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Plan 

!  Project: Due 
» Demos following week (Wednesday during class time) 

!  Next Week – 
» New phase of presentations 
» Deadlock, finish synchronization 

!  Course Progress: 
» History, Structure, Processes, Threads, IPC, 

Synchronization 
» Remainder: Deadlock, Memory and File 
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Demos 

!  Next next Wednesday Demos 
!  Preparation (show & tell) 

»  3 precompiled kernels (original, lottery, stride, dynamic) 
»  1 prepared document to tell me what is working  what is 

not – overview what you did (5 minutes), script, and 
hand-in Tuesday 

!  How will it work (details) 
»  Show Data Structures in code 
»  Show Functionality added in code/kernel 
»  Show that it runs 
» Demonstrates your testing & evaluation strategy 
» Compile (not) &  run (this will be done last) 
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Next Project 

!  Add System Call (again, yes) 
!  Add a service (see how this fit in shortly) 

»  It is a synchronization service (semaphore or 
monitor) 

» Waking up and putting processes to sleep 

!  Write a simple application program that use 
this new service. 
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Process Synchronization Part II 

!  How does hardware facilitate 
synchronization? 

!  What are problems of the hardware 
primitives? 

!  What is a spin lock and when is it 
appropriate? 

!  What is a semaphore and why are they 
needed? 

!  What is the Dining Philosophers Problem and 
what is ‘a good’ solution? 
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Hardware Primitives 

Many modern operating systems provide special synchronization 
hardware to provide more powerful atomic operations  

 
!  testAndSet( lock )  

»  atomically reads the original value of lock and then sets it to true. 
!  Swap( a, b ) 

»  atomically swaps the values 
!  compareAndSwap( a, b ) 

»  atomically swaps the original value of lock and sets it to true when 
they values are different 

!  fetchAndAdd( x, n ) 
»  atomically reads the  original value of x and adds n to it. 
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Hardware: testAndSet(); 

boolean testAndSet ( boolean *lock ) 
  { 
  boolean old_lock = lock ; 
  lock = true; 
  return old_lock; 
  } 

!  If someone has the lock (it returns TRUE) and wait 
until it is available (until some-one gives it up, sets it 
to false). 

!  Atomicity guaranteed - even on multiprocessors 

// initialization 
lock = false ; // shared -- lock is available 
void deposit( int amount ) 
   { 
   // entry to critical section - get the lock 
   while( testAndSet( &lock ) == true ) {} ; 
   balance += amount // critical section 
   // exit critical section - release the lock 
   lock = false; 
   } 
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Hardware: Swap(); 

void Swap( boolean *a, boolean *b ) 
  { 
  boolean temp = *a ; 
  *a = *b; 
  *b = temp; 
  } 

!  Two Parameters: a global and local (when lock is 
available (false) get local key (false)). 

!  Atomicity guaranteed - even on multiprocessors 
!  Bounded waiting? 

» No! How to provide? 

// initialization 
lock = false ; // global shared -- lock is available 
void deposit( int amount ) 
   { 
   // entry critical section - get local variable key 
   key = true; // key is a local variable 
   while( key == true ) Swap( &lock, &key ); 
   balance += amount // critical section 
   // exit critical section - release the lock 
   lock = false; 
   } 

Maria Hybinette, UGA 
9 

Hardware with Bounded Waiting 

!  Need to create a waiting line. 
!  Idea: “Dressing Room” is the critical section, 

only one person can be in the room at one time, 
and one waiting line outside dressing room that 
serves customer first come first serve. 
» waiting[n] : Global shared variable  
» lock: Global shared variable  

!  Entry get a local variable ‘key’ and check via 
testAndSet() if someone is ‘in’ the dressing 
room 
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Hardware with Bounded Waiting 
// initialization 
lock = false ;   // shared -- lock is available 
waiting[0.. n-1] = {false} ; // shared -- no one is waiting  
void deposit( int amount ) 
   { 
   // entry to critical section  
   waiting[tid] = true; // signal tid is waiting 
   key = true; // local variable 
   while( ( waiting[tid] == true ) and ( key == true ) )  

 key = testAndSet( &lock ); 
   waiting[tid] = false; // got lock done waiting  
   balance += amount     // critical section 
 
   // exit critical section - release the lock 
   j = (tid + 1) mod n; // j is possibly waiting next in line 
   while( ( j != tid ) and ( waiting[j] == false ) ) 

 j = (j + 1) mod n;   // check next if waiting 
   if( j == tid )              // no one is waiting unlock room  

 lock = false; 
   else    

 waiting[j] = false  // hand over the key to j   
   } 
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Hardware Solution: Proof 
“Intuition” 

!  Mutual Exclusion:  
»  A thread enters only if it is waiting or if the dressing room 

is unlocked 
–  First thread to execute testAndSet( &lock )gets the lock all 

others will wait 
–  Waiting becomes false only if the thread with the lock leaves 

its CS and only one waiting is set to false. 
!  Progress:  

»  Since an exiting thread either unlocks the dressing room 
or hands the ‘lock’ to another thread progress is 
guaranteed because both allow a waiting thread access to 
the dressing room 

!  Bounded Waiting:   
»  Leaving threads scans the waiting array in cyclic order 

thus any waiting thread enters the critical section within 
n-1 turns.  

Maria Hybinette, UGA 
12 

Synchronization Layering 

!  Build higher-level synchronization primitives in OS 
»  Operations that ensure correct ordering of instructions 

across threads 
!  Motivation: Build them once and get them right 

»  Don’t make users write entry and exit code 

Monitors !

*Semaphores!Condition Variables!
*Locks !

Loads ! Stores! Test&Set !
Disable Interrupts!
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Locks 

!  Goal: Provide mutual exclusion (mutex) 
»  The other criteria for solving the critical section problem may be 

violated 

!  Three common operations: 

Allocate and Initialize 
pthread_mutex_t mylock; 
mylock = PTHREAD_MUTEX_INITIALIZER; 

Acquire 
Acquire exclusion access to lock; Wait if lock is not available 
pthread_mutex_lock( &mylock ); 

Release!
Release exclusive access to lock 
pthread_mutex_unlock( &mylock ); 
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Lock Examples 

!  After lock has been allocated and initialized 
void deposit( int amount )  
  { 
  pthread_mutex_lock( &my_lock ); 
  balance += amount; // critical section 
  pthread_mutex_unlock( &my_lock ); 
  } 

void deposit( int account_tid, int amount )  
  { 
  pthread_mutex_lock( &locks[account_tid] ); 
  balance[account_tid] += amount; // critical section 
  pthread_mutex_unlock( &locks[account_tid] );  } 

!  One lock for each bank account (maximize 
concurrency) 

Maria Hybinette, UGA 
15 

Implementing Locks:  
Atomic loads and stores  

!  Disadvantage: Two threads only 

typedef struct lock_s 
  bool lock[2] = {false, false}; 
  int turn = 0; 
 
void acquire( lock_s *lock )  
  lock->lock[tid] = true; 
  turn  = 1-tid; 
  while( lock->lock[1-tid] && lock->turn ==1-tid ) 
  
void release( lock_s lock )   
  lock->lock[tid] = false; 
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Implementing Locks:  
Hardware Instructions (now) 

!  Advantage: Supported on multiple processors 
!  Disadvantages:  

»  Spinning on a lock may waste CPU cycles 
»  The longer the CS the longer the spin 

–  Greater chance for lock holder to be interrupted too! 

 

typedef boolean lock_s; 
 
void acquire( lock_s *lock )  
  while( true == testAndSet( theLock ) ) {} ; // wait  
 

void release( lock_s lock )   
  lock = false; 
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Implementing Locks:  
Disable/Enable Interrupts 

!  Advantage: Supports mutual exclusion for many 
threads (prevents context switches) 

!  Disadvantages:  
»  Not supported on multiple processors,  
»  Too much power given to a thread (may not release 

lock_ 
»  May miss or delay important events 

void acquire( lock_s *lock )  
  disableInterrupts(); 
  
void release( lock_s lock )   
  enableInterrupts(); 
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Spin Locks and Disabling 
Interrupts 

!  Spin locks and disabling interrupts are useful only for 
short and simple critical sections (not computational 
or I/O intensive):!
»  Wasteful otherwise !
»  These primitives are primitive -- don’t do anything 

besides mutual exclusion (doesnʼt ʻsolveʼ the critical 
section problem). !

!  Need a higher-level synchronization primitives that:!
–  Block waiters  !
–  Leave interrupts enabled within the critical section!

»  All synchronization requires atomicity !
–  So we’ll use our “atomic” locks as primitives to implement 

them!
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Semaphores 

!  Semaphores are another data structure that 
provides mutual exclusion to critical sections !
» Described by Dijkstra in the THE system in 1968!
» Key Idea: A data structure that counts number of 
“wake-ups” that are saved for future use.!
–  Block waiters, interrupts enabled within CS !

!  Semaphores have two purposes: 
» Mutual Exclusion: Ensure threads don’t access critical 

section at same time 
»  Scheduling constraints (ordering) Ensure thhat 

threads execute in specific order (implemented by a 
waiting queue). 
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Blocking in Semaphores 

!  Idea: Associated with each semaphore is a queue of 
waiting processes  (typically the ones that want to get into 
the critical section) 

!  wait() tests (probes) the semaphore (DOWN) (wait to get 
in). 

»  If semaphore is open, thread continues  
»  If semaphore is closed, thread blocks on queue 

!  signal() opens (verhogen) the semaphore (UP): (lets 
others in) 

»  If a thread is waiting on the queue, the thread is unblocked  
»  If no threads are waiting on the queue, the signal is 

remembered for the next thread (i.e., it stores the “wake-up”). 
–  signal() has history 
–  This ‘history’ is a counter 
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Semaphore Operations 

!  Allocate and Initialize 
»  Semaphore contains a non-negative integer value 
»  User cannot read or write value directly after initialization 

–  sem_t sem; 
–  int sem_init( &sem, is_shared, init_value ); 

!  wait() ! or test or sleep or probe or down (block) or decrement. 
»  P() for “test” in Dutch (proberen) also down() 
»  Waits until semaphore is open (sem>0) then decrement sem value 

–  int sem_wait( &sem ); 
!  signal() ! or  wakeup or up or increment or post. (done) 

»  V() for “increment” in Dutch (verhogen) also up(), signal() 
»  Increments value of semaphore, allow another thread to enter 

–  int sem_post(&sem); 
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A Classic Semaphore 

!  S->value = 0 indicates all resources are exhausted/used. 
»  Note that S->value is never negative here (it spins), this is the classic 

definition of a semaphore 

!  Assumption: That there is atomicity between all instructions 
within the semaphore functions and across (incrementing 
and the waking up – i.e.,  you can’t perform wait() and signal
() concurrently. 

typedef struct  
       { 

 int value;          // Initialized to #resources available 
       }semaphore; 
 
sem_wait( semaphore *S )      // Must be executed atomically 

 while S->value <= 0;    
 S->value--; 
   

sem_signal( semaphore *S )   // Must be executed atomically 
 S->value++; 
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Semaphore Implementation (that avoids busy 
waiting)  

System V & Linux Semaphores 

typedef struct  
       { 

 int value; 
 queue tlist;           // blocking list of ‘waiters’  

       } semaphore; 
 
sem_wait( semaphore *S )      // Must be executed atomically 

 S->value--; 
 if( S->value < 0 )  
  add this process to S->tlist; 
  block(); 
  

sem_signal( semaphore *S )   // Must be executed atomically 
 S->value++; 
 if( S->value <= 0 )   // Threads are waiting 
  remove thread t from S->tlist; 
  wakeup(t); 
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Semaphore Example 

!  Observations? 
!  sem value is negative (what does the magnitude mean)?  

–  Number of waiters on queue 
»  sem value is positive? What does this number mean, e.g., What is the largest 

possible value of the semaphore? 
–  Number of threads that can be in critical section at the same time 

typedef struct { 
 int value;      /* initialize to 2 */ 
 queue tlist; 

} semaphore; 
sem_wait( semaphore *S )    

 S->value--; 
 if (S->value < 0)  
    add calling thread to S->tlist; 
    block(); 
  

sem_signal( semaphore *S )   
 S->value++; 
 if (S->value <= 0)  
   remove a thread t from S->tlist; 
   wakeup(t); 

What happens when 
sem.value is initialized to 2?  
 
Assume three threads call 
sem_wait( &sem ) 
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Mutual Exclusion with 
Semaphores 

!  Previous example with locks: 
void deposit( int amount )  
  { 
  pthread_mutex_lock( &my_lock ); 
  balance += amount; // critical section 
  pthread_mutex_unlock( &my_lock ); 
  } 

void deposit( int amount )  
  { 
  sem_wait( &sem ); 
  balance += amount; // critical section 
  sem_post( &sem ); 
  } 

!  Example with Semaphore: 

What value should sem be initialized to provide ME? 
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Beware: OS Provided Semaphores 

!  Strong Semaphores: Order in semaphore is 
specified (what we saw, and what most OSs 
use). FCFS. 

!  Weak Semaphore: Order in semaphore 
definition is left unspecified 

!  Something to think about:  
» Do these types of semaphores solve the Critical 

Section Problem? Why or Why not? 
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Danger Zone Ahead 
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Dangers with Semaphores 

!  Deadlock:  
»  Two or more threads are waiting indefinitely for an event 

that can be caused by only one of the waiting processes 
!  Example:  

»  Two threads: Maria and Tucker 
»  Two semaphores: semA, and semB both initialized to 1 

sem_wait( semA ) 
sem_wait( semB ) 
 
 
 
 
 
sem_post( semA ); 
sem_post( semB ); 

sem_wait( semB ) 
sem_wait( semA ) 
 
 
 
 
 
sem_post( semB ); 
sem_post( semA ); 

Thread Maria Thread Tucker 
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Semaphore Jargon 

!  Binary semaphore is sufficient to provide 
mutual exclusion (restriction) 

» Binary semaphore has boolean value (not integer) 
»  bsem_wait(): Waits until value is 1, then sets to 0 
»  bsem_signal(): Sets value to 1, waking one waiting 

process 

!  General semaphore is also called counting 
semaphore. 
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Semaphore Verdict 

!  Advantage:  
»  Versatile, can be used to solve any synchronization 

problems! 
!  Disadvantages: 

»  Prone to bugs (programmers’ bugs) 
» Difficult to program: no connection between 

semaphore and the data being controlled by the 
semaphore 

!  Consider alternatives: Monitors, for example, 
provides a better connection (data, method, 
synchronization) 
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!  Next will look at: 
»  synchronization problems &   
»  start on deadlock  
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Classes of Synchronization 
Problems (Thu) 

!  Uniform resource usage with simple scheduling constraints 
»  No other variables needed to express relationships 
»  Use one semaphore for every constraint 
»  Examples: producer/consumer 

!  Complex patterns of resource usage 
»  Cannot capture relationships with only semaphores 
»  Need extra state variables to record information 
»  Use semaphores such that 

–  One is for mutual exclusion around state variables 
–  One for each class of waiting 

!  Always try to cast problems into first, easier type 
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Classical Problems: Readers Writers 

!  Idea: 
» While data structure is updated  (write) often necessary 

to bar other threads from reading 
!  Basic Constraints (Bernstein’s Condition): 

» Any number of readers can be in CS simultaneously 
» Writers must have exclusive access to CS 

!  Some Variations: 
»  First Readers: No reader kept waiting unless a writer 

already in CS - so no reader should wait for other 
readers if a writer is waiting already (reader priority) 

»  Second Readers:  Once a writer is ready the writer 
performs write as soon as possible (writer priority) 

Set of problems where data structures, databases  or file 
systems are read and modified by concurrent threads 
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First Readers: Initialization 

!  Reader priority 
!  First readers: simplest reader/writer problem 

»  requires no reader should wait for other readers to 
finish even if there is a writer waiting. 

» Writer is easy – it gets in if the room is available 
!  Two semaphores both initialized to 1 

»  Protect a counter  
» Keep track whether a “room” is empty or not  

int reader = 0   // # readers in room   
sem_t mutex;   // 1 available - mutex to protect counter  
sem_t roomEmpty;  // 1 (true) if no threads and 0 otherwise 
int sem_is_shared = 0;    // both threads accesses semaphore 
 
sem_init( &mutex, sem_is_shared, 1 );  
sem_init( &roomEmpty, sem_is_shared, 1 );  
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First Reader: Entrance/Exit Writer 

!  Writer can go if the room is empty (unlocked) 

void enterWriter() 
  sem_wait
(&roomEmpty) 

void exitWriter() 
    sem_post( &roomEmpty ); 
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First Reader: Entrance/Exit Reader 

!  Only ONE reader is queued on roomEmpty, but 
several writers may be queued 

!  When a reader signals roomEmpty no other 
readers are in the room (the room is empty, key 
unlocked) 

void enterReader() 
  sem_wait(&mutex); 
    reader++; 
    if( reader == 1 ) 
       sem_wait( &roomEmpty );  // first in locks 
  sem_post( &mutex ); 

void exitReader() 
  sem_wait(&mutex) ; 
    reader--; 
    if( reader == 0 ) 
      sem_post( &roomEmpty );  // last out unlocks 
  sem_post( &mutex ); 



Maria Hybinette, UGA 
37 

Evaluation: First Reader 

!  Only one reader is queued on roomEmpty 
!  When a reader signals roomEmpty no other readers 

are in the room  
!  Writers Starve? Readers Starve? Both? 

void enterReader() 
  sem_wait(&mutex) 
    reader++; 
    if( reader == 1 ) 
       sem_wait( &roomEmpty );  // first on in locks 
  sem_post( &mutex ); 

void exitReader() 
  sem_wait(&mutex) 
    reader--; 
    if( reader == 0 ) 
      sem_post( &roomEmpty );  // last unlocks 
  sem_post( &mutex ); 

void enterWriter() 
  sem_wait(&roomEmpty) 

void exitWriter() 
 sem_post(&roomEmpty); 
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Food for though 

!  How would you implement Second Reader? 
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Classical Problems: Dining Philosophers 

!  Problem Definition Statement: 
» N Philosophers sit at a round table 
»  Each philosopher shares a chopstick (a shared 

resource) with neighbor 
»  Each philosopher must have both chopsticks to eat 
»  Immediate Neighbors can’t eat simultaneously 
»  Philosophers alternate between thinking and eating 

void philosopher( int i ) 
  while(1) 
     think() 
     take_chopstick(i); 
     eat(); 
     put_chopstick(i); 
     

Classic Multiprocess synchronization that stemmed from five computers 
competing for access to five shared tape drive peripherals.  
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Beware of the Imposters! 

Aristotle 

Plato 

Socrates 

René Descartes 

Frances Bacon 

Who is who? 

Answers 
next slide: 
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Beware of the Imposters 

Aristotle 

Plato 

Socrates 

René Descartes 

Frances Bacon 
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Dining Philosophers 

!  Two neighbors can’t use chopstick at same time 
!  Must test if chopstick is there and grab it atomically 

»  Represent EACH chopstick with a semaphore  
»  Grab right chopstick then left chopstick 
»  sem_t chopstick[5]; // Initialize each to 1!

put_chopstick( int i ) 
  sem_post( &chopstick[i] );   
  sem_post( &chopstick[(i+1) % 5] ); 
  

take_chopstick( int i ) 
   sem_wait( &chopstick[i] );   
   sem_wait( &chopstick[(i+1) % 5] ); 
     

!  Guarantees no two neighbors eats simultaneously 
!  Does this work? Why or Why Not? 
!  What happens if all philosophers wants to eat and grabs the left 

chopstick (at the same time)? 
!  Is it efficient? – (assuming we are lucky and it doesn’t deadlock)? 

void philosopher( int i ) 
  while(1) 
     think() 
     take_chopstick(i); 
     eat(); 
     put_chopstick(i); 
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Dining Philosophers: Attempt 2 
Serialize 

!  Add a mutex to ensure that a philosopher gets both 
chopsticks. 

!  Problems? 
»  How many philosophers can dine at one time? 
»  How many should be able to eat? 

void philosopher( int i ) 
  while(1) 
     think() 
     sem_wait( &mutex ); 
     take_chopstick(i); 
     eat(); 
     put_chopstick(i); 
     sem_post( &mutex ) 

put_chopstick( int i ) 
  sem_post( &chopstick[i] );   
  sem_post( &chopstick[(i+1) % 5] ); 
  

take_chopstick( int i ) 
   sem_wait( &chopstick[i] );   
   sem_wait( &chopstick[(i+1) % 5] ); 
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Dining Philosophers: Common Approach 

!  Grab lower-numbered chopstick first, then higher-numbered 

!  Problems? 
»  Safe: Deadlock? Asymmetry avoids it – so it is safe 

!  Performance (concurrency?) 
»  P0 and P4 grabs chopstick simultaneously - assume P0 wins 
»  P3 can now eat but P0 and P1 are not eating even if they don’t 

share a chopstick with P3 (so it is not as concurrent as it could be) 

take_chopstick( int i ) 
  if( i < 4 ) 
   sem_wait( &chopstick[i] );     //* Right 
   sem_wait( &chopstick[(i+1)] ); //* Left 
  else 
   sem_wait( &chopstick[0] );     //* Left 
   sem_wait( &chopstick[4] );     //* Right 
     

c1 
c0 c2 

c3 c4 

p0 p1 

p2 

p3 

p4 

Eats Got one fork Out in the cold: No forks 
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What Todo: Ask Dijkstra? 
!  Want to eat the cake too: Guarantee two goals: 

»  Safety (mutual exclusion): Ensure nothing bad happens (don’t violate 
constraints of problem) 

»  Liveness (progress) : Ensure something good happens when it can 
(make as much progress as possible) 

!  Introduce state variable for each philosopher i 
»  state[i] = THINKING, HUNGRY, or EATING 

!  Safety: No two adjacent philosophers eat simultaneously (ME) 
»  for all i: !(state[i]==EATING && state[i+1%5] == EATING) 

!  Liveness: No philosopher is HUNGRY unless one of his neighbors is 
eating (actually eating)!
»  ! - Not the case that : 

–  a philosopher is hungry and his neighbors are not eating -- !
»  for all i: !(state[i]==HUNGRY && (state[i+4%5]!=EATING && 
state[i+1%5]!=EATING)) 

Maria Hybinette, UGA 
46 

What Todo: Ask Dijkstra? 

!  Guarantees the two goals (helps to solve the problem): 
»  Safety (mutual exclusion): Ensure nothing bad happens (don’t 

violate constraints of problem) 
»  Liveness (progress) : Ensure something good happens when it 

can (make as much progress as possible) 
!  Introduce a state variable for each philosopher i 

»  state[i] = THINKING, HUNGRY, or EATING!
!  Safety: No two adjacent philosophers eat simultaneously 

(ME) 
»  for all i: !(state[i]==EATING && state[i+1%5] == EATING) 

!  Liveness: No philosopher is HUNGRY unless one of his neighbors 
is eating!
»  Not the case that a philosopher is hungry and his neighbors are 

not eating -- !
»  for all i: !(state[i]==HUNGRY && (state[i+4%5]!=EATING && 
state[i+1%5]!=EATING)) 
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Dining Philosophers: Dijkstra 
sem_t mayEat[5] = {0};   // permission to eat (testSafety will grant) 
sem_t mutex = {1} ;   // how to init 
int state[5] = {THINKING}; 
 
take_chopsticks(int i)  
  sem_wait( &mutex );   // enter critical section 
  state[i] = HUNGRY; 
  testSafetyAndLiveness(i);  // check for permission 
  sem_post( &mutex );     // exit critical section 
  sem_wait(&mayEat[i]); 
 
put_chopsticks(int i)  
  sem_wait(&mutex);   // enter critical section 
  state[i] = THINKING; 
  testSafetyAndLiveness(i+1 %5);  // check if left neighbor can run now 
  testSafetyAndLiveness(i+4 %5);  // check if right neighbor can run now 
  sem_post(&mutex);               // exit critical section 
 
testSafetyAndLiveness(int i)    
  if( state[i]==HUNGRY && state[i+4%5]!= EATING&&state[i+1%5]!= EATING ) 

 state[i] = EATING; 
 sem_post( &mayEat[i] ); 
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Yum! 

Aristotle 

Plato 

Socrates 

René Descartes 

http://users.erols.com/ziring/diningAppletDemo.html 

Frances Bacon 

http://www.doc.ic.ac.uk/~jnm/book/book_applets/Diners.html 



Maria Hybinette, UGA 
49 

!  http://www.doc.ic.ac.uk/~jnm/concurrency/
classes/Diners/Diners.html 
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Monitors make things easier! 

!  Motivation: 
»  Users can inadvertently misuse locks and semaphores 

(e.g., never unlock a mutex) 
!  Idea: 

»  Languages construct that control access to shared data 
»  Synchronization added by compiler, enforced at runtime 

!  Monitor encapsulates 
»  Shared data structures 
»  Methods 

–  that operates on shared data structures 
»  Synchronization between concurrent method invocations 

!  Protects data from unstructured data access 
!  Guarantees that threads accessing its data through its 

procedures interact only in legitimate ways!


