Chapter 3: Processes: Outline
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RPC: Processes
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Client-Server Remote Machine
Communication Mechanisms

@ Process Concept: views of a process
e Process Scheduling

@ Operations on Processes

@ Cooperating Processes

@ Inter Process Communication (IPC)

» Local
— Pipe
— Shared Memory
— Messages (Queues)

» Remote
— Lower Level: Sockets, MPI, Myrinet
— Higher Level: RPC, RMI, WebServices, CORBA,
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Remote Procedure Calls (RPC)

@ Socket communication (Possible bonus project)
@ Remote Procedure Calls (Project next week).
e Remote Method Invocation (Briefly, on your own)
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@ Inter-machine process to process
communication

» Abstract procedure calls over a network:
» rusers, rstat, rlogin, rup => daemons at ports
— Registered library calls (port mapper)
» Hide message passing I/O from programmer
o Looks (almost) like a procedure call -- but
client invokes a procedure on a server.
» Pass arguments — get results

» Fits into high-level programming language
constructs

» Well understood
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Remote Procedure Calls (RPC)

Remote Procedure Calls

o RPC High level view: °

» Calling process attempt to call a ‘remote’ routine on °
server

» Calling process (client) is suspended )

¥

Parameters are passed across network to a process

server °

B

Server executes procedure
Return results across network
Calling process resumes

¥

4
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Usually built on top sockets (IPC)

stubs — client-side proxy for the actual procedure on
the server.

The client-side stub locates the server and marshalls the
parameters.
The server-side stub receives this message, unpacks

the marshalled parameters, and performs the procedure
on the server.

Association 5 tuple {protocol, local-address, local-p , foreig dd. , foreign-process} RPC Association Bet-ween
Client/Server Model Using RPC Machines
XDR k
paraml:jgrs XDR un;:ack Each RPC o
call o el invocation by a e Association between remote and local host
client clitert;t v sever | client process calls » 5 tuple
stu i
stub a c_" ent sfub, — {protocol, local-address, local-process, foreign-address,
return | <——[return which builds a foreign-process}
unpack pack message and
results results ds it t — Protocol : transport protocol typically TCP or UDP, needs to
. sends itto a server be common between hosts
ernel kernel stub
— Local/foreign address: Typically the IP address
— Local/foreign process: Typically the port number (not PID)
network

o The server stub uses the message to generate a local procedure call to
the server

e If the local procedure call returns a value, the server stub builds a
message and sends it to the client stub, which receives it and returns the
result(s) to the client
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Binding

Execution of RPC

Registration data flow

Client Process Portmapper

Procedure Call data flow I

Server Process

@ RPC application is packed into a program and
is assigned an identifier (Port)

@ Portmap : allocate port numbers for RPC
programs
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Remote Procedure Calls

Client Messages Server

user calls kernel
to send RPC
message to
procedure X

From: client

kernel sends @ matchmaker
message to bort receives
r_natcnmaker to Re: address message, looks
find port number e up answer

From: server

kernel places To: client matchmaker
port Pin user Port: kernel replies to client
RPC message Re: RPC X with port

Port: P

daemon
listening to
port P receives
message

From: client
To: server

Port: port P
<contents>

kernel sends
RPC

daemon
processes.
request and
processes send
output

kernel receives
reply, passes
it to user

To: client
Port: kernel
<output>

® Machine independent representation of data:

» Differ if most/least significant byte is in the high memory
address

» External data representation (XDR)

— Allows more complex representation that goes beyond:
o htonl() routines.

o Fixed or dynamic address binding

» Dynamic: Matchmaker daemon at a fixed address (given
name of RPC returns port of requested daemon)
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Tutorial (linux journal )
® rpcgen generates C code from a file written in
‘RPC language’ <name>. x,e.g., avg.x
Default output rpcgen Syntax Example
Header file <name>.h avg.h
XDR data type translate <name> xdr.c avg._xdr.c
routines (from type in .h file)
stub program for server <name> svc.c avg_svc.c
stub program for client <name> clnt.c avg_clnt.c
@ Application programmer (you) write code for:
» Client routine (main program)
- ravg <host> <parameters>
» Server program (e.g., actual code to compute average)
1
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Application Routines of Interest

avg.x : RPC language file

e Server Routine:
» average_1_svc(input_data, ):

— A avg_proc.c routine that is called from the server
stub that was generated by rpcgen

o Client Routine:

» average_prog_1()

— Local routine that parse parameter and that ultimately
calls a ‘local’ average_1 routine from generated
code in avg_clint.c that packs parameters (also uses
routines in avg_xdr.c and sends code to server.
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ravg.c :Client Program(1)

/* client code - calls client stub, xdr client, xdr xerver, server stub, server routine */
#include "avg.h" /* header file generated by rpcgen */
#include <stdlib.h>

/* local routine client prototype can be whatever you want */
void averageprog_l( char* host, int argc, char *argv[] )

{

CLIENT *clnt; /* client handle, rpc.h */
double £, kkkkkk *result 1, *dp,

char *endptr;

int i;

input data average 1 _arg; /* input_data rpc struct */
average 1 _arg.input data.input_data val = (double*) malloc (MAXAVGSIZE* sizeof (double)) ;

dp = average_1_arg.input_data.input data val; /* ptr to beginning of data */
average_ 1 arg.input data.input_data len = argc - 2; /* set number of items */

for( i =1; i <= (argc - 2); i++ )
{ /* str to d ASCII string to floating point nubmer */
f = strtod( argv[i+l], &endptr);
printf ("value = %e\n", £f);
*dp = £;
dp++;

const MAXAVGSIZE = 200;
struct input data
{
double input data<200>;
b

typedef struct input data input data;

program AVERAGEPROG {
version AVERAGEVERS {
double AVERAGE (input_data) = 1;
}=1;
} = 22855; /* ‘port number’ */
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ravg.c :Client Program (2)

/* clnt_create( host, program, version, protocol)

& generic client create routine from rpc library

* program = AVERAGEPROG is the number 22855

* version = AVERAGEVERS is 1

* protocol = transfer protocol */

clnt = clnt create( host, AVE DG, AVER VERS, "udp" );

if (clnt == NULL)

{ clnt _pcreateerror( host ); /* rpc error library */
exit(1l);

*

/

now call average routine 'just' like a local routine, but this will now go over network

*

average 1 is definined in the client stub in avg_clnt.c that was generated by rpcgen

*

send in ptr to the parameters or args in first field, and client handle in second

*

field (created in clnt_create ) average 1 ultimately calls clnt_call() macro see

*

man rpc, then calls the remote routine associated with the client handle
so AVERAGEPROG, VERSION */

result 1 = average 1( &average 1 arg, clnt );

if (result 1 == NULL)

{

clnt_perror(clnt, "call failed:");

}

*

clnt_destroy( clnt );
printf( "average = %e\n", *result 1 );

} /* end average 1 prodedure */ /* next slide main() */




ravg.c :Client Program (3)

avg _proc.c :Server Program (1)

int main( int argc, char* argv([] )
{

char *host;

/* check correct syntax */

if( arge < 3 )

{
printf( "usage: %s server_ host value ...\n", argv[0]);
exit(1l);

if ( argc > MAXAVGSIZE + 2 )

{
printf ("Two many input values\n");
exit(2);

/* host name is in first parameter (after program name) */
host = argv[l];
averageprog_1l( host, argc, argv);

#include <rpc/rpc.h>
#include "avg.h” /* avg.h generated rpcgen */
#include <stdio.h>

/* run locally on 'server' called by a remote client. */

static double sum avg;

/* routine notice the _1 the version number and notice the client handle, not used here, but
* still needs to be a parameter */
double * average_1( input data *input, CLIENT *client)
{
/* input is parameters were marshaled by generated routine */
/* a pointer to a double, set to beginning of data array */
double *dp = input->input data.input_ data val;
u_int i;
sum_avg = 0;
for( i = 1; i <= input->input_data.input data_len; i++ ) /* iterate over input */
{
sum_avg = sum avg + *dp; /* add what ptrs points to ( '*' gets content ) */
dp++;
}

sum_avg = sum_avg / input->input_data.input data_len;
return( &sum_avg );
} /* end average 1 */ /* next is routine called from server stub generated by rpcgen */

avg _proc.c :Server Program (1)

#include <rpc/rpc.h>
#include "avg.h” /* avg.h generated rpcgen */
#include <stdio.h>

/* run locally on 'server' called by a remote client. */

static double sum avg;

/* routine notice the _1 the version number and notice the client handle, not used here, but
* still needs to be a parameter */
double * average_1( input data *input, CLIENT *client)
{
/* input is parameters were marshaled by generated routine */
/* a pointer to a double, set to beginning of data array */
double *dp = input->input data.input_ data val;
u_int i;
sum_avg = 0;
for( i = 1; i <= input->input_data.input data_len; i++ ) /* iterate over input */
{
sum_avg = sum avg + *dp; /* add what ptrs points to ( '*' gets content ) */
dp++;
}

sum_avg = sum_avg / input->input_data.input data_len;
return( &sum_avg );
} /* end average 1 */ /* next is routine called from server stub generated by rpcgen */

avg_proc.c :Server Program (2)

/*

* server stub 'average 1 _svc function handle called in avg_svc that was
* generated by rpcgen

AEFY LS

* result = (*local) ((char *)&argument, rgstp);

* where local is (char *(*) (char *, struct svc_req *)) average 1_svc;

&

double * average_ 1_svc(input_data *input, struct svc_req *svc)
{
CLIENT *client;
return( average 1( input, client) );

}




Compilation on client

Compilation on server

rpcgen avg.x # generates:

# avg clnt.c, avg svc.c, avg xdr.c, avg.h
gcc ravg.c -c # -c generates .o files
gcc avg_clnt.c -c
gcc avg_xdr.c -c

gcc -c ravg ravg.o avg_clnt.o avg _xdr.o -lnsl
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.rhost

rpcgen avg.x # generates:
# avg clnt.c, avg svc.c, avg xdr.c, avg.h
gcc avg_proc.c -c

gcc avg_svc.c -c

gcc -0 avg_svc avg_proc.o avg_svc.o avg xdr.o -1lnsl
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Running

@ Directly under your home directory on each
machine (client and server) create a file
named:

.rhost

® Add two or more lines in the format:

<machine_name> <loginname>
® For example I added 3 lines:
odin maria
herc maria
atlas maria
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{maria:herc} avg_svc

{maria:odin} ravg atlas.cs.uga.edu12345
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See Textbook i.e., reading assignment

Resources Remote Method Invocation

1. (RPCgen)
(Sh. Mem) ® Remote Method Invocation (RMI) is a Java mechanism
similar to RPCs.

o RMI allows a Java program on one machine to invoke a
method on a remote object.

o Possible to Pass Objects( remote, local) as parameters
to remote methods (via serialization).

> @ DN

(1) Nice tutorial on RPC

JYM
2) (2) Shared Memorh
. . . JVM
(3) Linux journal tutorial uses avg.x Java @) remote
. . od in )
(4) Beej’s Guide FICEE VOcation o
remote
object
2 2
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Marshalling Parameters

@ Client invoke method: someMethod on a
remote object Server

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)

{

implementation of someMethod

}

| stub | skeleton

A, B, someMethod
boolean return value 5

Maria Hybinette, UGA



