Chapter 3: Processes: Outline

CSCI 6730/ 4730
Operating Systems

RPC: Processes

Maria Hybinette, UGA

Client-Server Remote Machine
Communication Mechanisms

@ Process Concept: views of a process
e Process Scheduling

@ Operations on Processes

@ Cooperating Processes

@ Inter Process Communication (IPC)

» Local
— Pipe
— Shared Memory
— Messages (Queues)

» Remote
— Lower Level: Sockets, MPI, Myrinet
— Higher Level: RPC, RMI, WebServices, CORBA,

Maria Hybinette, UGA

Remote Procedure Calls (RPC)

@ Socket communication (Possible bonus project)
@ Remote Procedure Calls (Project next week).
e Remote Method Invocation (Briefly, on your own)

Maria Hybinette, UGA

@ Inter-machine process to process
communication

» Abstract procedure calls over a network:
» rusers, rstat, rlogin, rup => daemons at ports
— Registered library calls (port mapper)
» Hide message passing I/O from programmer
o Looks (almost) like a procedure call -- but
client invokes a procedure on a server.
» Pass arguments — get results

» Fits into high-level programming language
constructs

» Well understood

aria Hybinette, UGA

Remote Procedure Calls (RPC)

Remote Procedure Calls

o RPC High level view: °

» Calling process attempt to call a ‘remote’ routine on °
server

» Calling process (client) is suspended)

¥

Parameters are passed across network to a process

server °

B

Server executes procedure
Return results across network
Calling process resumes

¥

4

Maria Hybinette, UGA Maria Hybinette, UGA

Usually built on top sockets (IPC)

stubs — client-side proxy for the actual procedure on
the server.

The client-side stub locates the server and marshalls the
parameters.
The server-side stub receives this message, unpacks

the marshalled parameters, and performs the procedure
on the server.

Association 5 tuple {protocol, local-address, local-p , foreig dd. , foreign-process} RPC Association Bet-ween
Client/Server Model Using RPC Machines
XDR k
paraml:jgrs XDR un;:ack Each RPC o
call o el invocation by a e Association between remote and local host
client clitert;t v sever | client process calls » 5 tuple
stu i
stub a c_" ent sfub, — {protocol, local-address, local-process, foreign-address,
return | <——[return which builds a foreign-process}
unpack pack message and
results results ds it t — Protocol : transport protocol typically TCP or UDP, needs to
. sends itto a server be common between hosts
ernel kernel stub
— Local/foreign address: Typically the IP address
— Local/foreign process: Typically the port number (not PID)
network

o The server stub uses the message to generate a local procedure call to
the server

e If the local procedure call returns a value, the server stub builds a
message and sends it to the client stub, which receives it and returns the
result(s) to the client
Maria Hybinette, UGA Maria Hybinette, UGA

Binding

Execution of RPC

Registration data flow

Client Process Portmapper

Procedure Call data flow I

Server Process

@ RPC application is packed into a program and
is assigned an identifier (Port)

@ Portmap : allocate port numbers for RPC
programs

Maria Hybinette, UGA

Remote Procedure Calls

Client Messages Server

user calls kernel
to send RPC
message to
procedure X

From: client

kernel sends @ matchmaker
message to bort receives
r_natcnmaker to Re: address message, looks
find port number e up answer

From: server

kernel places To: client matchmaker
port Pin user Port: kernel replies to client
RPC message Re: RPC X with port

Port: P

daemon
listening to
port P receives
message

From: client
To: server

Port: port P
<contents>

kernel sends
RPC

daemon
processes.
request and
processes send
output

kernel receives
reply, passes
it to user

To: client
Port: kernel
<output>

® Machine independent representation of data:

» Differ if most/least significant byte is in the high memory
address

» External data representation (XDR)

— Allows more complex representation that goes beyond:
o htonl() routines.

o Fixed or dynamic address binding

» Dynamic: Matchmaker daemon at a fixed address (given
name of RPC returns port of requested daemon)

Maria Hybinette, UGA

1
Maria Hybinette, UGA
Tutorial (linux journal)
® rpcgen generates C code from a file written in
‘RPC language’ <name>. x,e.g., avg.x
Default output rpcgen Syntax Example
Header file <name>.h avg.h
XDR data type translate <name> xdr.c avg._xdr.c
routines (from type in .h file)
stub program for server <name> svc.c avg_svc.c
stub program for client <name> clnt.c avg_clnt.c
@ Application programmer (you) write code for:
» Client routine (main program)
- ravg <host> <parameters>
» Server program (e.g., actual code to compute average)
1

Maria Hybinette, UGA — avg_proc.c

Application Routines of Interest

avg.x : RPC language file

e Server Routine:
» average_1_svc(input_data,):

— A avg_proc.c routine that is called from the server
stub that was generated by rpcgen

o Client Routine:

» average_prog_1()

— Local routine that parse parameter and that ultimately
calls a ‘local’ average_1 routine from generated
code in avg_clint.c that packs parameters (also uses
routines in avg_xdr.c and sends code to server.

Maria Hybinette, UGA

ravg.c :Client Program(1)

/* client code - calls client stub, xdr client, xdr xerver, server stub, server routine */
#include "avg.h" /* header file generated by rpcgen */
#include <stdlib.h>

/* local routine client prototype can be whatever you want */
void averageprog_l(char* host, int argc, char *argv[])

{

CLIENT *clnt; /* client handle, rpc.h */
double £, kkkkkk *result 1, *dp,

char *endptr;

int i;

input data average 1 _arg; /* input_data rpc struct */
average 1 _arg.input data.input_data val = (double*) malloc (MAXAVGSIZE* sizeof (double)) ;

dp = average_1_arg.input_data.input data val; /* ptr to beginning of data */
average_ 1 arg.input data.input_data len = argc - 2; /* set number of items */

for(i =1; i <= (argc - 2); i++)
{ /* str to d ASCII string to floating point nubmer */
f = strtod(argv[i+l], &endptr);
printf ("value = %e\n", £f);
*dp = £;
dp++;

const MAXAVGSIZE = 200;
struct input data
{
double input data<200>;
b

typedef struct input data input data;

program AVERAGEPROG {
version AVERAGEVERS {
double AVERAGE (input_data) = 1;
}=1;
} = 22855; /* ‘port number’ */

Maria Hybinette, UGA

ravg.c :Client Program (2)

/* clnt_create(host, program, version, protocol)

& generic client create routine from rpc library

* program = AVERAGEPROG is the number 22855

* version = AVERAGEVERS is 1

* protocol = transfer protocol */

clnt = clnt create(host, AVE DG, AVER VERS, "udp");

if (clnt == NULL)

{ clnt _pcreateerror(host); /* rpc error library */
exit(1l);

*

/

now call average routine 'just' like a local routine, but this will now go over network

*

average 1 is definined in the client stub in avg_clnt.c that was generated by rpcgen

*

send in ptr to the parameters or args in first field, and client handle in second

*

field (created in clnt_create) average 1 ultimately calls clnt_call() macro see

*

man rpc, then calls the remote routine associated with the client handle
so AVERAGEPROG, VERSION */

result 1 = average 1(&average 1 arg, clnt);

if (result 1 == NULL)

{

clnt_perror(clnt, "call failed:");

}

*

clnt_destroy(clnt);
printf("average = %e\n", *result 1);

} /* end average 1 prodedure */ /* next slide main() */

ravg.c :Client Program (3)

avg _proc.c :Server Program (1)

int main(int argc, char* argv([])
{

char *host;

/* check correct syntax */

if(arge < 3)

{
printf("usage: %s server_ host value ...\n", argv[0]);
exit(1l);

if (argc > MAXAVGSIZE + 2)

{
printf ("Two many input values\n");
exit(2);

/* host name is in first parameter (after program name) */
host = argv[l];
averageprog_1l(host, argc, argv);

#include <rpc/rpc.h>
#include "avg.h” /* avg.h generated rpcgen */
#include <stdio.h>

/* run locally on 'server' called by a remote client. */

static double sum avg;

/* routine notice the _1 the version number and notice the client handle, not used here, but
* still needs to be a parameter */
double * average_1(input data *input, CLIENT *client)
{
/* input is parameters were marshaled by generated routine */
/* a pointer to a double, set to beginning of data array */
double *dp = input->input data.input_ data val;
u_int i;
sum_avg = 0;
for(i = 1; i <= input->input_data.input data_len; i++) /* iterate over input */
{
sum_avg = sum avg + *dp; /* add what ptrs points to ('*' gets content) */
dp++;
}

sum_avg = sum_avg / input->input_data.input data_len;
return(&sum_avg);
} /* end average 1 */ /* next is routine called from server stub generated by rpcgen */

avg _proc.c :Server Program (1)

#include <rpc/rpc.h>
#include "avg.h” /* avg.h generated rpcgen */
#include <stdio.h>

/* run locally on 'server' called by a remote client. */

static double sum avg;

/* routine notice the _1 the version number and notice the client handle, not used here, but
* still needs to be a parameter */
double * average_1(input data *input, CLIENT *client)
{
/* input is parameters were marshaled by generated routine */
/* a pointer to a double, set to beginning of data array */
double *dp = input->input data.input_ data val;
u_int i;
sum_avg = 0;
for(i = 1; i <= input->input_data.input data_len; i++) /* iterate over input */
{
sum_avg = sum avg + *dp; /* add what ptrs points to ('*' gets content) */
dp++;
}

sum_avg = sum_avg / input->input_data.input data_len;
return(&sum_avg);
} /* end average 1 */ /* next is routine called from server stub generated by rpcgen */

avg_proc.c :Server Program (2)

/*

* server stub 'average 1 _svc function handle called in avg_svc that was
* generated by rpcgen

AEFY LS

* result = (*local) ((char *)&argument, rgstp);

* where local is (char *(*) (char *, struct svc_req *)) average 1_svc;

&

double * average_ 1_svc(input_data *input, struct svc_req *svc)
{
CLIENT *client;
return(average 1(input, client));

}

Compilation on client

Compilation on server

rpcgen avg.x # generates:

avg clnt.c, avg svc.c, avg xdr.c, avg.h
gcc ravg.c -c # -c generates .o files
gcc avg_clnt.c -c
gcc avg_xdr.c -c

gcc -c ravg ravg.o avg_clnt.o avg _xdr.o -lnsl

Maria Hybinette, UGA

.rhost

rpcgen avg.x # generates:
avg clnt.c, avg svc.c, avg xdr.c, avg.h
gcc avg_proc.c -c

gcc avg_svc.c -c

gcc -0 avg_svc avg_proc.o avg_svc.o avg xdr.o -1lnsl

Maria Hybinette, UGA

Running

@ Directly under your home directory on each
machine (client and server) create a file
named:

.rhost

® Add two or more lines in the format:

<machine_name> <loginname>
® For example I added 3 lines:
odin maria
herc maria
atlas maria

Maria Hybinette, UGA

{maria:herc} avg_svc

{maria:odin} ravg atlas.cs.uga.edu12345

Maria Hybinette, UGA

See Textbook i.e., reading assignment

Resources Remote Method Invocation

1. (RPCgen)
(Sh. Mem) ® Remote Method Invocation (RMI) is a Java mechanism
similar to RPCs.

o RMI allows a Java program on one machine to invoke a
method on a remote object.

o Possible to Pass Objects(remote, local) as parameters
to remote methods (via serialization).

> @ DN

(1) Nice tutorial on RPC

JYM
2) (2) Shared Memorh
. . . JVM
(3) Linux journal tutorial uses avg.x Java @) remote
. . od in)
(4) Beej’s Guide FICEE VOcation o
remote
object
2 2

Maria Hybinette, UGA Maria Hybinette, UGA

Marshalling Parameters

@ Client invoke method: someMethod on a
remote object Server

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)

{

implementation of someMethod

}

| stub | skeleton

A, B, someMethod
boolean return value 5

Maria Hybinette, UGA

