
Maria Hybinette, UGA 1

CSCI 4730/6730
Systems Programming Refresher

Pipes & FIFOs

Maria Hybinette, UGA 2

Outline

●  What is a pipe?
●  UNIX System review
●  Processes (review)
●  Pipes
●  FIFOs

Maria Hybinette, UGA 3

What is a Pipe?

●  A pipe is a one-way (half-duplex)
communication channel which can be used
to link processes.

●  Can only be used between processes that
have a common ancestor

●  A pipe is a generalization of the file concept
»  can use I/O functions like read()and write()to

receive and send data

SVR4 UNIX - uses full duplex pipes (read/write on both file descriptors)

Maria Hybinette, UGA 4

Example: Shell Pipes

●  Example:
»  who

–  outputs �who� is logged onto the system (e.g. on atlas)
»  wc -l hello.txt

–  outputs counts the number of lines in the file hello.txt

●  You have seen pipes at the UNIX shell level already:
»  who | wc -l

●  Shell starts the commands who and wc -l to run
concurrently.

●  | tells the shell to create a pipe to couple standard
output of �who� to the standard input of �wc -l�,
logically:
»  {atlas:maria:195} who > tmpfile
»  {atlas:maria:196} wc -l < tmpfile
»  17
»  {atlas:maria:197}

Recall < and >
redirects
standard input
and output to a
file (i.e., file
descriptor 0 for
input, and 1 for
output.

{atlas:maria:195} who > tmpfile
{atlas:maria:196} wc -l < tmpfile
 17
{atlas:maria:197} who | wc -l
 17

{atlas:maria:197} cat tmpfile
luffman pts/44 Apr 26 10:17 (h198-137-28-67.paws.uga.edu)
imacs pts/25 Apr 26 08:43 (128.192.4.35)

cai pts/38 Apr 26 09:15 (user-1121m0h.dsl.mindspring.com)
maher pts/20 Apr 26 04:57 (adsl-219-4-207.asm.bellsouth.net)

luffman pts/50 Apr 26 09:52 (h198-137-28-67.paws.uga.edu)

moore pts/55 Apr 26 10:43 (adsl-219-226-14.asm.bellsouth.net)
tanner pts/117 Apr 26 08:46 (cmtspool-48.monroeaccess.net)

weaver pts/106 Apr 26 08:12 (creswell-s218h112.resnet.uga.edu)
dimitrov pts/39 Apr 26 09:01 (128.192.42.142)

steward pts/23 Apr 26 09:16 (128.192.101.7)

weaver pts/12 Apr 26 08:14 (creswell-s218h112.resnet.uga.edu)
dme pts/6 Apr 25 09:34 (128.192.4.136)

ldeligia pts/40 Apr 26 10:10 (128.192.4.72)
brownlow pts/13 Apr 26 09:48 (68-117-218-71.dhcp.athn.ga.charter.com)

misztal pts/30 Mar 27 10:32 (kat.cs.uga.edu)
james pts/51 Apr 26 09:28 (adsl-35-8-252.asm.bellsouth.net)

cs4720 pts/107 Mar 27 15:06 (druid)

Maria Hybinette, UGA 6

Programming with Pipes

#include <unistd.h>
int pipe(int fd[2]);
●  pipe()binds fd[]with two file descriptors:

» fd[0] used to read from pipe (consumer)
» fd[1] used to write to pipe (producer)

●  Returns 0 if OK and -1 on error.
●  Example error:

»  too many fd open already.

fd[0] fd[1]

pipe

User process

Kernel

Process
Chat
Maria
�A�

Process
Chat

Gunnar
�B�

Hello Gunnar!

Hi Nice to Hear
from you!

Maria Hybinette, UGA 7

Example: Pipe within a single
process

●  Simple example:
»  creates a pipe called �p�
» writes three messages to the pipe (down the pipe)
»  reads (receives) messages from the pipe

●  Process (user) view:

process
p[0] (read)

p[1] (write)

pipe p

Maria Hybinette, UGA 8

Example: pipe-yourself.c

#include <stdio.h>
#include <unistd.h>
#define MSGSIZE 16 /* null */

char *msg1=�hello, world #1�;
char *msg2=�hello, world #2�;
char *msg3=�hello, world #3�;

int main()

{
 char inbuf[MSGSIZE];
int p[2], i;

 if(pipe(p) < 0)
 { /* open pipe */
 perror(�pipe�);
 exit(1);
 }

write(p[1], msg1, MSGSIZE);
write(p[1], msg2, MSGSIZE);
write(p[1], msg3, MSGSIZE);

for(i=0; i < 3; i++)

 { /* read pipe */
read(p[0], inbuf, MSGSIZE);
printf(�%s\n�, inbuf);
}

return 0;
}

{saffron:ingrid:4} pipe-yourself
hello, world #1
hello, world #2
hello, world #3

process
p[0] (read)

p[1] (write)

pipe p

Maria Hybinette, UGA 9

Things to Note

●  Pipes uses FIFO ordering: first-in first-out.
» messages are read in the order in which they were

written.
» lseek() does not work on pipes.

●  Read / write amounts do not need to be the
same, but then text will be split differently.

●  Pipes are most useful with fork() which
creates an IPC connection between the parent
and the child (or between the parents children)

parent child Pipe
parent

child Pipe child
Maria Hybinette, UGA 10

Example: Pipe between a parent
and child

1.  Creates a pipe
2.  Creates a new process via fork()
3.  Parent writes to the pipe (fd 1)
4.  Child reads from pipe (fd 0)

Maria Hybinette, UGA 11

Example: pipe-fork.c

#include <stdio.h>
#include <sys/wait.h>
#include <unistd.h>
#define MSGSIZE 16

char *msg1=�hello, world #1�;
char *msg2=�hello, world #2�;
char *msg3=�hello, world #3�;

int main()

{
 char inbuf[MSGSIZE];
int p[2], i, pid;

 if(pipe(p) < 0)
 { /* open pipe */
 perror(�pipe�);
 exit(1);
 }

 if((pid = fork()) < 0)
 {
 perror(�fork�);
 exit(2);

 }

if(pid > 0) /* parent */
 {
 write(p[1], msg1, MSGSIZE);
 write(p[1], msg2, MSGSIZE);
 write(p[1], msg3, MSGSIZE);
 wait((int *) 0);
 } if(pid == 0) /* child */

 {
 for(i=0; i < 3; i++)
 {
 read(p[0], inbuf, MSGSIZE);

 printf(�%s\n�, inbuf);
 }

 } return 0;
}

parent

p[0] (read)

p[1] (write)

child

Maria Hybinette, UGA 12

Things to Note

●  Pipes are intended to be unidirectional
channels if parent-child processes both read
and write on the pipe at the same time
confusion.

●  Best style is for a process to close the links it
does not need. Also avoids problems
(forthcoming).

 parent

p[0] (read)

p[1] (write)

child

Maria Hybinette, UGA 13

Example: pipe-fork-close.c

#include <stdio.h>
#include <sys/wait.h>
#include <unistd.h>
#define MSGSIZE 16

char *msg1=�hello, world #1�;
char *msg2=�hello, world #2�;
char *msg3=�hello, world #3�;

int main()

{
 char inbuf[MSGSIZE];
int p[2], i, pid;

 if(pipe(p) < 0)
 { /* open pipe */
 perror(�pipe�);
 exit(1);
 }

 if((pid = fork()) < 0)
 {
 perror(�fork�);
 exit(2);

 }

if(pid > 0) /* parent */
 {
 close(p[0]); /* read link */
 write(p[1], msg1, MSGSIZE);
 write(p[1], msg2, MSGSIZE);
 write(p[1], msg3, MSGSIZE);
 wait((int *) 0);
 }

if(pid == 0) /* child */
 {
 close(p[1]); /* write link */
 for(i=0; i < 3; i++)
 {
 read(p[0], inbuf, MSGSIZE);

 printf(�%s\n�, inbuf);
 }

 } return 0;
}

parent

p[0] (read)

p[1] (write)

child

Maria Hybinette, UGA 14

Some Rules of Pipes

●  Every pipe has a size limit
»  POSIX minimum is 512 bytes -- most systems makes this figure

larger

●  read() blocks if pipe is empty and there is a a write link open to
that pipe [it hangs]

●  read() from a pipe whose write() end is closed and is empty
returns 0 (indicates EOF) [but it doesn’t hang]

»  Lesson Learned: Close write links o/w read() will never return ***

●  write() to a pipe with no read() ends returns -1 and generates
SIGPIPE and errno is set to EPIPE

●  write() blocks if the pipe is full or there is not enough room to
support the write().

»  May block in the middle of a write()

Maria Hybinette, UGA 15

●  Perfectly possible to have multiple
readers / writers attached to a pipe

»  can cause confusion

Maria Hybinette, UGA 16

Example: Several Writers

●  Since a write() can suspend in the middle of
its output then output from multiple writers
output may be mixed up (or interleaved).

writer

reader

writer

writer

�…is getting a pizza…�

�big tree…�

�maria was great…�

�maria is getting big…�

 pipe-nonblocking.c

Maria Hybinette, UGA 17

Avoid Interleaving

●  In limits.h, the constant PIPE_BUF gives
the maximum number of bytes that can be
output by a write()call without any chance
of interleaving.

●  Use PIPE_BUF is there are to be multiple
writers in your code.

 pipe-nonblocking.c Maria Hybinette, UGA 18

Non-blocking read() & write()

●  Problem: Sometimes you want to avoid
read()and write()from blocking.

●  Goals:
» want to return an error instead
» want to poll several pipes in turn until one has data

●  Approaches:
» Use fstat()on the pipe to get #characters in pipe

(caveat: multiple readers may give a “race
condition”)

» Use fcntl() on the pipe and set it to O_NONBLOCK

 pipe-nonblocking.c

Maria Hybinette, UGA 19

Using fcntl()
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>

 : .
if(fcntl(fd, F_SETFL, O_NONBLOCK) < 0)

 perror(�fcntl�);
 :

●  Non-blocking write: On a write-only file descriptor, fd,
future writes will never block

»  Instead return immediately with a -1 and set errno to EAGAIN
●  Non-blocking read: On a read-only file descriptor, fd,

future reads will never block
»  return -1 and set errno to EAGAIN unless a flag is set to

O_NDELAY then return 0 if pipe is empty (or closed)

 pipe-nonblocking.c Maria Hybinette, UGA 20

●  Parent “launches’ one child
●  Child writes �hello� to parent every 3 seconds (3

times).
●  Parent read what the child writes
●  Parent does a non-blocking read each second.
●  Child does blocking write – … there nothing else

to do than write.

Example: Non-blocking with -1 return

child

p[0] (read)

p[1] (write)

parent

�hello�

�hello�

�hello�

 pipe-nonblocking.c

Maria Hybinette, UGA 21

●  Parent’s behavior à
» Need to check for

–  No data in pipe
–  Pipe is closed

(EOF)
–  Errors (in general)

» Continuously Read

Example: Non-blocking with -1 return

child

p[0] (read)

p[1] (write)

parent

�hello�

�hello�

�hello�

 pipe-nonblocking.c

●  Child’s behavior à
»  Just writes and

blocks if the pipe is
full

Maria Hybinette, UGA 22

#include <unistd.h>
#include <fcntl.h>

#include <errno.h>

#define MSGSIZE 6

char *msg1=�hello�;

void parent_read(int p[]);

void child_write(int p[]);

int main()

{
int pfd[2];

if(pipe(pfd) < 0)

 { /* open pipe */
perror(�pipe�);

 exit(1);

 }

if(fcntl(pfd[0], F_SETFL, O_NONBLOCK) < 0)
 { /* read non-blocking */
 perror(�fcntl�);
 exit(2);
 }

switch(fork())

 {
 case -1: /* error */
 perror(�fork�);
 exit(3);
 case 0: /* child */
 child_write(pfd);
 break;
 default: /* parent */

 parent_read(pfd);
 break;
 }

return 0;
}

Example: pipe-nonblocking.c

 pipe-nonblocking.c

Maria Hybinette, UGA 23

void parent_read(int p[])
{
int nread;
char buf[MSGSIZE];
close(p[1]); /* write link */
while(1)

 {
nread = read(p[0], buf, MSGSIZE);
switch(nread)

 {
 case -1:

 if(errno == EAGAIN)
 {
 printf(�(pipe empty)\n�);
 sleep(1);
 break;
 }

 else
 {

 perror(�read�);
 exit(4)

 }

 case 0:
 /* pipe has been closed */

 printf("End conversation\n");

 close(p[0]); /* read fd */

 exit(0);
 default: /* text read */

 printf("MSG=%s\n", buf);

 } /* switch */
 } /* while */

} /* parent_read */

void parent_read()

EAGAIN: No data in
pipe (yet) try
AGAIN later

Maria Hybinette, UGA 24

void child_write(int p[])
 {
 int i;

 close(p[0]); /* read link */

 for(i = 0; i < 3; i++)
 {

 write(p[1], msg1, MSGSIZE);

 sleep(3);
 }

 close(p[1]); /* write link */

 }

void child_write()

{saffron} pipe-nonblocking
(pipe is empty)

MSG=hello
(pipe is empty)

(pipe is empty)

(pipe is empty)
MSG=hello

(pipe is empty)

(pipe is empty)

MSG=hello
(pipe is empty)

(pipe is empty)

(pipe is empty)
End of conversation

Maria Hybinette, UGA 25

Non-blocking with 0 error

●  If non-blocking read()does not distinguish
between end-of-input and an empty pipe (e.g.
O_NDELAY is set) then can use special
message to mean end:

»  e.g. send �bye� as last message

Maria Hybinette, UGA 26

Review, and reflect

●  We created a pipe in a single process, and
communicated via the pipe (pipe-yourself.c)

» Not pragmatic

●  We created a pipe between [a] child(ren) and
a parent

»  Interesting!
»  Lets look more deeply into what happens after

fork?

Spoon?

Maria Hybinette, UGA 27

What Happens After Fork?

●  Design Question:
» Need to decide on :

–  The direction of the data flow – then close
appropriate ends of pipe (at both parent and child)

fd[0]
fd[1]

User Process (Parent)

Pipe

After Fork

fd[0]
fd[1]

User Process (Child)

fd[0]
fd[1]

User Process (Parent)

Pipe

Before Fork

Maria Hybinette, UGA 28

Some Pipe Rules

●  A forked child
»  Inherits file descriptors from its parent

●  pipe()
» Creates an

–  internal system buffer and
–  2 file descriptors:

●  one for reading and one for writing.

●  After the pipe call,
»  The parent and child should close the file

descriptors for the opposite direction (that it
doesn’t need).

»  Leaving them open does not permit full-duplex
communication.

Maria Hybinette, UGA 29

Pipes and exec()

Motivation: How can we code who | sort ?

Observation: Writes to stdout and reads from stdin.
1.  Use exec() to ‘run’ code in two different child

processes
»  one runs who [child2] and the other sort [child1]
»  exec in child(ren) starts a new program within their copy

of the �parent��process

2.  Connect the pipe to stdin and stdout using
dup2().

Maria Hybinette, UGA 30

Manipulating File Descriptors:
dup2

#include <unistd.h>
int dup2(int old-fd, int new-fd);

●  Sets one file descriptor to the value of

another.,
»  Existing file descriptor, old-fd, is

duplicated onto new-fd so that they refer to
the same file

●  If new-fd already exists, it will be closed
first.

Example:
» dup2(fd[1], fileno(stdout));

new-fd
old fd

File

Pipeline.c

Maria Hybinette, UGA 31

●  Connect the write end of a
pipe to stdout
»  int p[2];

pipe(p);
dup2(p[1], STDOUT_FILENO);

●  Connect the read end of pipe
to stdin
»  dup2(p[0], STDIN_FILENO); p[0] (read)

p[1] (write)

Connecting pipes with stdin &
stdout

stdout

stdin

Caveat: Beware of hanging on the
‘pipe’

Solution: Close all file descriptors
that comprise its pipes so that the
pipes don't hang. Maria Hybinette, UGA 32

Four Stages to who | sort

1.   main() creates a pipe

p[0] (read)

p[1] (write)

main

 int fds[2];
 pipe(fds) ; /* no error checks */

Maria Hybinette, UGA 33

Four Stages to who | sort

1.   main() creates a pipe
2.   main() forks twice to

make two children that
inherits the pipes
descriptors p[0] (read)

p[1] (write)
who

sort

main

See code… whosort.c

Maria Hybinette, UGA 34

Four Stages to who | sort

1.   main() creates a pipe
2.   main() forks twice to

make two children and
inherits the pipes
descriptors

3.  Child: Couple standard
output to write end

4.  Child: Couple standard
input to read end

5.  Close the pipe links
which are not needed

p[0] (read)

p[1] (write)
who

sort

main

 dup2(p[0] , STDIN_FILENO);

dup2(p[1] , STDOUT_FILENO);

Maria Hybinette, UGA 35

Child 2

Child 1

Four Stages to ps | sort

1.   main() creates a pipe
2.   main() forks twice to

make two children and
inherits the pipes
descriptors

3.  Close the pipe links
which are not needed

4.  Replace children by
programs using
exec()

p[0] (read)

p[1] (write) who

sort

main

Maria Hybinette, UGA 36

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/wait.h>

int main()
 {
 int p[2];
 pipe(p); /* no error checks */

 if(fork() == 0)
 { /* 1st child */
 /* fds[0]/stdin --> sort */
 dup2(p[0] , STDIN_FILENO);
 close(p[1]);
 execlp("sort", "sort", (char *)

0);
 }
 else
 { /* parent - create another kid */

who | sort :whosort.c
 if(fork() == 0)

 { /* 2nd child */
 /* who --> fds[1]/stdout --> sort */
 dup2(p[1] , STDOUT_FILENO);
 close(p[0]);
 execlp("who", "who", (char *) 0);
 }
 else
 { /* parent closes all links */
 close(p[0]);
 close(p[1]);

 wait((int *) 0);
 wait((int *) 0);
 } /* else parent second child */
 } /* else parent first child */
 return 0;
 }
 {atlas:maria:169} who-sort

aguda dtremote Apr 25 15:46 (128.192.101.83:0)
ananda pts/25 Apr 25 10:52 (128.192.4.101)

anyanwu pts/24 Apr 25 11:30 (dhcp183)
bralley dtremote Apr 25 15:38 (128.192.101.84:0)

Maria Hybinette, UGA 37

Limitations of Pipes

●  Processes using a pipe must come from a
common ancestor:

»  e.g. parent and child
»  cannot create general servers like print spoolers or

network control servers since unrelated processes
cannot use it

●  Pipes are not permanent
»  they disappear when the process terminates

●  Pipes are one-way:
» makes fancy communication harder to code

●  Readers and writers do not know each other.
●  Pipes do not work over a network

Maria Hybinette, UGA 38

Something more interesting…

●  Example : sort < file1.txt | uniq

●  What does this look like? How would a shell
be programmed to process this?

» Well we know we need a parent & child to
communicate though the pipe!

»  Parent
» Child
» We need to open a file and read from it – and then

read it as we read it from standard input.

Maria Hybinette, UGA 39

Want: sort < file1.txt | uniq

●  Want: How do we get there?

Parent uniq

stdin fd[0]
stdout fd[1]

Child sort

stdin fd[0]
stdout fd[1]

Pipe

file1.txt

Step 1: We want to read from the file

Maria Hybinette, UGA 40

Want: �sort < file1 | uniq�

fileDES = open(�file1.txt", O_RDONLY);

Parent
filedes
stdin fd[0]
stdout fd[1]

File
1

Step 2: Read from the file like it is from stdin

file1.txt

Maria Hybinette, UGA 41

Want: �sort < file1 | uniq�

fileDES = open(”file1.txt", O_RDONLY);
dup2(fileDES, fileno(stdin));

Parent
filedes
stdin fd[0]
stdout fd[1]

File
1

Step 3: Don’t need fileDES anymore …

file1.txt

Maria Hybinette, UGA 42

Want: �sort < file1 | uniq�

fileDES = open(”file1.txt", O_RDONLY);
dup2(fileDES, fileno(stdin));
close(fileDES);

Parent
filedes
stdin fd[0]
stdout fd[1]

File
1

Step 4: Hairier – now we deal with the pipe…

file1.txt

Maria Hybinette, UGA 43

Want: �sort < file1 | uniq�

pipe(fd);
… fork() …

Parent
filedes
stdin fd[0]
stdout fd[1]

File
1 Pipe

UGH Hairy!

file1.txt

Maria Hybinette, UGA 44

●  No : Not really that bad
»  Just need to create the pipe then create a child (or

parent) that is on the other side of the pipe!
–  Then do the plumbing:

●  Reroute stdin/stdout appropriately….

●  AND THAT IS IT!

Maria Hybinette, UGA 45

Want: �sort < file1 | uniq�

fork();
/* now do the plumbing */

Parent
filedes
stdin fd[0]
stdout fd[1]

File
1 Pipe

Child

stdin fd[0]
stdout fd[1]

file1.txt

Maria Hybinette, UGA 46

Want: �sort < file1 | uniq�

fork();
/* decide who does what (arbitrary) */

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File
1 Pipe

Child sort

stdin fd[0]
stdout fd[1]

file1.txt

Maria Hybinette, UGA 47

Want: �sort < file1 | uniq�

/* make writing to the pipe the same
/* as writing to stdout */
dup2(fd[1], fileno(stdout)); /* in green */

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File
1 Pipe

Child sort

stdin fd[0]
stdout fd[1]

file1.txt

Maria Hybinette, UGA 48

Want: �sort < file1 | uniq�

close(fd[0]); close(fd[1]); /* child */
/* leaving the ---- connections for child */

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File
1 Pipe

Child sort

stdin fd[0]
stdout fd[1]

file1.txt

Maria Hybinette, UGA 49

Want: �sort < file1 | uniq�

dup2(fd[0], fileno(stdin)); /* parent */
/* parent reads from pipe */

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File
1 Pipe

Child sort

stdin fd[0]
stdout fd[1]

file1.txt

Maria Hybinette, UGA 50

Want: �sort < file1 | uniq�

close(fd[1]); close(fd[0]); /* parent */

Parent uniq
filedes
stdin fd[0]
stdout fd[1]

File
1 Pipe

Child sort

stdin fd[0]
stdout fd[1]

file1.txt

Maria Hybinette, UGA 51

Example : �sort < file1 | uniq�
pid = fork();
if(pid < 0)
 {
 perror("fork");
 exit(1);
 }
else if(pid == 0) // child
 {
 close(pipeDES[0]);
 dup2(pipeDES[1], fileno(stdout));
 close(pipeDES[1]);
 execl("/usr/bin/sort", "sort", (char *) 0);
 }
else if(pid > 0) // parent
 {
 close(pipeDES[1]);
 dup2(pipeDES[0], fileno(stdin));
 close(pipeDES[0]);
 execl("/usr/bin/uniq", "uniq", (char *) 0);
 }
}

include <stdio.h>
include <stdlib.h>
include <unistd.h>
include <fcntl.h>

/* child | parent */
/* sort < file1.txt | uniq */
int main()
{
int status;
int fileDES;
int pipeDES[2];
pid_t pid;

fileDES = open("myfile.txt", O_RDONLY);
dup2(fileDES, fileno(stdin));

/* don't need to read via this one anymore */
close(fileDES) ;

/* create a child that communicate via a pipe */
/* parent reads from pipe, child writes to pipe */
pipe(pipeDES);

Maria Hybinette, UGA 52

Thought questions

●  Other ways of designing this task?
●  Is this the only way?

End of Tutorial

Maria Hybinette, UGA 53

What are FIFOs/Named Pipes?

●  Similar to pipes (as far as read/write are
concerned, e.g. FIFO channels), but with some
additional advantages:
§  Unrelated processes can use a FIFO.
§  A FIFO can be created separately from the processes

that will use it.
§  FIFOs look like files:
•  have an owner, size, access permissions
•  open, close, delete like any other file
•  permanent until deleted with rm

Maria Hybinette, UGA 54

Creating a FIFO

●  UNIX mkfifo command:
 $ mkfifo fifo1

●  On older UNIXs (origin ATT UNIX), use mknod:
 $ mknod fifo1 p

●  Use ls to get information:
 $ ls -l fifo1
prw-rw-r-- 1 maria maria 0 Oct 23 11.45 fifo1|

p means FIFO

Default mode is the
difference: 0666 -
umask value

Maria Hybinette, UGA 55

Using FIFOs: FIFO Blocking

●  FIFOs can be read and written using
standard UNIX commands connected via
�<� and �>� standard input or output

●  If there are no writers then a read:

 e.g. cat < fifo1
will block until there is 1 or more writers.

●  If there are no readers then a write:
 e.g. ls -l > fifo1

will block until there is 1 or more readers.
Maria Hybinette, UGA 56

Reader / Writer Example

$ cat < fifo1 &
[1] 22341
$ ls -l > fifo1; wait
total 17
prw-rw-r-- 1 maria usr 0 Oct 23 11.45 fifo1 :
[1] + Done cat < fifo1
$

1.  Output of ls -l is written down the FIFO
2.  Waiting cat reads from the FIFO and display the output
3.  cat exits since read returns 0 (the FIFO is not open for writing

anymore and 0 is returned as EOF)

wait - causes the shell to wait until cat exits before redisplaying the prompt.

read
fifo1

cat

ls -l

write

Maria Hybinette, UGA 57

Creating a FIFO in C

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

●  Returns 0 if OK, -1 on error.
●  mode is the same as for open() - and is modifiable by the

process��umask value
●  Once created, a FIFO must be opened using open()

Note: the significant difference between programming with
pipes versus FIFOs is initialization.

Maria Hybinette, UGA 58

Outline on how to program with
FIFOs

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#define MSGSIZE 63

int main()
{
int fd;
char msgbuf[MSGSIZE+1];

mkfifo(�/tmp/mariafifo�, 0666);
fd = open(�/tmp/mariafifo�, O_WRONLY);
.
.
}

Maria Hybinette, UGA 59

Two Main Uses of FIFOs

1.  Used by shell commands to pass data
from one shell pipeline to another
without using temporary files.

2.  Create client-server applications on a
single machine.

Maria Hybinette, UGA 60

Shell Usage

●  Example: Process a filtered output stream
twice – i.e., pass filtered data to two separate
processes:

●  In contrast to regular pipes, FIFOs allows
non-linear connections between processes
such as the above, since FIFO�s are pipes
with names.

input file

filtered
data

prog1

prog2

prog3

Maria Hybinette, UGA 61

Implementation

$ mkfifo fifo1
$ prog3 < fifo1 &
$ prog1 < infile | tee fifo1 | prog2

UNIX�s tee() copies standard input to both its

 ~ standard input and to the

 ~ file named on its command line

input file

filtered
data

tee

prog2

prog3

prog1

input file

filtered
data

prog1

prog2

prog3

Maria Hybinette, UGA 62

A Client-Server Application

●  Server contacted by numerous clients via a
well-known FIFO

●  How are replies from the server sent back to
each client?

well-known
FIFO

Server

client

client

read requests

Maria Hybinette, UGA 63

Client-Server FIFO Application

●  Problem: A single FIFO (as before) is not enough.
●  Solution: Each client send its PID as part of its

message. Which the uses to create a speciaal
�reply� FIFO for each client
»  e.g. /tmp/serv1.XXXX where XXXX is replaced with the

clients process ID

read requests

well-known FIFO

Server

client

client

client-specific FIFO

read replies

read replies

Maria Hybinette, UGA 64

Problems

●  The server does not know if a client is still
alive

» may create FIFOs which are never used
»  client terminates before reading the response

(leaving FIFO w/ one writer and no reader)

●  Each time number of clients goes from 1 client
to 0 the clients server reads �0�/EOF on the
well-known FIFO, if it is set to read-only.

» Common trick is to have the server open the FIFO as
read-write (see text book for more details)

Maria Hybinette, UGA 65

Programming Client-server
Applications

●  First we must see how to open and read a FIFO
from within C.

●  Clients will write in non-blocking mode, so they
do not have to wait for the server process to
start.

Maria Hybinette, UGA 66

Opening FIFOs

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

 :

fd = open(�fifo1�, O_WRONLY);
 :

●  A FIFO can be opened with open() (most I/O
functions work with pipes).

Maria Hybinette, UGA 67

Blocking open()

●  An open()call for writing will block until another
process opens the FIFO for reading.
»  this behavior is not suitable for a client who does not

want to wait for a server process before sending data.

●  An open()call for reading will block until another
process opens the FIFO for writing.
»  this behavior is not suitable for a server which wants to

poll the FIFO and continue if there are no readers at the
moment.

Maria Hybinette, UGA 68

Non-blocking open()

if (fd = open(�fifo1�, O_WRONLY | O_NONBLOCK)) < 0)
 perror(�open FIFO�);

●  opens the FIFO for writing
●  returns -1 and errno is set to ENXIO if there are no

readers, instead of blocking.
●  Later write()calls will also not block.

Maria Hybinette, UGA 69

Example: send-msg, recv-msg

well-known
FIFO: serv-fifo

send-msg

send-msg

recv-msg

�hello…
�tomato�

�labradoodle�

●  opens the FIFO for writing
●  returns -1 and errno is set to ENXIO if there are no

readers, instead of blocking.
●  Later write()calls will also not block.

Maria Hybinette, UGA 70

Some Points

●  recv-msg can read and write;
»  otherwise the program would block at the open call and
»  avoids responding to reading a �return of 0� when the

number of send-msg processes goes from 1 to 0 (and the
FIFO is empty) O_RDWR - ensures that at least one process
has the FIFO open for writing (i.e. recv-msg itself) so read
will always block until data is written to the FIFO

●  send-msg sends fixed-size messages of length PIPE_BUF
to avoid interleaving problems with other send-msg calls.
It uses non-blocking.

●  serv_fifo is globally known, and previously created
with mkfifo

Maria Hybinette, UGA 71

send-msg.c & recv-msg.c

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <limits.h>

#define SF "serv_fifo"

{saffron:ingrid:3} recv-msg
serv_fifo: No such file or directory
{saffron:ingrid:4} mkfifo serv_fifo
{saffron:ingrid:5} recv-msg &
[1] 792
Msg: hi
Msg: potato
Msg: pizza

{saffron:ingrid:3} send-msg "hi" �potato..." &
[1] 794

{saffron:ingrid:4} send-msg �pizza" &
[2] 795

[1] - Done send-msg �hi���potato�

[2] - Done send-msg �pizza�

Maria Hybinette, UGA 72

int main(int argc, char *argv[])
 {
 int fd, i;
 char msgbuf[PIPE_BUF];

 if(argc < 2)
 {
 printf("Usage: send-msg msg...\n");
 exit(1);
 }
 if((fd = open(SF, O_WRONLY | O_NONBLOCK)) < 0)
 { perror(SF); exit(1); }
 for(i = 1; i < argc; i++)
 {
 if(strlen(argv[i]) > PIPE_BUF - 2)
 printf("Too long: %s\n", argv[i]);
 else
 {
 make_msg(msgbuf, argv[i]);
 write(fd, msgbuf, PIPE_BUF);
 }
 }

/* put input message into mb[] with '$'
 * and padded with spaces */
void make_msg(char mb[], char

input[])
 {

 int i;
 for(i = 1; i < PIPE_BUF-1; i++)

 mb[i] = ' ';
 mb[i] = '\0';

 i = 0;

 while(input[i] != 0)
 {

 mb[i] = input[i];
 i++;

 }

 mb[i] = '$';
 } /* make_msg */

send-msg.c

 close(fd);
 return 0;
 } /* end main */

Maria Hybinette, UGA 73

int main(int argc, char *argv[])
 {
 int fd, i;
 char msgbuf[PIPE_BUF];

 if((fd = open(SF, O_RDWR)) < 0)
 {
 perror(SF);
 exit(1);
 }
 while(1)
 {
 if(read(fd, msgbuf, PIPE_BUF) < 0)
 {
 perror("read");
 exit(1);
 }
 print_msg(msgbuf);
 }
 close(fd);
 return 0;
 } /* end main */

/* print mb[] up to the '$' marker */
void print_msg(char mb[])
 {

 int i = 0;
 printf("Msg: ");

 while(mb[i] != '$')

 {
 putchar(mb[i]);

 i++;
 }

 putchar('\n');

 } /* make_msg */

recv-msg.c

Maria Hybinette, UGA 74

Things to Note about recv-msg

●  open()is blocking, so read()calls will block
when the pipe is empty

●  open() uses O_RDWR not O_RDONLY
»  this means there is a write link to the FIFO even

when there are no send-msg processes

»  this means that a read()call will block even when
there are no send-msg processes, instead of
returning 0.

