“hello”;

void parent_read(int p[]); case -1: /* error */
void child write(int p[]); perror (“fork”) ;
exit(3);

int main() case 0: /* child */
. child write(pfd);
. break;
int pfd[2];

default: /* parent */

if(pipe(pfd) < 0)
{ /* open pipe */
perror(‘pipe”);
exit(1);

}

parent_read(pfd) ;
break;
}
return 0;

}

Maria Hybinette, UGA

pipe-nonblocking.c

void child write()

void parent_read(int p[])
{
int nread;
char buf [MSGSIZE];
close(p[l]); /* write link */
while(1)
{

nread = read(p[0], buf, MSGSIZE);
switch(nread)

{
case -1:
if(errno == EAGAIN)
{
printf (“(pipe empty)\n”);
sleep(1);
break;

}
EAGAIN: No data in

pipe (yet) try
AGAIN later

Maria Hybinette, UGA

else
{
perror(“read”);
exit(4)
}
case 0:
/* pipe has been closed */
printf("End conversation\n");
close(p[0]); /* read fd */
exit(0);
default: /* text read */
printf("MSG=%s\n", buf);
} /* switch */
} /* while */

} /* parent read */

void child_write(int p[])
{
int i;
close(p[0]); /* read link */
for(i =0; i < 3; i++)
{
write(p[1], msgl, MSGSIZE);

{saffron} pipe-nonblocking
(pipe is empty)

MSG=hello

(pipe is empty)

(pipe is empty)

(pipe is empty)

MSG=hello

(pipe is empty)

sleep(3);

}
close(p[l]); /* write link */
}

23

(pipe is empty)
MSG=hello

(pipe is empty)
(pipe is empty)
(pipe is empty)

End of conversation

Waria Hybinets, UGA 24

Non-blocking with 0 error

Review, and reflect

o If non-blocking read () does not distinguish
between end-of-input and an empty pipe (e.g.
O_NDELAY is set) then can use special
message to mean end:

» e.g. send “bye” as last message

Waria Hybinets, UGA 25

What Happens After Fork?

® We created a pipe in a single process, and
communicated via the pipe (pipe-yourself.c)

» Not pragmatic

@ We created a pipe between [a] child(ren) and

a parent
» Interesting!

» Lets look more deeply into what happens after

fork?

Maria Hybinette, UGA

Some Pipe Rules

O\

!/ \

2

User Process (Parent) User Process (Parent) User Process (Child)
£4[0] £4[0] £4[0]
£d[1] ﬁ] £d[1]
N \\m o
4
Before Fork After Fork

@ Design Question:
» Need to decide on :

— The direction of the data flow — then close
appropriate ends of pipe (at both parent and child)

Waria Hybinets, UGA 27

Pipes and exec ()

o A forked child

» Inherits file descriptors from its parent

® pipe()
» Creates an
— internal system buffer and
— 2file descriptors:

e one for reading and one for writing.

o After the pipe call,

» The parent and child should close the file
descriptors for the opposite direction (that it

doesn’t need).

» Leaving them open does not permit full-duplex

communication.

Maria Hybinette, UGA

Manipulating File Descriptors:

dup2

28

Motivation: How can we code who | sort ?

Observation: Writes to stdout and reads from stdin.
1. Use exec () to ‘run’ code in two different child
processes
» one runs who [child2] and the other sort [child1]

» exec in child(ren) starts a new program within their copy
of the ‘parent’ process

2. Connect the pipe to stdin and stdout using
dup2 () .

Waria Hybinets, UGA 29

#include <unistd.h>
int dup2(int old-fd, int new-fd);

o Sets one file descriptor to the value of
another.,

» Existing file descriptor, o1d-£d, is
duplicated onto new-£d so that they refer to
the same file

o If new-£d already exists, it will be closed
first.

Example:
» dup2(fd[1], fileno(stdout));

Maria Hybinette, UGA

new-£fd
old fd

N

File

Pipeline,
ipeline,c

Connecting pipes with stdin &
stdout

Four Stages towho | sort

@ Connect the write end of a
pipe to stdout
» int p[2];
pipe(p)’
dup2(pl[l1], STDOUT_FILENO)
@ Connect the read end of pipe
to stdin

» dup2(p[0], STDIN_FILENO); p[0] (read)

stdin
pl[1] (write)
Caveat: Beware of hanging on the stdout ——
‘pipe’
Solution: Close all file descriptors
that comprise its pipes so that the
pipes don't hang. 31

Four Stages towho | sort

1. main () creates a pipe

pl[0] (read)

pl1] (write)

int £ds[2];
pipe(fds) ;

/* no error checks */

Maria Hybinette, UGA

32

Four Stages towho | sort

1. main () creates a pipe

2. main () forks twice to
make two children that
inherits the pipes

descriptors pl0] (read)

pl1] (write)

See code.. whosort.c

1. main () creates a pipe

2. main () forks twice to
make two children and
inherits the pipes
descriptors

3. Child: Couple standard
output to write end

4. Child: Couple standard
input to read end

5. Close the pipe links
which are not needed

Maria Hybinette, UGA

who | sort :

‘ dup2(p[0] , STDIN_FILENO);

pl[0] (read)

pl1] (write)

dup2(p[1] , STDOUT_FILENO) ;

34

whosort.c

Waria Hybineti, UGA 33
Four Stagestops | sort
1. main () creates a pipe
2. main () forks twice to
make two children and
inherits the pipes
descriptors pl0] (read) @
3. Close the pipe links
which are not needed
4. Replace children by @
programs using pl1] (write)
exec ()
Waria Hybineti, UGA 35

#include <sys/types.h>
#include <unistd.h>
#include <fentl.h>
#include <sys/wait.h>

int main ()
{
int pl2];
pipe(p); /* no error checks */
if(fork() == 0)

{ /* 1st child */
/* £ds[0]/stdin --> sort */
dup2(p[0] , STDIN FILENO);
close(pl 11);
execlp("sort", "sort", (char *)

0);
}

else

{ /* parent - create

aguda dtremote Apr 25 15:46

ananda pts/25
anyanwu pts/24

Maria Hybinette, UGA

{atlas:maria:169} who-sort

bralley dtremote Apr 25 15:38

if(fork() == 0)
{ /* 2nd child */
/* who --> f£ds[1]/stdout --> sort */
dup2(p[1] , STDOUT_FILENO) ;
close(p[01);
execlp("who", "who", (char *) 0);
}

else
{ /* parent closes all links */
close(p[01);
close(pl 11);

wait((int *) 0);
wait((int *) 0);
} /* else parent second child */
} /* else parent first child */
return 0;

}

(128.192.101.83:0)
Apr 25 10:52 (128.192.4.101)
Apr 25 11:30 (dhcpl83)
(128.192.101.84:0)

Limitations of Pipes

Something more interesting...

® Processes using a pipe must come from a
common ancestor:

» e.g. parent and child

» cannot create general servers like print spoolers or
network control servers since unrelated processes
cannot use it

e Pipes are not permanent
» they disappear when the process terminates
e Pipes are one-way:
» makes fancy communication harder to code
@ Readers and writers do not know each other.

e Pipes do not work over a network

Waria Hybinets, UGA 37

Want: sort < filel.txt | uniq

® Example: sort < filel.txt | uniq

o What does this look like? How would a shell
be programmed to process this?

» Well we know we need a parent & child to
communicate though the pipe!

» Parent
» Child

» We need to open a file and read from it — and then
read it as we read it from standard input.

Waria Hybinets, UGA 38

Want: “sort < filel | uniq”

uniq sort
stdin £d[0] stdin £4[0]
F stdout £d[1] I ’_.sf.dout £d[1]
1
filel.txt
>

@ Want: How do we get there?

Step 1: We want to read from the file

Waria Hybinets, UGA 39

Want: “sort < filel | uniq”

Parent

filedes

stdin £4[0]
stdout £d4[1]

filel.txt

fileDES = open(“filel.txt", O_RDONLY);

Step 2: Read from the file like it is from stdin

Waria Hybinets, UGA 40

Want: “sort < filel | uniq”

Parent

filedes

stdin £4[0]
stdout £d4[1]

filel.txt

fileDES = open(”"filel.txt", O_RDONLY);
dup2(fileDES, fileno(stdin));
Step 3: Don’t need fileDES anymore ... 4

Maria Hybinette, UGA 1

Parent

filedes

stdin £4[0]
stdout £d4[1]

filel.txt

fileDES = open("filel.txt", O RDONLY);
dup2(fileDES, fileno(stdin));
close(fileDES); Step 4: Hairier — now we deal with the pi%ez...

Maria Hybinette, UGA

“ . [
Want: “sort < filel | unigq
Parent
filedes
stdin £d[0]
stdout £d4[1]
filel.txt
UGH Hairy!
pipe(fd);
. fork()

Maria Hybinette, UGA

@ No : Not really that bad

» Just need to create the pipe then create a child (or
parent) that is on the other side of the pipe!
— Then do the plumbing:
o Reroute stdin/stdout appropriately....

o AND THAT IS IT!

Maria Hybinette, UGA

Want: “sort < filel | unigq

44

”»

“ . [
Want: “sort < filel | uniq
Parent Child
filedes
stdin £d[0] €«— —> stdin £4[0] Pl
stdout £d[1] T stdout £4[1] ~=—fa |
i -
1| g L
| 1
1 1 1
filel.txt [1 || H
Y = e
fork();

/* now do the plumbing */

Maria Hybinette, UGA

45

Want: “sort < filel | uniq”

Parent uniq

filedes

stdin £d[0] €«—

stdout £d[1] r
1
1
1
1
1

filel.txt H
fork();

Child sort
stdin £4[0] <
stdout £d[1] ==~

/* decide who does what (arbitrary)

Maria Hybinette, UGA

*/

46

Want: “sort < filel | uniq”

Parent uniq Child sort
filedes
stdin £d[0] €«— stdin £d4[0]
e £d[1] E|- stdout £d[1] —-I
1
filel.txt |
ilel. |a>

/* make writing to the pipe the same

/* as writing to stdout */

dup2(fd[1], fileno(stdout));

Maria Hybinette, UGA 47

/* in green */

Eazens G Child sort
filedes
ezt £d[0] €————7 5 | stdin £4[0]
stdout £d4[1] : - stdout £d[1]
1
i
[
: N
filel.txt —_——el |_’
close(£fd[0]); close(£fd[l]); /* child */
/* leaving the ---- connections for child */

Maria Hybinette, UGA

48

Want: “sort < filel | uniq”

Want: “sort < filel | uniq”

|mm e ————————————
1
I | parent uniq Child sort
L filedes
stdin £d[0] €«— — stdin £4[0]
stdout £d[1] stdout £d[1]
filel.txt >

dup2 (£fd[0], fileno(stdin));

/* parent reads from pipe */

/* parent */

Maria Hybinette, UGA 49

Parent uniq Cchild sort

filedes

stdin £d[0] stdin £d4[0]

stdout £d4[1] > stdout £4[1]
filel.txt >

close(fd[1]); close(£fd[0]); /* parent */

Maria Hybinette, UGA 50

Thought questions

1 [. . ”
.
Example: sort < filel uniq
include <stdio.h> pid = fork();
include <stdlib.h> if(pid < 0)
include <unistd.h> {
include <fcntl.h> perror("fork");
exit(l);
/* child | parent */ }
/* sort < filel.txt | unig */ else if(pid == 0) // child
int main() {
{ close(pipeDES[0]);
int status; dup2(pipeDES[1], fileno(stdout));
int fileDES; close(pipeDES[1]);
int pipeDES[2]; execl("/usr/bin/sort", "sort", (char *) 0);

pid_t pid;

£ileDES = open("myfile.txt", O_RDONLY);
dup2(fileDES, fileno(stdin));

/* don't need to read via this one anymore */
close(fileDES) ;

/% create a child that communicate via a pipe */
/% parent reads from pipe, child writes to pipe */

pipe(pipeDES);

}
else if(pid > 0) // parent
{
close(pipeDES[1]);
dup2(pipeDES[0], fileno(stdin)
close(pipeDES[0]);
execl("/usr/bin/uniq", "unig",

}

)i

(char *) 0);

ara Fybietie, UG/

What are FIFOs/Named Pipes?

e Other ways of designing this task?
o Is this the only way?

End of Tutorial

Maria Hybinette, UGA 52

Creating a FIFO

o Similar to pipes (as far as read/write are

concerned, e.g. FIFO channels), but with some

additional advantages:

" Unrelated processes can use a FIFO.
" AFIFO can be created separately from the processes

that will use it.
" FIFOs look like files:

® have an owner, size, access permissions

® open, close, delete like

any other file

® permanent until deleted with rm

Maria Hybinette, UGA

53

Default mode is the
® UNIX mkfifo command: difference: 0666 -
$ mkfifo fifol / umask value

e On older UNIXs (origin ATT UNIX), use mknod:

$ mknod fifol p ﬁl p means FIFO

o Use 1s to get information:

$ 1s -1 fifol
prw-rw-r-- 1 maria maria 0 Oct 23 11.45 fifol]|

Maria Hybinette, UGA 54

Using FIFOs: FIFO Blocking

Reader / Writer Example

o FIFOs can be read and written using
standard UNIX commands connected via

<" and ">" standard input or output

o If there are no writers then a read:
e.g. cat < fifol
will block until there is 1 or more writers.

o If there are no readers then a write:
eg. 1ls -1 > fifol
will block until there is 1 or more readers.

55

Maria Hybinette, UGA

Creating a FIFO in C

fifol

$ cat < fifol &

[1] 22341

$ 1s -1 > fifol; wait
total 17

prw-rw-r-- 1 maria usr 0 Oct 23 11.45 fifol
[1] + Done cat < fifol

$

1. Output of 1s -1 is written down the FIFO
2. Waiting cat reads from the FIFO and display the output

3. cat exits since read returns 0 (the FIFO is not open for writing
anymore and 0 is returned as EOF)

wait - causes the shell to wait until cat exits before redisplaying the prompt.

Waria Hybinets, UGA 56

Outline on how to program with
FIFOs

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

® Returns 0 if OK, -1 on error.

® mode is the same as for open () - and is modifiable by the
process’ umask value

® Once created, a FIFO must be opened using open ()

Note: the significant difference between programming with
pipes versus FIFOs is initialization.

57

Maria Hybinette, UGA

Two Main Uses of FIFOs

#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>

#define MSGSIZE 63

int main()

{

int f£d;

char msgbuf [MSGSIZE+1];

mkfifo(“/tmp/mariafifo”, 0666);

£fd = open(“/tmp/mariafifo”, O WRONLY);
}

Waria Hybinets, UGA 58

Shell Usage

1. Used by shell commands to pass data
from one shell pipeline to another
without using temporary files.

2. Create client-server applications on a
single machine.

59

Maria Hybinette, UGA

@ Example: Process a filtered output stream
twice - i.e., pass filtered data to two separate
processes:

filtered
data

@ In contrast to regular pipes, FIFOs allows
non-linear connections between processes
such as the above, since FIFO’ s are pipes
with names.

Waria Hybinets, UGA 60

s
b
ot te —>(Gz=52)

Implementation

A Client-Server Application

UNIX’ s tee () copies standard input to both its

~ standard input and to the

~ file named on its command line

$ mkfifo fifol
$ prog3 < fifol &
$ progl < infile | tee fifol | prog2

Waria Hybinets, UGA 61

Client-Server FIFO Application

@ Server contacted by numerous clients via a
well-known FIFO

well-known
FIFO

- read requests @

@ How are replies from the server sent back to
each client?

Maria Hybinette, UGA

Problems

62

e Problem: A single FIFO (as before) is not enough.

e Solution: Each client send its PID as part of its
message. Which the uses to create a speciaal
‘reply’ FIFO for each client

» e.g. /tmp/servl.XXXX where XXXX is replaced with the
clients process ID

client-specific FIFO

Waria Hybinets, UGA 63

Programming Client-server
Applications

o The server does not know if a client is still
alive
» may create FIFOs which are never used

» client terminates before reading the response
(leaving FIFO w/ one writer and no reader)

@ Each time number of clients goes from 1 client
to 0 the clients server reads “0”/EOF on the
well-known FIFO, if it is set to read-only.

» Common trick is to have the server open the FIFO as
read-write (see text book for more details)

Maria Hybinette, UGA

Opening FIFOs

64

o First we must see how to open and read a FIFO
from within C.

o Clients will write in non-blocking mode, so they
do not have to wait for the server process to
start.

Waria Hybinets, UGA 65

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

fd = open(“fifol”, O_WRONLY) ;

® A FIFO can be opened with open () (most I/O
functions work with pipes).

Maria Hybinette, UGA

66

Blocking open ()

Non-blocking open()

® An open () call for writing will block until another
process opens the FIFO for reading.

» this behavior is not suitable for a client who does not
want to wait for a server process before sending data.

® An open () call for reading will block until another
process opens the FIFO for writing.

» this behavior is not suitable for a server which wants to
poll the FIFO and continue if there are no readers at the
moment.

67

Maria Hybinette, UGA

Example: send-msqg, recv-msg

if (£d = open(“fifol”, O _WRONLY | O NONBLOCK)) < 0)
perror(“open FIFO”);

@ opens the FIFO for writing

@ returns -1 and errno is set to ENXIO if there are no
readers, instead of blocking.

o Later write () calls will also not block.

68

Maria Hybinette, UGA

Some Points

@ opens the FIFO for writing

@ returns -1 and errno is set to ENXIO if there are no
readers, instead of blocking.

o Later write () calls will also not block.

@ “labradoodle”

“hello...
“tomato”

well-known
FIFO: serv-fifo

® recv-msg can read and write;
» otherwise the program would block at the open call and
» avoids responding to reading a “return of 0” when the
number of send-msg processes goes from 1 to 0 (and the
FIFO is empty) O_RDWR - ensures that at least one process
has the FIFO open for writing (i.e. recv-msg itself) so read
will always block until data is written to the FIFO

® send-msg sends fixed-size messages of length PIPE_BUF
to avoid interleaving problems with other send-msg calls.
It uses non-blocking.

® serv_fifo is globally known, and previously created
with mkfifo

70

Maria Hybinette, UGA

send-msg.c

Waria Hybineti, UGA 69
N N #include <stdio.h>
(saff:?:.ln:rxd43; :?:v—msgd- & #include <sys/types.h>
serv_fifo; o such file or direstory e
{saffron.?nqr:}d.) 1ro serv_tito #include <unistd.h>
‘:a 7‘:"'1"‘1‘1 Bel) o) O #include <fcntl.h>
& 9_ #include <string.h>
KEEE L8 #include <limits.h>
Msg: potato
NS EEED #define SF "serv_£ifo"
{ :ingrid:3} d-msg "hi" "potato..." &
[1] 794
{ :ingrid:4} d-msg "pizza" &
[2] 795
[1] - Done send-msg “hi” “potato”
[2] - Done send-msg “pizza”
71

Maria Hybinette, UGA

int main(int argec, char *argv[])

{
int £d, i;

char msgbuf [PIPE_BUF] ; * and padded with spaces */

void make msg(char mb[], char

if(arge < 2) input[])
{ {
printf("Usage: send-msg msg...\n"); int i
exit(1); for(i = 1; i < PIPE_BUF-1; i++)
} mb[i] = ' ';
if((fd = open(SF, O_WRONLY | O_NONBLOCK)) < 0) mb[i] = '\0';
{ perror(SF); exit(1); } i=0;
for(i = 1; i < arge; it++) while(input[i] '= 0)

{
if(strlen(argv[i]) > PIPE_BUF - 2) a4 . .
printf("Too long: %s\n", argv[i]); 'f‘bm = imputlil;
i+t

}

else

{

/* put input message into mb[] with '$'

make_msg(msgbuf, argv[i]); mb[i] = '$';
write(fd, msgbuf, PIPE BUF); } /* make_msg */
}
}
close(fd);
return 0;
Maria Hybinette, UGA } /* end main */ 72

recv-msg.cC

Things to Note about recv-msg

int main(int argec, char *argv(])
{
int £d, i;
char msgbuf [PIPE_BUF] ;

if((£d = open(SF, O_RDWR)) < 0)
{
perror(SF);
exit(1);
}
while(1)
{
if(read(fd, msgbuf, PIPE BUF) < 0)
{
perror("read");
exit(1);
}
print_msg(msgbuf) ;
}
close(£d);
return 0;
} /* end main */

/* print mb[] up to the '$§' marker */
void print msg(char mb[])
{
int i = 0;
printf("Msg: ");
while(mb[i] != '$')
{
putchar (mb[i]);
i+
}
putchar('\n');

} /* make_msg */

Maria Hybinette, UGA

73

® open () is blocking, so read () calls will block
when the pipe is empty

® open () uses O_RDWR not O _RDONLY

» this means there is a write link to the FIFO even
when there are no send-msg processes

» this means that a read () call will block even when
there are no send-msg processes, instead of
returning 0.

Maria Hybinette, UGA

74

