
Maria Hybinette, UGA 

CSCI [4|6]730 
 Operating Systems 

Threads 

Maria Hybinette, UGA 
2 

Chapter 2:  Threads: Questions 

!  How is a thread different from a process? 
!  Why are threads useful? 
!  How can POSIX threads be useful? 
!  What are user-level and kernel-level threads? 
!  What are problems  with threads? 
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Review: What is a Process? 

A thread have  
 (1) an execution stream and   
 (2) a context 

!  Execution stream 
»  stream of instructions 
»  sequential sequence of instructions 
»  “thread” of control 

!  Process ‘context’ (seen picture of this already) 
»  Everything needed to run (restart) the process ! 
»  Registers 

–  program counter, stack pointer, general purpose! 
»  Address space 

–  Everything the process can access in memory 
–  Heap, stack, code 

A process is a program in execution! 

Running on a 
thread 

code data files 

registers stack 
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Review: What Makes up a Process? 

!  Program code (text) 
!  Data  

»  global variables 
»  heap (dynamically allocated memory) 

!  Process stack 
»  function parameters 
»  return addresses 
»  local variables and functions 

!  OS Resources 
!  Registers  

»  program  counter, stack pointer 

User Mode  
Address  
Space 

heap 

stack 

data 
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    routine1 
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address space are the shared resources 
of a(ll) thread(s) in a program 
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What are are problem’s with 
processes? 

!  How do processes (independent memory 
space) communicate? 

» Not really that simple (seen it, tried it – and you have 
too): 

–  Message passing (send and receive) 
–  Shared Memory: Set up a shared memory area (easier)? 

!  Problems: 
» Overhead: Both methods add some kernel overhead 

lowering performance 
» Complicated: IPC is not really that ‘natural’  

–  increases the complexity of your code 
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Processes versus Threads 

Solution: A thread is a “lightweight process” (LWP) 
!  An execution stream that shares an address space  

»  Overcome data flow over a file descriptor  
»  Overcome setting up `tighter memory’ space 

!  Multiple threads within a single process 
Examples:  
!  Two processes (copies of each other) examining memory 

address 0xffe84264 see different values (i.e., different 
contents) 

»  same frame of reference 
!  Two threads examining memory address 0xffe84264 see 

same  value (i.e., same contents) 
!  Illustrate: i-threading.c, i-forking.c 

main() 
   { 
   i = 55; 
   fork(); 
   // what is i 
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What Makes up a Thread? 

!  Own stack (necessary?) 
!  Own registers (necessary?) 

»  Own program counter 
»  Own stack pointer 

!  State (running, sleeping) 
!  Signal mask 

User Mode  
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address space are the shared resources 
of a(ll) thread(s) in a program 
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Single and Multithreaded Process 

code data files 

registers stack 

code data files 

registers 

stack 

registers 

stack 

registers 
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Why Support Threads? 

!  Divide large task across several cooperative threads 
!  Multi-threaded task has many performance benefits 

!  Examples: 
» Web Server: create threads to: 

–  Get network message from client 
–  Get URL data from disk 
–  Compose response 
–  Send a response   

» Word processor: create threads to: 
–  Display graphics 
–  Read keystrokes from users  
–  Perform spelling and grammar checking in 

background 
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Why Support Threads? 

!  Divide large task across several cooperative threads 
!  Multi-threaded task has many performance benefits 

!  Adapt to slow devices 
»  One thread waits for device while other threads computes 

!  Defer work 
»  One thread performs non-critical work in the background, 

when idle 
!  Parallelism 

»  Each thread runs simultaneously on a multiprocessor 

Maria Hybinette, UGA 
11 

Why Threads instead of a Processes? 

!  Advantages of Threads: 
»  Thread operations cheaper than corresponding 

process operations 
–  In terms of: Creation, termination, (context) switching 

»  IPC cheap through shared memory 
–  No need to invoke kernel to communicate between 

threads 

!  Disadvantages of Threads: 
»  True Concurrent programming is a challenge (what 

does this mean? True concurrency?) 
»  Synchronization between threads needed to use 

shared variables (more on this later – this is HARD). 
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Why are Threads Challenging?  
pthread1 Example: Output? 

main()!
{!

!pthread_t t1, t2;!
!char *msg1 = “Thread 1”; char *msg2 = “Thread 2”;!
!int ret1, ret2;!
!ret1 = pthread_create( &t1, NULL, print_fn, (void *)msg1 );!
!ret2 = pthread_create( &t2, NULL, print_fn, (void *)msg2 );!
!if( ret1 || ret2 ) !
!{!
! !fprintf(stderr, “ERROR: pthread_created failed.\n”);!
! !exit(1);!
!}!
!pthread_join( t1, NULL );!
!pthread_join( t2, NULL );!
!printf( “Thread 1 and thread 2 complete.\n” );!

}!
void print_fn(void *ptr)!
{ !

!printf(“%s\n”, (char *)ptr);!
}!
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Why are Threads Challenging? 

!  Example: Transfer $50.00 between two 
accounts and output the total balance of the 
accounts: 

!  Tasks: 

M = Balance in Maria’s account (begin $100) 

T = Balance in Tucker’s account (begin $50) 

B = Total balance 

T = 50, M = 100 
M = M - $50.00 
T = T + $50.00 
B = M + T 

Idea: on distributing 
the  tasks: 
(1)  One thread debits 

and credits 
(2)   The other Totals 
Does that work? 
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Why are Threads Challenging? 

!  Tasks: T = 50, M = 100 
M = M - $50.00 
T = T + $50.00 
B = M + T 

M = M - $50.00 
T = T + $50.00 
B = M + T 

M = M - $50.00 
B = M + T 
T = T + $50.00 

B = M + T 
M = M - $50.00 
T = T + $50.00 

One thread debits 
& credits 

One thread totals 

B = $150 B = $100 B = $150 
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Common Programming Models 

!  Manager/worker 
»  Single manager handles input and assigns work to the 

worker threads 
!  Producer/consumer 

»  Multiple producer threads create data (or work) that is 
handled by one of the multiple consumer threads  

!  Pipeline 
»  Task is divided into series of subtasks, each of which is 

handled in series by a different thread 
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Thread Support 

!  Three approaches to provide thread support 
» User-level threads 
» Kernel-level threads 
» Hybrid of User-level and Kernel-level threads 
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Latencies 

!  Comparing user-level threads, kernel threads, and 
processes  

!  Thread/Process Creation Cost: 
»  Evaluate –with Null fork:  the time to create, schedule, execute, and complete 

the entity that invokes the null procedure  

!  Thread/Process Synchronization Cost: 
»  Evaluate – with Signal-Wait: the time for an entity to signal a waiting entity and 

then wait on a condition (overhead of synchronization) 

Procedure call = 7 us 
Kernel Trap = 17 us User Level 

Threads 
Kernel Level 

Threads Processes 

Null fork 34 948 11,300 
Signal-wait 37 441 1,840 

30X,12X  
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User-Level Threads 

!  Many-to-one thread mapping 
»  Implemented by user-level runtime 

libraries  
–  Create, schedule, synchronize threads at 

user-level, state in user level space 
»  OS is not aware of user-level threads 

–  OS thinks each process contains only a 
single thread of control 

P P 

!  Advantages 
»  Does not require OS support; Portable 
»  Can tune scheduling policy to meet application (user level) 

demands 
»  Lower overhead thread operations since no system calls 

!  Disadvantages 
»  Cannot leverage multiprocessors (no true parallelism) 
»  Entire process blocks when one thread blocks 
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Blocked UL Threads: Jacketing 

!  Avoids ‘blocking’ on system calls that block (e.g., I/O) 
!  Solution: 

»  Instead of calling a blocking system call call an 
application level I/O jacket routine (a nonblocking call) 

»  Jacket routine provides code that determines whether I/O 
device is busy or available (idle). 

»  Busy: 
–  Thread enters the ready state and passes control to another 

thread 
–  Control returns to thread it retries 

»  Idle: 
–  Thread is allowed to make system call. 
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Kernel-Level Threads 

!  One-to-one thread mapping 
»  OS provides each user-level thread with a 

kernel thread 
»  Each kernel thread scheduled independently 
»  Thread operations (creation, scheduling, 

synchronization) performed by OS 

!  Advantages 
»  Each kernel-level thread can run in parallel on a 

multiprocessor 
»  When one thread blocks, other threads from process can 

be scheduled 

!  Disadvantages 
»  Higher overhead for thread operations 
»  OS must scale well with increasing number of threads 

P P 
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Two-Level Model 

!  one-one & (strict) many-to-many 
»  OS provides each user-level thread with a 

kernel thread 
»  Supports both bound an unbound threads 

–  Bound threads - permanently bound to a 
single kernel level thread 

–  Unbound threads may move to other kernel 
threads 

!  Advantages 
»  Flexible, best of two worlds 

!  Disadvantages 
»  More complicated 

P P P 
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Hybrid of Kernel & User -Level Threads 

!  m - n thread mapping (many to many) 
»  Application creates m threads 
»  OS provides pool of n kernel threads 
»  Few user-level threads mapped to each 

kernel-level thread 

!  Advantages 
»  Can get best of user-level and kernel-level implementations 
»  Works well given many short-lived user threads mapped to 

constant-size pool 
!  Disadvantages 

»  Complicated! 
»  How to select mappings? 
»  How to determine the best number of kernel threads? 

–  User specified 
–  OS dynamically adjusts number depending on system load 

P P 
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Summary: Thread Models 

P P P P P P 

!  Kernel Level: Windows 95/98/NT/2000, Solaris, Linux 
!  User Level: POSIX Pthreads, Mach, C-threads, Solaris threads 
!  Hybrids: IRIX, HP-UX, True 64 UNIX, Older Solaris models 
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Design:  
Threading Issues: fork() & exec() 

!  fork() 
» Duplicate all threads? 
» Duplicate only the thread that performs the fork 
» Resulting new process is single threaded? 
»  -> solution provide two different forks (mfork) 

!  exec() 
» Replaces the process - including all threads? 
»  If exec is after fork then replacing all threads is 

unnecessary. 
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Threading Issues: Cancellation 

!  Example 1: User pushes top button on a web 
browsers - while other threads are images 
(one thread per image). 

» Asynchronous Cancellation: Immediate (OS need to 
reclaim resources) 

!  Example 2: Several threads concurrently 
searches data base and one thread finds 
target data. 

» Deferred Cancellation: Thread terminates it self 
when notices it is scheduled for termination. 
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Threading Issues: Threads and 
Signals 

!  Problem: To which thread should OS deliver signal? 
!  Option 1: Require sender to specify thread ID (instead 

of process id) 
»  Sender may not know about individual threads 

!  Option 2: OS picks destination thread 
»  POSIX: Each thread has signal mask (disable specified 

signals) 
»  OS delivers signal to all threads without signal masked 
»  Application determines which thread is most appropriate 

for handing signal 
!  Synchronous - delivered to the same process that 

caused the signal 
!  Asynchronous - event is external to running process. 
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Other Thread Issues 

!  Creating thread is still costly! 
!  No bound of number of threads! 
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Thread Pools  

!  Create a number of threads in a pool where a 
number of threads await work 

!  Advantages: 
» Usually slightly faster to service a request with an 

existing thread than waiting to create a new thread 
» Allows the number of threads in the application(s) 

to be bound to the size of the pool 
!  The number of threads can be set 

heuristically based on the hardware and can 
even be dynamically adjusted taking into 
account user statistics. 
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IPC: Shared Memory 

!  Processes 
»  Each process has private address space  
»  Explicitly set up shared memory segment within 

each address space 
!  Threads 

» Always share address space (use heap for shared 
data), don’t need to set up shared space already 
there. 

!  Advantages 
»  Fast and easy to share data 

!  Disadvantages 
» Must synchronize data accesses; error prone (later) 
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IPC: Message Passing (also for 
threads, similar to processes) 

!  Message passing most commonly used between processes 
»  Explicitly pass data between sender (src) + receiver (destination) 
»  Example: Unix pipes 

!  Advantages:  
»  Makes sharing explicit 
»  Improves modularity (narrow interface) 
»  Does not require trust between sender and receiver 

!  Disadvantages:  
»  Performance overhead to copy messages 

!  Issues:  
»  How to name source and destination? 

–  One process, set of processes, or mailbox (port) 
»  Does sending process wait (I.e., block) for receiver?  

–  Blocking: Slows down sender 
–  Non-blocking: Requires buffering between sender and receiver 
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IPC: Signals 

!  Signal 
»  Software interrupt that notifies a process of an event 
»  Examples: SIGFPE, SIGKILL, SIGUSR1, SIGSTOP, SIGCONT 

!  What happens when a signal is received? 
»  Catch: Specify signal handler to be called 
»  Ignore: Rely on OS default action 

–  Example: Abort, memory dump, suspend or resume process 
»  Mask: Block signal so it is not delivered 

–  May be temporary (while handling signal of same type) 

!  Disadvantage 
»  Does not specify any data to be exchanged 
»  Complex semantics with threads 

Thread Design 
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Scheduler Activations Notes 

!  Provides better OS support for user level 
threading 

» Dynamic adjustment of number of kernel level 
threads to user level threads: 

–  E.g. Two level  and the m:n thread models need to 
maintain appropriate ratios 

» Key Idea: Kernel notifies thread scheduler of all 
kernel events via upcalls  

*** Textbook Read 
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Scheduler Activations 

!  Use an intermediate data structure 
between user/kernel level threads. 

 
!  Details: User level threads run and are 

scheduled (by the user level 
scheduler) on  ‘virtual processor’  

»  A data structure or light-weigh process 
(LWP) that is between the kernel thread 
and the user thread.  

»  Each LWP is attached to a kernel 
thread and kernel threads are what the 
OS schedules to run on physical 
processors. 

 

LWP 
 

Kernel 
Level 
Thread 

User 
Level 
Thread 
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Scheduler Activations 

!  An application may require any number of 
LWPs to run efficiently. 

»  Example: A CPU-bound application on a single 
processor. 

–  Needs only one LWP. 
»  Example: An I/O-bound application  

–  May need many LWPs- one for each concurrent 
blocking system since if there are not enough LWPs, 
the unassigned threads must wait for one of the 
LWPs to return from the kernel. 
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Scheduler Activations 

!  Why not a user level thread scheduler that spawns a kernel 
thread for blocking operations? 

»  Forget spawning, use a pool of kernel threads. 
»  But how do we know if an operation will block? 

–  read might block, or data might be in page cache. 
–  Any memory reference might cause a page fault to disk. 

!  Scheduler Activations 
!  Kernel tells user when a thread is going to block, via an 

upcall. 
»  Kernel can provide a kernel thread to run the user-level 

upcall handler (or preempt user thread). 
»  User-level scheduler suspends blocking thread and can 

give back kernel thread it was running on. 
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Quiz 3   

1.  What resources (context) within a process are shared 
between threads? 

2.  What resources (context) cannot be shared among threads 
within the same process? 

3.  What happens to other p-threads within the same process 
when a thread reads from disk? 

4.  Name a user level thread package? 
5.  Do Java threads use kernel or user level threads (Justify 

your answer)? 


