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CSCI 4730/6730 
Systems Programming Refresher 

Pipes & FIFOs 
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Outline 

●  What is a pipe? 
●  UNIX System review 
●  Processes (review) 
●  Pipes 
●  FIFOs 

Maria Hybinette, UGA 3 

What is a Pipe? 

●  A pipe is a one-way (half-duplex) 
communication channel which can be used 
to link processes. 

●  Can only be used between processes that 
have a common ancestor 

●  A pipe is a generalization of the file concept 
»  can use I/O functions like read()and write()to 

receive and send data 

SVR4 UNIX - uses full duplex pipes (read/write on both file descriptors) 
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Example: Shell Pipes 

●  Example:  
»  who   

–  outputs �who� is logged onto the system (e.g. on atlas) 
»  wc -l hello.txt 

–  outputs counts the number of lines in the file hello.txt 

●  You have seen pipes at the UNIX shell level already: 
»  who  | wc -l 

●  Shell starts the commands  who and wc -l to run  
concurrently. 

●  | tells the shell to create a pipe to couple standard 
output of �who�  to the standard input of   �wc -l�, 
logically: 
»  {atlas:maria:195} who > tmpfile 
»  {atlas:maria:196} wc -l < tmpfile 
»  17 
»  {atlas:maria:197}  

Recall < and > 
redirects 
standard input 
and output to a 
file (i.e., file 
descriptor 0 for  
input, and 1 for 
output. 

{atlas:maria:195} who > tmpfile 
{atlas:maria:196} wc -l < tmpfile 
       17 
{atlas:maria:197} who | wc -l 
  17 

{atlas:maria:197} cat tmpfile 
luffman    pts/44       Apr 26 10:17    (h198-137-28-67.paws.uga.edu) 
imacs      pts/25       Apr 26 08:43    (128.192.4.35) 

cai        pts/38       Apr 26 09:15    (user-1121m0h.dsl.mindspring.com) 
maher      pts/20       Apr 26 04:57    (adsl-219-4-207.asm.bellsouth.net) 

luffman    pts/50       Apr 26 09:52    (h198-137-28-67.paws.uga.edu) 

moore      pts/55       Apr 26 10:43    (adsl-219-226-14.asm.bellsouth.net) 
tanner     pts/117      Apr 26 08:46    (cmtspool-48.monroeaccess.net) 

weaver     pts/106      Apr 26 08:12    (creswell-s218h112.resnet.uga.edu) 
dimitrov   pts/39       Apr 26 09:01    (128.192.42.142) 

steward    pts/23       Apr 26 09:16    (128.192.101.7) 

weaver     pts/12       Apr 26 08:14    (creswell-s218h112.resnet.uga.edu) 
dme        pts/6        Apr 25 09:34    (128.192.4.136) 

ldeligia   pts/40       Apr 26 10:10    (128.192.4.72) 
brownlow   pts/13       Apr 26 09:48    (68-117-218-71.dhcp.athn.ga.charter.com) 

misztal    pts/30       Mar 27 10:32    (kat.cs.uga.edu) 
james      pts/51       Apr 26 09:28    (adsl-35-8-252.asm.bellsouth.net) 

cs4720     pts/107      Mar 27 15:06    (druid) 
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Programming with Pipes 

#include <unistd.h> 
int pipe( int fd[2] ); 
●  pipe()binds fd[]with two file descriptors: 

» fd[0] used to read from pipe  (consumer) 
» fd[1] used to write to pipe (producer) 

●  Returns 0 if OK and -1 on error. 
●  Example error: 

»  too many fd open already. 

 

fd[0] fd[1] 

pipe 

User process 

Kernel 

Process 
Chat 
Maria
�A�

Process 
Chat 

Gunnar
�B�

Hello Gunnar!

Hi Nice to Hear 
from you!
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Example: Pipe within a single 
process 

●  Simple example: 
»  creates a pipe called �p� 
» writes three messages to the pipe (down the pipe) 
»  reads (receives) messages from the pipe 

●  Process (user) view: 

process 
p[0] (read) 

p[1] (write) 

pipe p 
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Example: pipe-yourself.c 

#include <stdio.h> 
#include <unistd.h> 
#define MSGSIZE  16   /* null */ 
 
char *msg1=�hello, world #1�; 
char *msg2=�hello, world #2�; 
char *msg3=�hello, world #3�; 

 
int main() 

{  
 char inbuf[MSGSIZE]; 
int  p[2], i; 
 

 if( pipe( p ) < 0 )  
  {  /* open pipe */ 
     perror( �pipe� ); 
     exit( 1 ); 
   } 
 
 

write( p[1], msg1, MSGSIZE ); 
write( p[1], msg2, MSGSIZE ); 
write( p[1], msg3, MSGSIZE ); 

 
for( i=0; i < 3; i++ ) 

 {  /* read pipe */ 
read( p[0], inbuf, MSGSIZE ); 
printf( �%s\n�, inbuf ); 
} 

return 0; 
}   

{saffron:ingrid:4} pipe-yourself 
hello, world #1 
hello, world #2 
hello, world #3 

process 
p[0] (read) 

p[1] (write) 

pipe p 
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Things to Note 

●  Pipes uses FIFO ordering: first-in first-out. 
» messages are read in the order in which they were 

written. 
» lseek() does not work on pipes. 

●  Read / write amounts do not need to be the 
same, but then text will be split differently. 

●  Pipes are most useful with fork() which  
creates an IPC connection between the parent 
and the child (or between the parents children) 

parent child Pipe 
parent 

child Pipe child 
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Example: Pipe between a parent 
and child 

1.  Creates a pipe 
2.  Creates a new process via fork() 
3.  Parent writes to the pipe (fd 1) 
4.  Child reads from pipe (fd 0) 
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Example: pipe-fork.c 

#include <stdio.h> 
#include <sys/wait.h> 
#include <unistd.h> 
#define MSGSIZE  16   
 
char *msg1=�hello, world #1�; 
char *msg2=�hello, world #2�; 
char *msg3=�hello, world #3�; 

 
int main() 

{  
 char inbuf[MSGSIZE]; 
int p[2], i, pid; 
 

    if( pipe( p ) < 0 )  
  {  /* open pipe */ 
     perror( �pipe� ); 
     exit( 1 ); 
   } 

  if( (pid = fork()) < 0 ) 
  { 
  perror( �fork� ); 
     exit( 2 );   

  }    
 

if( pid > 0 ) /* parent */ 
 { 
 write( p[1], msg1, MSGSIZE ); 
 write( p[1], msg2, MSGSIZE ); 
 write( p[1], msg3, MSGSIZE ); 
 wait( (int *) 0 ); 
 } if( pid == 0 ) /* child */ 

 { 
 for( i=0; i < 3; i++ ) 
  { 
  read( p[0], inbuf, MSGSIZE );

  printf( �%s\n�, inbuf ); 
 } 

 } return 0; 
} 

parent 

p[0] (read) 

p[1] (write) 

child 
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Things to Note 

●  Pipes are intended to be unidirectional 
channels if parent-child processes both read 
and write on the pipe at the same time 
confusion. 

●  Best style is for a process to close the links it 
does not need. Also avoids problems 
(forthcoming). 

 parent 

p[0] (read) 

p[1] (write) 

child 
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Example: pipe-fork-close.c 

#include <stdio.h> 
#include <sys/wait.h> 
#include <unistd.h> 
#define MSGSIZE  16   
 
char *msg1=�hello, world #1�; 
char *msg2=�hello, world #2�; 
char *msg3=�hello, world #3�; 

 
int main() 

{  
 char inbuf[MSGSIZE]; 
int p[2], i, pid; 
 

    if( pipe( p ) < 0 )  
  {  /* open pipe */ 
     perror( �pipe� ); 
     exit( 1 ); 
   } 

  if( ( pid = fork() ) < 0 ) 
  { 
  perror( �fork� ); 
     exit( 2 );   

  }    

if( pid > 0 ) /* parent */ 
 { 
 close( p[0] ); /* read link */ 
 write( p[1], msg1, MSGSIZE ); 
 write( p[1], msg2, MSGSIZE ); 
 write( p[1], msg3, MSGSIZE ); 
 wait( (int *) 0 ); 
 } 

if( pid == 0 ) /* child */ 
 { 
 close( p[1] ); /* write link */ 
 for( i=0; i < 3; i++ ) 
  { 
  read( p[0], inbuf, MSGSIZE ); 

 printf( �%s\n�, inbuf ); 
 } 

 } return 0; 
} 

parent 

p[0] (read) 

p[1] (write) 

child 

Maria Hybinette, UGA 14 

Some Rules of Pipes 

●  Every pipe has a size limit 
»  POSIX minimum is 512 bytes -- most systems makes this figure 

larger 

●  read() blocks if pipe is empty and there is a a write link open to 
that pipe [it hangs] 

●  read() from a pipe whose write() end is closed and is empty 
returns 0 (indicates EOF) [but it doesn’t hang] 

»  Lesson Learned: Close write links o/w read() will never return  *** 
 

●  write() to a pipe with no read() ends returns -1 and generates 
SIGPIPE and errno is set to EPIPE 

●  write() blocks if the pipe is full or there is not enough room to 
support the write(). 

»  May block in the middle of a write() 
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●  Perfectly possible to have multiple  
readers / writers attached to a pipe 

»  can cause confusion 
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Example: Several Writers 

●  Since a write() can suspend in the middle of 
its output then output from multiple writers 
output may be mixed up (or interleaved).  

writer 

reader 

writer 

writer 

�…is getting a pizza…� 

�big tree…� 

�maria was great…� 

�maria is getting big…� 

 pipe-nonblocking.c 
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Avoid Interleaving 

●  In limits.h, the constant PIPE_BUF gives 
the maximum number of bytes that can be 
output by a write()call without any chance 
of interleaving. 
 

●  Use PIPE_BUF is there are to be multiple 
writers in your code. 
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Non-blocking read() & write() 

●  Problem: Sometimes you want to avoid 
read()and write()from blocking. 
 

●  Goals: 
» want to return an error instead 
» want to poll several pipes in turn until one has data  

●  Approaches:  
» Use fstat()on the pipe to get #characters in pipe 

(caveat: multiple readers may give a “race 
condition”) 

» Use fcntl() on the pipe and set it to O_NONBLOCK 

 pipe-nonblocking.c 
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Using fcntl() 
#include <sys/types.h> 
#include <unistd.h> 
#include <fcntl.h> 

 :  . 
if( fcntl( fd, F_SETFL, O_NONBLOCK ) < 0 ) 

   perror(�fcntl�); 
 : 

 

●  Non-blocking write: On a write-only file descriptor, fd, 
future writes will never block 

»  Instead return immediately with a -1 and set errno to EAGAIN 
●  Non-blocking read: On a read-only file descriptor, fd, 

future reads will never block 
»  return -1 and set errno to EAGAIN unless a flag is set to 

O_NDELAY then return 0 if pipe is empty (or closed)  
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●  Parent “launches’ one child 
●  Child writes �hello� to parent every 3 seconds (3 

times). 
●  Parent read what the child writes 
●  Parent does a non-blocking read each second. 
●  Child does blocking write – … there nothing else 

to do than write. 

Example: Non-blocking with -1 return 

child 

p[0] (read) 

p[1] (write) 

parent 

�hello� 

�hello� 

�hello� 

 pipe-nonblocking.c 
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●  Parent’s behavior à  
» Need to check for  

–  No data in pipe 
–  Pipe is closed 

(EOF) 
–  Errors (in general) 

» Continuously Read 

Example: Non-blocking with -1 return 

child 

p[0] (read) 

p[1] (write) 

parent 

�hello� 

�hello� 

�hello� 

 pipe-nonblocking.c 

●  Child’s behavior à  
»  Just writes and 

blocks if the pipe is 
full 
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#include <unistd.h> 
#include <fcntl.h> 

#include <errno.h> 
 

#define MSGSIZE  6    

char *msg1=�hello�; 
 

void parent_read( int p[] ); 

void child_write( int p[] ); 
 

int main() 

{ 
int pfd[2]; 

if( pipe( pfd ) < 0 )  

 {  /* open pipe */ 
perror( �pipe� ); 

 exit( 1 ); 

 } 

if( fcntl( pfd[0], F_SETFL, O_NONBLOCK ) < 0 ) 
 { /* read non-blocking */ 
 perror( �fcntl� );  
 exit( 2 ); 
 } 

switch( fork() )  

 { 
 case -1:    /* error */ 
  perror(�fork� );  
  exit(3); 
 case 0:     /* child */ 
  child_write( pfd );  
  break; 
 default:    /* parent */ 

  parent_read( pfd );  
  break; 
 } 

return 0; 
} 

Example: pipe-nonblocking.c 

 pipe-nonblocking.c 
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void parent_read( int p[] ) 
{  
int nread; 
char buf[MSGSIZE]; 
close( p[1] );  /* write link */ 
while( 1 )  

 { 
nread = read( p[0], buf, MSGSIZE ); 
switch( nread )  

     { 
     case -1: 

  if( errno == EAGAIN )  
    { 
    printf(�(pipe empty)\n�);  
    sleep( 1 );  
    break;  
    }  
   

       else 
     { 

  perror( �read� );  
  exit(4 ) 

  } 

 case 0: 
  /* pipe has been closed */ 

     printf( "End conversation\n" ); 

     close( p[0] ); /* read fd */ 

     exit(0); 
 default: /* text read */ 

     printf( "MSG=%s\n", buf ); 

 } /* switch */ 
  } /* while */ 

} /* parent_read */ 

void parent_read() 

EAGAIN: No data in 
pipe (yet) try 
AGAIN later 
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void child_write( int p[] ) 
  { 
  int i; 

  close( p[0] ); /* read link */ 

  for( i = 0; i < 3; i++ ) 
        { 

        write( p[1], msg1, MSGSIZE ); 

        sleep( 3 ); 
        } 

  close( p[1] ); /* write link */ 

  } 

void child_write() 

{saffron} pipe-nonblocking 
(pipe is empty) 

MSG=hello 
(pipe is empty) 

(pipe is empty) 

(pipe is empty) 
MSG=hello 

(pipe is empty) 

(pipe is empty) 

MSG=hello 
(pipe is empty) 

(pipe is empty) 

(pipe is empty) 
End of conversation 
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Non-blocking with 0 error 

●  If non-blocking read()does not distinguish 
between end-of-input and an empty pipe (e.g. 
O_NDELAY is set ) then can use special 
message to mean end: 

»  e.g. send �bye� as last message 
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Review, and reflect 

●  We created a pipe in a single process, and 
communicated via the pipe (pipe-yourself.c) 

» Not pragmatic 

●  We created a pipe between [a] child(ren) and 
a parent 

»  Interesting! 
»  Lets look more deeply into what happens after 

fork? 
 

Spoon? 
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What Happens After Fork? 

●  Design Question: 
» Need to decide on :  

–  The direction of the data flow – then close 
appropriate ends of pipe (at both parent and child) 

fd[0]          
fd[1] 

User Process (Parent) 

Pipe 

After Fork 

fd[0]          
fd[1] 

User Process (Child) 

fd[0]          
fd[1] 

User Process (Parent) 

Pipe 

Before Fork 
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Some Pipe Rules 

●  A forked child 
»   Inherits file descriptors from its parent 

●  pipe()  
» Creates an 

–   internal system buffer and 
–   2 file descriptors: 

●   one for reading and one for writing. 

●  After the pipe call, 
»  The parent and child should close the file 

descriptors for the opposite direction (that it 
doesn’t need).  

»  Leaving them open does not permit full-duplex 
communication. 
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Pipes and exec() 

Motivation: How can we code who | sort ? 
 

Observation: Writes to stdout and reads from stdin. 
1.  Use exec() to ‘run’ code in two different child 

processes  
»  one runs who [child2] and the other sort [child1]  
»  exec in child(ren) starts a new program within their copy 

of the �parent��process 

2.  Connect the pipe to stdin and stdout using 
dup2(). 
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Manipulating File Descriptors: 
dup2 

#include <unistd.h> 
int dup2( int old-fd, int new-fd ); 

 
●  Sets one file descriptor to the value of 

another., 
»  Existing file descriptor, old-fd, is 

duplicated onto new-fd so that  they refer to 
the same file 

●  If new-fd already exists, it will be closed 
first. 

 

Example: 
» dup2( fd[1], fileno(stdout));  

new-fd 
old fd 

File 

Pipeline.c 
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●  Connect the write end of a  
pipe to stdout 
»  int p[2]; 

pipe( p ); 
dup2( p[1], STDOUT_FILENO ); 

●  Connect the read end of pipe 
to stdin  
»  dup2( p[0], STDIN_FILENO ); p[0] (read) 

p[1] (write) 

Connecting pipes with stdin & 
stdout 

stdout 

stdin 

Caveat: Beware of hanging on the 
‘pipe’ 

Solution: Close all file descriptors 
that comprise its pipes so that the 
pipes don't hang. Maria Hybinette, UGA 32 

Four Stages to who | sort 

1.   main() creates a pipe 

p[0] (read) 

p[1] (write) 

main 

 int fds[2]; 
 pipe( fds ) ;   /* no error checks */ 
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Four Stages to who | sort 

1.   main() creates a pipe 
2.   main() forks twice to 

make two children that 
inherits the pipes 
descriptors p[0] (read) 

p[1] (write) 
who 

sort 

main 

See code… whosort.c 

Maria Hybinette, UGA 34 

Four Stages to who | sort 

1.   main() creates a pipe 
2.   main() forks twice to 

make two children and 
inherits the pipes 
descriptors 

3.  Child: Couple standard 
output to write end  

4.  Child: Couple standard 
input to read end 

5.  Close the pipe links 
which are not needed 

p[0] (read) 

p[1] (write) 
who 

sort 

main 

 dup2( p[0] , STDIN_FILENO ); 

dup2( p[1] , STDOUT_FILENO ); 
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Child 2 

Child 1 

Four Stages to ps | sort 

1.   main() creates a pipe 
2.   main() forks twice to 

make two children and 
inherits the pipes 
descriptors 

3.  Close the pipe links 
which are not needed 

4.  Replace children by 
programs using 
exec() 

p[0] (read) 

p[1] (write) who 

sort 

main 
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#include <sys/types.h> 
#include <unistd.h> 
#include <fcntl.h> 
#include <sys/wait.h> 
 
int main() 
  { 
  int p[2]; 
  pipe( p );   /* no error checks */ 
 
  if( fork() == 0 ) 
        { /* 1st child */ 
        /* fds[0]/stdin --> sort */ 
        dup2( p[0] , STDIN_FILENO ); 
        close( p[ 1 ] ); 
        execlp( "sort", "sort", (char *) 

0 ); 
        } 
  else 
        { /* parent - create another kid */ 
         

who | sort :whosort.c 
 if( fork() == 0 ) 

        { /* 2nd child */ 
        /* who --> fds[1]/stdout --> sort */ 
        dup2( p[1] , STDOUT_FILENO ); 
        close( p[ 0 ] ); 
        execlp( "who", "who", (char *) 0 ); 
        } 
    else 
        { /* parent closes all links */ 
        close( p[ 0 ] ); 
        close( p[ 1 ] ); 
 
        wait( (int *) 0 ); 
        wait( (int *) 0 ); 
        } /* else parent second child */ 
    } /* else parent first child */ 
  return 0; 
  } 
 {atlas:maria:169} who-sort  

aguda      dtremote     Apr 25 15:46    (128.192.101.83:0) 
ananda     pts/25       Apr 25 10:52    (128.192.4.101) 

anyanwu    pts/24       Apr 25 11:30    (dhcp183) 
bralley    dtremote     Apr 25 15:38    (128.192.101.84:0) 
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Limitations of Pipes 

●  Processes using a pipe must come from a 
common ancestor: 

»  e.g. parent and child 
»  cannot create general servers like print spoolers or 

network control servers since unrelated processes 
cannot use it 

●  Pipes are not permanent 
»  they disappear when the process terminates 

●  Pipes are one-way: 
» makes fancy communication harder to code 

●  Readers and writers do not know each other. 
●  Pipes do not work over a network 
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Something more interesting… 

●  Example : sort < file1.txt | uniq

●  What does this look like? How would a shell 
be programmed to process this? 

» Well we know we need a parent & child to 
communicate though the pipe! 

»  Parent 
» Child 
» We need to open a file and read from it – and then 

read it as we read it from standard input. 
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Want: sort < file1.txt | uniq 

●  Want: How do we get there? 

Parent        uniq 
 
stdin        fd[0] 
stdout       fd[1] 

Child         sort 
 
stdin        fd[0] 
stdout       fd[1] 

Pipe 

file1.txt 

Step 1: We want to read from the file 
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Want: �sort < file1 | uniq� 

fileDES = open( �file1.txt", O_RDONLY );
 

Parent 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 
1 

Step 2: Read from the file like it is from stdin 

file1.txt 
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Want: �sort < file1 | uniq� 

fileDES = open( ”file1.txt", O_RDONLY );
dup2( fileDES, fileno( stdin ) );

Parent 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 
1 

Step 3: Don’t need fileDES anymore … 

file1.txt 
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Want: �sort < file1 | uniq� 

fileDES = open( ”file1.txt", O_RDONLY );
dup2( fileDES, fileno( stdin) );
close( fileDES );

Parent 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 
1 

Step 4: Hairier – now we deal with the pipe… 

file1.txt 
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Want: �sort < file1 | uniq� 

pipe( fd );
… fork() …

Parent 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 
1 Pipe 

UGH Hairy! 

file1.txt 
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●  No : Not really that bad 
»  Just need to create the pipe then create a child (or 

parent) that is on the other side of the pipe! 
–  Then do the plumbing: 

●  Reroute stdin/stdout appropriately…. 

●  AND THAT IS IT! 
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Want: �sort < file1 | uniq� 

fork();
/* now do the plumbing */

Parent 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 
1 Pipe 

Child 
 
stdin        fd[0] 
stdout       fd[1] 

file1.txt 
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Want: �sort < file1 | uniq� 

fork();
/* decide who does what (arbitrary) */ 

Parent           uniq 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 
1 Pipe 

Child         sort 
 
stdin        fd[0] 
stdout       fd[1] 

file1.txt 
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Want: �sort < file1 | uniq� 

/* make writing to the pipe the same
/* as writing to stdout */
dup2( fd[1], fileno(stdout)); /* in green */

Parent           uniq 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 
1 Pipe 

Child         sort 
 
stdin        fd[0] 
stdout       fd[1] 

file1.txt 
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Want: �sort < file1 | uniq� 

close(fd[0]); close(fd[1]);  /* child */
/* leaving the ---- connections for child */

Parent           uniq 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 
1 Pipe 

Child         sort 
 
stdin        fd[0] 
stdout       fd[1] 

file1.txt 
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Want: �sort < file1 | uniq� 

dup2(fd[0], fileno(stdin));  /* parent */
/* parent reads from pipe */

Parent           uniq 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 
1 Pipe 

Child         sort 
 
stdin        fd[0] 
stdout       fd[1] 

file1.txt 
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Want: �sort < file1 | uniq� 

close(fd[1]); close(fd[0]);  /* parent */

Parent           uniq 
filedes 
stdin        fd[0] 
stdout       fd[1] 

File 
1 Pipe 

Child         sort 
 
stdin        fd[0] 
stdout       fd[1] 

file1.txt 
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Example : �sort < file1 | uniq� 
pid = fork();
if( pid < 0 )
  {
  perror("fork");
  exit(1);
  }
else if( pid == 0 ) // child
  {
  close( pipeDES[0] );
  dup2( pipeDES[1], fileno(stdout) );
  close( pipeDES[1]);
  execl( "/usr/bin/sort", "sort", (char *) 0 );
  }
else if( pid > 0 ) // parent
  {
  close( pipeDES[1] );
  dup2( pipeDES[0], fileno(stdin) ); 
  close( pipeDES[0]);
  execl( "/usr/bin/uniq", "uniq", (char *) 0 );
  }
}

# include <stdio.h>
# include <stdlib.h>
# include <unistd.h>
# include <fcntl.h>

/* child            | parent */
/* sort < file1.txt | uniq */
int main()
{
int status;
int fileDES;
int pipeDES[2];
pid_t pid;

fileDES = open( "myfile.txt", O_RDONLY );
dup2( fileDES, fileno( stdin) );

/* don't need to read via this one anymore */
close( fileDES ) ; 

/* create a child that communicate via a pipe */
/* parent reads from pipe, child writes to pipe */
pipe( pipeDES );
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Thought questions 

●  Other ways of designing this task? 
●  Is this the only way? 

 
End of Tutorial  
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What are FIFOs/Named Pipes? 

●  Similar to pipes (as far as read/write are 
concerned, e.g. FIFO channels), but with some 
additional advantages: 
§  Unrelated processes can use a FIFO. 
§  A FIFO can be created separately from the processes 

that will use it. 
§  FIFOs look like files: 
•  have an owner, size, access permissions 
•  open, close, delete like any other file 
•  permanent until deleted with rm 
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Creating a FIFO 

●  UNIX mkfifo command: 
 $ mkfifo fifo1 

 

●  On older UNIXs (origin ATT UNIX), use mknod: 
 $ mknod fifo1 p 

 

●  Use ls to get information: 
 $ ls -l fifo1 
prw-rw-r--  1  maria  maria  0 Oct 23  11.45  fifo1| 

p means FIFO 

Default mode is the 
difference: 0666 - 
umask value 
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Using FIFOs: FIFO Blocking 

●  FIFOs can be read and written using 
standard UNIX commands connected via 
�<� and �>�  standard input or output 

 
●  If there are no writers then a read:  

 e.g.  cat < fifo1 
will block until there is 1 or more writers. 
 

●  If there are no readers then a write: 
 e.g.  ls -l > fifo1 

will block until there is 1 or more readers. 
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Reader / Writer Example 

$ cat < fifo1 & 
[1] 22341 
$ ls -l > fifo1; wait 
total 17 
prw-rw-r--  1  maria  usr  0  Oct 23  11.45  fifo1  : 
[1] + Done   cat < fifo1  
$ 
 

1.  Output of ls -l is written down the FIFO 
2.  Waiting cat reads from the FIFO and display the output 
3.  cat exits since read returns 0 (the FIFO is not open for writing 

anymore and 0 is returned as EOF) 

 
wait - causes the shell to wait until cat exits before redisplaying the prompt.

read 
fifo1 

cat 

ls -l 

write 
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Creating a FIFO in C 

#include <sys/types.h> 
#include <sys/stat.h> 
 

int mkfifo( const char *pathname, mode_t mode ); 
 

●  Returns 0 if OK, -1 on error. 
●  mode is the same as for open() -  and is modifiable by the 

process��umask value 
●  Once created, a FIFO must be opened using open() 

Note: the significant difference between programming with 
pipes versus FIFOs is initialization. 
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Outline on how to program with 
FIFOs 

#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
 
#define MSGSIZE 63 
 
int main() 
{ 
int fd; 
char msgbuf[MSGSIZE+1]; 
 
mkfifo( �/tmp/mariafifo�, 0666 ); 
fd = open( �/tmp/mariafifo�, O_WRONLY ); 
. 
. 
} 
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Two Main Uses of FIFOs 

1.  Used by shell commands to pass data 
from one shell pipeline to another 
without using temporary files. 

2.  Create client-server applications on a 
single machine. 
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Shell Usage 

●  Example:  Process a filtered output stream 
twice – i.e., pass filtered data to two separate 
processes: 

●  In contrast to regular pipes, FIFOs allows 
non-linear connections between processes 
such as the above, since FIFO�s are pipes 
with names. 

input file 

filtered 
data 

prog1 

prog2 

prog3 
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Implementation 

$ mkfifo fifo1 
$ prog3 < fifo1 & 
$ prog1 < infile | tee fifo1 | prog2 

UNIX�s tee() copies standard input to both its  

 ~ standard input and to the  

 ~ file named on its command line 

 

input file 

filtered 
data 

tee 

prog2 

prog3 

prog1 

input file 

filtered 
data 

prog1 

prog2 

prog3 
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A Client-Server Application 

●  Server contacted by numerous clients via a 
well-known FIFO 

●  How are replies from the server  sent back to 
each client? 

well-known 
FIFO 

Server 

client 

client 

read requests 
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Client-Server FIFO Application 

●  Problem: A single FIFO (as before) is not enough. 
●  Solution:  Each client send its PID as part of its 

message. Which the uses to create a speciaal 
�reply� FIFO for each client  
»  e.g. /tmp/serv1.XXXX where XXXX is replaced with the 

clients process ID 

read requests 

well-known FIFO 

Server 

client 

client 

client-specific FIFO 

read replies 

read replies 
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Problems 

●  The server does not know if a client is still 
alive 

» may create FIFOs which are never used 
»  client terminates before reading the response 

(leaving FIFO w/ one writer and no reader) 

●  Each time number of clients goes from 1 client 
to 0 the clients server reads �0�/EOF on the 
well-known FIFO, if it is set to read-only. 

» Common trick is to have the server open the FIFO as 
read-write (see text book for more details) 
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Programming Client-server 
Applications 

●  First we must see how to open and read a FIFO 
from within C. 
 

●  Clients will write in non-blocking mode, so they 
do not have to wait for the server process to 
start. 
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Opening FIFOs 

#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 

 : 

fd = open( �fifo1�, O_WRONLY ); 
 : 

●  A FIFO can be opened with open() (most I/O 
functions work with pipes). 
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Blocking open() 

●  An open()call for writing will block until another 
process opens the FIFO for reading. 
»  this behavior is not suitable for a client who does not 

want to wait for a server process before sending data. 
 

●  An open()call for reading will block until another 
process opens the FIFO for writing. 
»  this behavior is not suitable for a server which wants to 

poll the FIFO and continue if there are no readers at the 
moment. 
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Non-blocking open() 

if ( fd = open( �fifo1�, O_WRONLY | O_NONBLOCK)) < 0 ) 
   perror( �open FIFO� ); 
 

●  opens the FIFO for writing 
●  returns -1 and errno is set to ENXIO if there are no 

readers, instead of blocking. 
●  Later write()calls will also not block. 

Maria Hybinette, UGA 69 

Example: send-msg, recv-msg 

well-known 
FIFO: serv-fifo 

send-msg 

send-msg 

recv-msg 

�hello… 
�tomato� 

�labradoodle� 

●  opens the FIFO for writing 
●  returns -1 and errno is set to ENXIO if there are no 

readers, instead of blocking. 
●  Later write()calls will also not block. 
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Some Points 

●  recv-msg can read and write;  
»  otherwise the program would block at the open call and 
»  avoids responding to reading a �return of 0� when the 

number of send-msg processes goes from 1 to 0 (and the 
FIFO is empty) O_RDWR - ensures that at least one process 
has the FIFO open for writing (i.e. recv-msg itself) so read 
will always block until data is written to the FIFO 

●  send-msg sends fixed-size messages of length PIPE_BUF 
to avoid interleaving problems with other send-msg calls. 
It uses non-blocking. 
 

●  serv_fifo is globally known, and previously created 
with mkfifo 
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send-msg.c & recv-msg.c 

#include <stdio.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <unistd.h> 
#include <fcntl.h> 
#include <string.h> 
#include <limits.h> 
 
#define SF "serv_fifo" 
 

{saffron:ingrid:3} recv-msg 
serv_fifo: No such file or directory 
{saffron:ingrid:4} mkfifo serv_fifo 
{saffron:ingrid:5} recv-msg & 
[1] 792 
Msg: hi 
Msg: potato 
Msg: pizza 

{saffron:ingrid:3} send-msg "hi" �potato..." & 
[1] 794 

{saffron:ingrid:4} send-msg �pizza" & 
[2] 795 

[1] - Done                 send-msg �hi���potato� 

[2] - Done                 send-msg �pizza� 
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int main( int argc, char *argv[] ) 
  { 
  int fd, i; 
  char msgbuf[PIPE_BUF]; 
 
  if( argc < 2 ) 
        { 
        printf( "Usage: send-msg msg...\n" ); 
        exit( 1 ); 
        } 
  if( (fd = open( SF, O_WRONLY | O_NONBLOCK )) < 0) 
        { perror( SF ); exit( 1 ); } 
  for( i = 1; i < argc; i++ ) 
        { 
        if( strlen( argv[i] ) > PIPE_BUF - 2 ) 
                printf( "Too long: %s\n", argv[i] ); 
        else 
                { 
                make_msg( msgbuf, argv[i] ); 
                write( fd, msgbuf, PIPE_BUF ); 
                } 
        } 

   

/* put input message into mb[] with '$'  
 * and padded with spaces */ 
void make_msg( char mb[], char 

input[] ) 
  { 

  int i; 
  for( i = 1; i < PIPE_BUF-1; i++ ) 

        mb[i] = ' '; 
  mb[i] = '\0'; 

  i = 0; 

  while( input[i] != 0 ) 
        { 

        mb[i] = input[i]; 
        i++; 

        } 

  mb[i] = '$'; 
  } /* make_msg */ 

send-msg.c 

  close( fd );  
  return 0; 
  } /* end main */ 
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int main( int argc, char *argv[] ) 
  { 
  int fd, i; 
  char msgbuf[PIPE_BUF]; 
 
  if( (fd = open( SF, O_RDWR )) < 0 ) 
        { 
        perror( SF ); 
        exit( 1 ); 
        } 
  while( 1 ) 
        { 
        if( read( fd, msgbuf, PIPE_BUF ) < 0 ) 
                { 
                perror( "read" ); 
                exit( 1 ); 
                }  
        print_msg( msgbuf );  
        } 
  close( fd ); 
  return 0; 
  } /* end main */ 

/* print mb[] up to the  '$' marker */ 
void print_msg( char mb[] ) 
  {  

  int i = 0; 
  printf( "Msg: " ); 

  while( mb[i] != '$' ) 

        { 
        putchar( mb[i] ); 

        i++; 
        }     

  putchar( '\n' ); 

  } /* make_msg */ 
 

recv-msg.c 
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Things to Note about recv-msg 

●  open()is blocking, so read()calls will block 
when the pipe is empty 
 

●  open() uses O_RDWR not O_RDONLY 
»  this means there is a write link to the FIFO even 

when there are no send-msg processes 
 

»  this means that a read()call will block even when 
there are no send-msg processes, instead of 
returning 0. 


