
Maria Hybinette, UGA
1

Plan

!  Project: Due
» Demos following week (Wednesday during class time)

!  Next Week –
» New phase of presentations
» Deadlock, finish synchronization

!  Course Progress:
» History, Structure, Processes, Threads, IPC,

Synchronization
» Remainder: Deadlock, Memory and File

Maria Hybinette, UGA
2

Demos

!  Next next Wednesday Demos
!  Preparation (show & tell)

»  3 precompiled kernels (original, lottery, stride, dynamic)
»  1 prepared document to tell me what is working what is

not – overview what you did (5 minutes), script, and
hand-in Tuesday

!  How will it work (details)
»  Show Data Structures in code
»  Show Functionality added in code/kernel
»  Show that it runs
» Demonstrates your testing & evaluation strategy
» Compile (not) & run (this will be done last)

Maria Hybinette, UGA
3

Next Project

!  Add System Call (again, yes)
!  Add a service (see how this fit in shortly)

»  It is a synchronization service (semaphore or
monitor)

» Waking up and putting processes to sleep

!  Write a simple application program that use
this new service.

Maria Hybinette, UGA

CSCI [4|6]730
 Operating Systems

Synchronization Part 2

Maria Hybinette, UGA
5

Process Synchronization Part II

!  How does hardware facilitate
synchronization?

!  What are problems of the hardware
primitives?

!  What is a spin lock and when is it
appropriate?

!  What is a semaphore and why are they
needed?

!  What is the Dining Philosophers Problem and
what is ‘a good’ solution?

Maria Hybinette, UGA
6

Hardware Primitives

Many modern operating systems provide special synchronization
hardware to provide more powerful atomic operations

!  testAndSet(lock)

»  atomically reads the original value of lock and then sets it to true.
!  Swap(a, b)

»  atomically swaps the values
!  compareAndSwap(a, b)

»  atomically swaps the original value of lock and sets it to true when
they values are different

!  fetchAndAdd(x, n)
»  atomically reads the original value of x and adds n to it.

Maria Hybinette, UGA
7

Hardware: testAndSet();

boolean testAndSet (boolean *lock)
 {
 boolean old_lock = lock ;
 lock = true;
 return old_lock;
 }

!  If someone has the lock (it returns TRUE) and wait
until it is available (until some-one gives it up, sets it
to false).

!  Atomicity guaranteed - even on multiprocessors

// initialization
lock = false ; // shared -- lock is available
void deposit(int amount)
 {
 // entry to critical section - get the lock
 while(testAndSet(&lock) == true) {} ;
 balance += amount // critical section
 // exit critical section - release the lock
 lock = false;
 }

Maria Hybinette, UGA
8

Hardware: Swap();

void Swap(boolean *a, boolean *b)
 {
 boolean temp = *a ;
 *a = *b;
 *b = temp;
 }

!  Two Parameters: a global and local (when lock is
available (false) get local key (false)).

!  Atomicity guaranteed - even on multiprocessors
!  Bounded waiting?

» No! How to provide?

// initialization
lock = false ; // global shared -- lock is available
void deposit(int amount)
 {
 // entry critical section - get local variable key
 key = true; // key is a local variable
 while(key == true) Swap(&lock, &key);
 balance += amount // critical section
 // exit critical section - release the lock
 lock = false;
 }

Maria Hybinette, UGA
9

Hardware with Bounded Waiting

!  Need to create a waiting line.
!  Idea: “Dressing Room” is the critical section,

only one person can be in the room at one time,
and one waiting line outside dressing room that
serves customer first come first serve.
» waiting[n] : Global shared variable
» lock: Global shared variable

!  Entry get a local variable ‘key’ and check via
testAndSet() if someone is ‘in’ the dressing
room

Maria Hybinette, UGA
10

Hardware with Bounded Waiting
// initialization
lock = false ; // shared -- lock is available
waiting[0.. n-1] = {false} ; // shared -- no one is waiting
void deposit(int amount)
 {
 // entry to critical section
 waiting[tid] = true; // signal tid is waiting
 key = true; // local variable
 while((waiting[tid] == true) and (key == true))

 key = testAndSet(&lock);
 waiting[tid] = false; // got lock done waiting
 balance += amount // critical section

 // exit critical section - release the lock
 j = (tid + 1) mod n; // j is possibly waiting next in line
 while((j != tid) and (waiting[j] == false))

 j = (j + 1) mod n; // check next if waiting
 if(j == tid) // no one is waiting unlock room

 lock = false;
 else

 waiting[j] = false // hand over the key to j
 }

Maria Hybinette, UGA
11

Hardware Solution: Proof
“Intuition”

!  Mutual Exclusion:
»  A thread enters only if it is waiting or if the dressing room

is unlocked
–  First thread to execute testAndSet(&lock)gets the lock all

others will wait
–  Waiting becomes false only if the thread with the lock leaves

its CS and only one waiting is set to false.
!  Progress:

»  Since an exiting thread either unlocks the dressing room
or hands the ‘lock’ to another thread progress is
guaranteed because both allow a waiting thread access to
the dressing room

!  Bounded Waiting:
»  Leaving threads scans the waiting array in cyclic order

thus any waiting thread enters the critical section within
n-1 turns.

Maria Hybinette, UGA
12

Synchronization Layering

!  Build higher-level synchronization primitives in OS
»  Operations that ensure correct ordering of instructions

across threads
!  Motivation: Build them once and get them right

»  Don’t make users write entry and exit code

Monitors !

*Semaphores!Condition Variables!
*Locks !

Loads ! Stores! Test&Set !
Disable Interrupts!

Maria Hybinette, UGA
13

Locks

!  Goal: Provide mutual exclusion (mutex)
»  The other criteria for solving the critical section problem may be

violated

!  Three common operations:

Allocate and Initialize
pthread_mutex_t mylock;
mylock = PTHREAD_MUTEX_INITIALIZER;

Acquire
Acquire exclusion access to lock; Wait if lock is not available
pthread_mutex_lock(&mylock);

Release!
Release exclusive access to lock
pthread_mutex_unlock(&mylock);

Maria Hybinette, UGA
14

Lock Examples

!  After lock has been allocated and initialized
void deposit(int amount)
 {
 pthread_mutex_lock(&my_lock);
 balance += amount; // critical section
 pthread_mutex_unlock(&my_lock);
 }

void deposit(int account_tid, int amount)
 {
 pthread_mutex_lock(&locks[account_tid]);
 balance[account_tid] += amount; // critical section
 pthread_mutex_unlock(&locks[account_tid]); }

!  One lock for each bank account (maximize
concurrency)

Maria Hybinette, UGA
15

Implementing Locks:
Atomic loads and stores

!  Disadvantage: Two threads only

typedef struct lock_s
 bool lock[2] = {false, false};
 int turn = 0;

void acquire(lock_s *lock)
 lock->lock[tid] = true;
 turn = 1-tid;
 while(lock->lock[1-tid] && lock->turn ==1-tid)

void release(lock_s lock)
 lock->lock[tid] = false;

Maria Hybinette, UGA
16

Implementing Locks:
Hardware Instructions (now)

!  Advantage: Supported on multiple processors
!  Disadvantages:

»  Spinning on a lock may waste CPU cycles
»  The longer the CS the longer the spin

–  Greater chance for lock holder to be interrupted too!

typedef boolean lock_s;

void acquire(lock_s *lock)
 while(true == testAndSet(theLock)) {} ; // wait

void release(lock_s lock)
 lock = false;

Maria Hybinette, UGA
17

Implementing Locks:
Disable/Enable Interrupts

!  Advantage: Supports mutual exclusion for many
threads (prevents context switches)

!  Disadvantages:
»  Not supported on multiple processors,
»  Too much power given to a thread (may not release

lock_
»  May miss or delay important events

void acquire(lock_s *lock)
 disableInterrupts();

void release(lock_s lock)
 enableInterrupts();

Maria Hybinette, UGA
18

Spin Locks and Disabling
Interrupts

!  Spin locks and disabling interrupts are useful only for
short and simple critical sections (not computational
or I/O intensive):!
»  Wasteful otherwise !
»  These primitives are primitive -- don’t do anything

besides mutual exclusion (doesnʼt ʻsolveʼ the critical
section problem). !

!  Need a higher-level synchronization primitives that:!
–  Block waiters !
–  Leave interrupts enabled within the critical section!

»  All synchronization requires atomicity !
–  So we’ll use our “atomic” locks as primitives to implement

them!

Maria Hybinette, UGA
19

Semaphores

!  Semaphores are another data structure that
provides mutual exclusion to critical sections !
» Described by Dijkstra in the THE system in 1968!
» Key Idea: A data structure that counts number of
“wake-ups” that are saved for future use.!
–  Block waiters, interrupts enabled within CS !

!  Semaphores have two purposes:
» Mutual Exclusion: Ensure threads don’t access critical

section at same time
»  Scheduling constraints (ordering) Ensure thhat

threads execute in specific order (implemented by a
waiting queue).

Maria Hybinette, UGA
20

Blocking in Semaphores

!  Idea: Associated with each semaphore is a queue of
waiting processes (typically the ones that want to get into
the critical section)

!  wait() tests (probes) the semaphore (DOWN) (wait to get
in).

»  If semaphore is open, thread continues
»  If semaphore is closed, thread blocks on queue

!  signal() opens (verhogen) the semaphore (UP): (lets
others in)

»  If a thread is waiting on the queue, the thread is unblocked
»  If no threads are waiting on the queue, the signal is

remembered for the next thread (i.e., it stores the “wake-up”).
–  signal() has history
–  This ‘history’ is a counter

Maria Hybinette, UGA
21

Semaphore Operations

!  Allocate and Initialize
»  Semaphore contains a non-negative integer value
»  User cannot read or write value directly after initialization

–  sem_t sem;
–  int sem_init(&sem, is_shared, init_value);

!  wait() ! or test or sleep or probe or down (block) or decrement.
»  P() for “test” in Dutch (proberen) also down()
»  Waits until semaphore is open (sem>0) then decrement sem value

–  int sem_wait(&sem);
!  signal() ! or wakeup or up or increment or post. (done)

»  V() for “increment” in Dutch (verhogen) also up(), signal()
»  Increments value of semaphore, allow another thread to enter

–  int sem_post(&sem);

Maria Hybinette, UGA
22

A Classic Semaphore

!  S->value = 0 indicates all resources are exhausted/used.
»  Note that S->value is never negative here (it spins), this is the classic

definition of a semaphore

!  Assumption: That there is atomicity between all instructions
within the semaphore functions and across (incrementing
and the waking up – i.e., you can’t perform wait() and signal
() concurrently.

typedef struct
 {

 int value; // Initialized to #resources available
 }semaphore;

sem_wait(semaphore *S) // Must be executed atomically

 while S->value <= 0;
 S->value--;

sem_signal(semaphore *S) // Must be executed atomically
 S->value++;

Maria Hybinette, UGA
23

Semaphore Implementation (that avoids busy
waiting)

System V & Linux Semaphores

typedef struct
 {

 int value;
 queue tlist; // blocking list of ‘waiters’

 } semaphore;

sem_wait(semaphore *S) // Must be executed atomically

 S->value--;
 if(S->value < 0)
 add this process to S->tlist;
 block();

sem_signal(semaphore *S) // Must be executed atomically
 S->value++;
 if(S->value <= 0) // Threads are waiting
 remove thread t from S->tlist;
 wakeup(t);

Maria Hybinette, UGA
24

Semaphore Example

!  Observations?
!  sem value is negative (what does the magnitude mean)?

–  Number of waiters on queue
»  sem value is positive? What does this number mean, e.g., What is the largest

possible value of the semaphore?
–  Number of threads that can be in critical section at the same time

typedef struct {
 int value; /* initialize to 2 */
 queue tlist;

} semaphore;
sem_wait(semaphore *S)

 S->value--;
 if (S->value < 0)
 add calling thread to S->tlist;
 block();

sem_signal(semaphore *S)
 S->value++;
 if (S->value <= 0)
 remove a thread t from S->tlist;
 wakeup(t);

What happens when
sem.value is initialized to 2?

Assume three threads call
sem_wait(&sem)

Maria Hybinette, UGA
25

Mutual Exclusion with
Semaphores

!  Previous example with locks:
void deposit(int amount)
 {
 pthread_mutex_lock(&my_lock);
 balance += amount; // critical section
 pthread_mutex_unlock(&my_lock);
 }

void deposit(int amount)
 {
 sem_wait(&sem);
 balance += amount; // critical section
 sem_post(&sem);
 }

!  Example with Semaphore:

What value should sem be initialized to provide ME?
Maria Hybinette, UGA

26

Beware: OS Provided Semaphores

!  Strong Semaphores: Order in semaphore is
specified (what we saw, and what most OSs
use). FCFS.

!  Weak Semaphore: Order in semaphore
definition is left unspecified

!  Something to think about:
» Do these types of semaphores solve the Critical

Section Problem? Why or Why not?

Maria Hybinette, UGA
27

Danger Zone Ahead

Maria Hybinette, UGA
28

Dangers with Semaphores

!  Deadlock:
»  Two or more threads are waiting indefinitely for an event

that can be caused by only one of the waiting processes
!  Example:

»  Two threads: Maria and Tucker
»  Two semaphores: semA, and semB both initialized to 1

sem_wait(semA)
sem_wait(semB)

sem_post(semA);
sem_post(semB);

sem_wait(semB)
sem_wait(semA)

sem_post(semB);
sem_post(semA);

Thread Maria Thread Tucker

Maria Hybinette, UGA
29

Semaphore Jargon

!  Binary semaphore is sufficient to provide
mutual exclusion (restriction)

» Binary semaphore has boolean value (not integer)
»  bsem_wait(): Waits until value is 1, then sets to 0
»  bsem_signal(): Sets value to 1, waking one waiting

process

!  General semaphore is also called counting
semaphore.

Maria Hybinette, UGA
30

Semaphore Verdict

!  Advantage:
»  Versatile, can be used to solve any synchronization

problems!
!  Disadvantages:

»  Prone to bugs (programmers’ bugs)
» Difficult to program: no connection between

semaphore and the data being controlled by the
semaphore

!  Consider alternatives: Monitors, for example,
provides a better connection (data, method,
synchronization)

Maria Hybinette, UGA
31

!  Next will look at:
»  synchronization problems &
»  start on deadlock

Maria Hybinette, UGA
32

Classes of Synchronization
Problems (Thu)

!  Uniform resource usage with simple scheduling constraints
»  No other variables needed to express relationships
»  Use one semaphore for every constraint
»  Examples: producer/consumer

!  Complex patterns of resource usage
»  Cannot capture relationships with only semaphores
»  Need extra state variables to record information
»  Use semaphores such that

–  One is for mutual exclusion around state variables
–  One for each class of waiting

!  Always try to cast problems into first, easier type

Maria Hybinette, UGA
33

Classical Problems: Readers Writers

!  Idea:
» While data structure is updated (write) often necessary

to bar other threads from reading
!  Basic Constraints (Bernstein’s Condition):

» Any number of readers can be in CS simultaneously
» Writers must have exclusive access to CS

!  Some Variations:
»  First Readers: No reader kept waiting unless a writer

already in CS - so no reader should wait for other
readers if a writer is waiting already (reader priority)

»  Second Readers: Once a writer is ready the writer
performs write as soon as possible (writer priority)

Set of problems where data structures, databases or file
systems are read and modified by concurrent threads

Maria Hybinette, UGA
34

First Readers: Initialization

!  Reader priority
!  First readers: simplest reader/writer problem

»  requires no reader should wait for other readers to
finish even if there is a writer waiting.

» Writer is easy – it gets in if the room is available
!  Two semaphores both initialized to 1

»  Protect a counter
» Keep track whether a “room” is empty or not

int reader = 0 // # readers in room
sem_t mutex; // 1 available - mutex to protect counter
sem_t roomEmpty; // 1 (true) if no threads and 0 otherwise
int sem_is_shared = 0; // both threads accesses semaphore

sem_init(&mutex, sem_is_shared, 1);
sem_init(&roomEmpty, sem_is_shared, 1);

Maria Hybinette, UGA
35

First Reader: Entrance/Exit Writer

!  Writer can go if the room is empty (unlocked)

void enterWriter()
 sem_wait
(&roomEmpty)

void exitWriter()
 sem_post(&roomEmpty);

Maria Hybinette, UGA
36

First Reader: Entrance/Exit Reader

!  Only ONE reader is queued on roomEmpty, but
several writers may be queued

!  When a reader signals roomEmpty no other
readers are in the room (the room is empty, key
unlocked)

void enterReader()
 sem_wait(&mutex);
 reader++;
 if(reader == 1)
 sem_wait(&roomEmpty); // first in locks
 sem_post(&mutex);

void exitReader()
 sem_wait(&mutex) ;
 reader--;
 if(reader == 0)
 sem_post(&roomEmpty); // last out unlocks
 sem_post(&mutex);

Maria Hybinette, UGA
37

Evaluation: First Reader

!  Only one reader is queued on roomEmpty
!  When a reader signals roomEmpty no other readers

are in the room
!  Writers Starve? Readers Starve? Both?

void enterReader()
 sem_wait(&mutex)
 reader++;
 if(reader == 1)
 sem_wait(&roomEmpty); // first on in locks
 sem_post(&mutex);

void exitReader()
 sem_wait(&mutex)
 reader--;
 if(reader == 0)
 sem_post(&roomEmpty); // last unlocks
 sem_post(&mutex);

void enterWriter()
 sem_wait(&roomEmpty)

void exitWriter()
 sem_post(&roomEmpty);

Maria Hybinette, UGA
38

Food for though

!  How would you implement Second Reader?

Maria Hybinette, UGA
39

Classical Problems: Dining Philosophers

!  Problem Definition Statement:
» N Philosophers sit at a round table
»  Each philosopher shares a chopstick (a shared

resource) with neighbor
»  Each philosopher must have both chopsticks to eat
»  Immediate Neighbors can’t eat simultaneously
»  Philosophers alternate between thinking and eating

void philosopher(int i)
 while(1)
 think()
 take_chopstick(i);
 eat();
 put_chopstick(i);

Classic Multiprocess synchronization that stemmed from five computers
competing for access to five shared tape drive peripherals.

Maria Hybinette, UGA
40

Beware of the Imposters!

Aristotle

Plato

Socrates

René Descartes

Frances Bacon

Who is who?

Answers
next slide:

Maria Hybinette, UGA
41

Beware of the Imposters

Aristotle

Plato

Socrates

René Descartes

Frances Bacon

Maria Hybinette, UGA
42

Dining Philosophers

!  Two neighbors can’t use chopstick at same time
!  Must test if chopstick is there and grab it atomically

»  Represent EACH chopstick with a semaphore
»  Grab right chopstick then left chopstick
»  sem_t chopstick[5]; // Initialize each to 1!

put_chopstick(int i)
 sem_post(&chopstick[i]);
 sem_post(&chopstick[(i+1) % 5]);

take_chopstick(int i)
 sem_wait(&chopstick[i]);
 sem_wait(&chopstick[(i+1) % 5]);

!  Guarantees no two neighbors eats simultaneously
!  Does this work? Why or Why Not?
!  What happens if all philosophers wants to eat and grabs the left

chopstick (at the same time)?
!  Is it efficient? – (assuming we are lucky and it doesn’t deadlock)?

void philosopher(int i)
 while(1)
 think()
 take_chopstick(i);
 eat();
 put_chopstick(i);

Maria Hybinette, UGA
43

Dining Philosophers: Attempt 2
Serialize

!  Add a mutex to ensure that a philosopher gets both
chopsticks.

!  Problems?
»  How many philosophers can dine at one time?
»  How many should be able to eat?

void philosopher(int i)
 while(1)
 think()
 sem_wait(&mutex);
 take_chopstick(i);
 eat();
 put_chopstick(i);
 sem_post(&mutex)

put_chopstick(int i)
 sem_post(&chopstick[i]);
 sem_post(&chopstick[(i+1) % 5]);

take_chopstick(int i)
 sem_wait(&chopstick[i]);
 sem_wait(&chopstick[(i+1) % 5]);

Maria Hybinette, UGA
44

Dining Philosophers: Common Approach

!  Grab lower-numbered chopstick first, then higher-numbered

!  Problems?
»  Safe: Deadlock? Asymmetry avoids it – so it is safe

!  Performance (concurrency?)
»  P0 and P4 grabs chopstick simultaneously - assume P0 wins
»  P3 can now eat but P0 and P1 are not eating even if they don’t

share a chopstick with P3 (so it is not as concurrent as it could be)

take_chopstick(int i)
 if(i < 4)
 sem_wait(&chopstick[i]); //* Right
 sem_wait(&chopstick[(i+1)]); //* Left
 else
 sem_wait(&chopstick[0]); //* Left
 sem_wait(&chopstick[4]); //* Right

c1
c0 c2

c3 c4

p0 p1

p2

p3

p4

Eats Got one fork Out in the cold: No forks

Maria Hybinette, UGA
45

What Todo: Ask Dijkstra?
!  Want to eat the cake too: Guarantee two goals:

»  Safety (mutual exclusion): Ensure nothing bad happens (don’t violate
constraints of problem)

»  Liveness (progress) : Ensure something good happens when it can
(make as much progress as possible)

!  Introduce state variable for each philosopher i
»  state[i] = THINKING, HUNGRY, or EATING

!  Safety: No two adjacent philosophers eat simultaneously (ME)
»  for all i: !(state[i]==EATING && state[i+1%5] == EATING)

!  Liveness: No philosopher is HUNGRY unless one of his neighbors is
eating (actually eating)!
»  ! - Not the case that :

–  a philosopher is hungry and his neighbors are not eating -- !
»  for all i: !(state[i]==HUNGRY && (state[i+4%5]!=EATING &&
state[i+1%5]!=EATING))

Maria Hybinette, UGA
46

What Todo: Ask Dijkstra?

!  Guarantees the two goals (helps to solve the problem):
»  Safety (mutual exclusion): Ensure nothing bad happens (don’t

violate constraints of problem)
»  Liveness (progress) : Ensure something good happens when it

can (make as much progress as possible)
!  Introduce a state variable for each philosopher i

»  state[i] = THINKING, HUNGRY, or EATING!
!  Safety: No two adjacent philosophers eat simultaneously

(ME)
»  for all i: !(state[i]==EATING && state[i+1%5] == EATING)

!  Liveness: No philosopher is HUNGRY unless one of his neighbors
is eating!
»  Not the case that a philosopher is hungry and his neighbors are

not eating -- !
»  for all i: !(state[i]==HUNGRY && (state[i+4%5]!=EATING &&
state[i+1%5]!=EATING))

Maria Hybinette, UGA
47

Dining Philosophers: Dijkstra
sem_t mayEat[5] = {0}; // permission to eat (testSafety will grant)
sem_t mutex = {1} ; // how to init
int state[5] = {THINKING};

take_chopsticks(int i)
 sem_wait(&mutex); // enter critical section
 state[i] = HUNGRY;
 testSafetyAndLiveness(i); // check for permission
 sem_post(&mutex); // exit critical section
 sem_wait(&mayEat[i]);

put_chopsticks(int i)
 sem_wait(&mutex); // enter critical section
 state[i] = THINKING;
 testSafetyAndLiveness(i+1 %5); // check if left neighbor can run now
 testSafetyAndLiveness(i+4 %5); // check if right neighbor can run now
 sem_post(&mutex); // exit critical section

testSafetyAndLiveness(int i)
 if(state[i]==HUNGRY && state[i+4%5]!= EATING&&state[i+1%5]!= EATING)

 state[i] = EATING;
 sem_post(&mayEat[i]);

Maria Hybinette, UGA
48

Yum!

Aristotle

Plato

Socrates

René Descartes

http://users.erols.com/ziring/diningAppletDemo.html

Frances Bacon

http://www.doc.ic.ac.uk/~jnm/book/book_applets/Diners.html

Maria Hybinette, UGA
49

!  http://www.doc.ic.ac.uk/~jnm/concurrency/
classes/Diners/Diners.html

Maria Hybinette, UGA
50

Monitors make things easier!

!  Motivation:
»  Users can inadvertently misuse locks and semaphores

(e.g., never unlock a mutex)
!  Idea:

»  Languages construct that control access to shared data
»  Synchronization added by compiler, enforced at runtime

!  Monitor encapsulates
»  Shared data structures
»  Methods

–  that operates on shared data structures
»  Synchronization between concurrent method invocations

!  Protects data from unstructured data access
!  Guarantees that threads accessing its data through its

procedures interact only in legitimate ways!

